commit 752ffa21973c67a789c34511e13d079d8bec3858
Author: Nick Mathewson <nickm(a)torproject.org>
Date: Thu Jul 19 08:53:40 2018 -0400
Extract openssl RSA functionality into its own file.
---
src/lib/crypt_ops/crypto_rsa.c | 795 --------------------------------
src/lib/crypt_ops/crypto_rsa_openssl.c | 815 +++++++++++++++++++++++++++++++++
src/lib/crypt_ops/include.am | 1 +
3 files changed, 816 insertions(+), 795 deletions(-)
diff --git a/src/lib/crypt_ops/crypto_rsa.c b/src/lib/crypt_ops/crypto_rsa.c
index ffe2bd2ce..328fd732d 100644
--- a/src/lib/crypt_ops/crypto_rsa.c
+++ b/src/lib/crypt_ops/crypto_rsa.c
@@ -21,33 +21,11 @@
#include "lib/log/util_bug.h"
#include "lib/fs/files.h"
-DISABLE_GCC_WARNING(redundant-decls)
-
-#include <openssl/err.h>
-#include <openssl/rsa.h>
-#include <openssl/pem.h>
-#include <openssl/evp.h>
-#include <openssl/engine.h>
-#include <openssl/rand.h>
-#include <openssl/bn.h>
-#include <openssl/dh.h>
-#include <openssl/conf.h>
-#include <openssl/hmac.h>
-
-ENABLE_GCC_WARNING(redundant-decls)
-
#include "lib/log/log.h"
#include "lib/encoding/binascii.h"
#include <string.h>
-/** Declaration for crypto_pk_t structure. */
-struct crypto_pk_t
-{
- int refs; /**< reference count, so we don't have to copy keys */
- RSA *key; /**< The key itself */
-};
-
/** Return the number of bytes added by padding method <b>padding</b>.
*/
int
@@ -72,442 +50,6 @@ crypto_get_rsa_padding(int padding)
}
}
-/** used internally: quicly validate a crypto_pk_t object as a private key.
- * Return 1 iff the public key is valid, 0 if obviously invalid.
- */
-static int
-crypto_pk_private_ok(const crypto_pk_t *k)
-{
-#ifdef OPENSSL_1_1_API
- if (!k || !k->key)
- return 0;
-
- const BIGNUM *p, *q;
- RSA_get0_factors(k->key, &p, &q);
- return p != NULL; /* XXX/yawning: Should we check q? */
-#else /* !(defined(OPENSSL_1_1_API)) */
- return k && k->key && k->key->p;
-#endif /* defined(OPENSSL_1_1_API) */
-}
-
-/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
-crypto_pk_t *
-crypto_new_pk_from_rsa_(RSA *rsa)
-{
- crypto_pk_t *env;
- tor_assert(rsa);
- env = tor_malloc(sizeof(crypto_pk_t));
- env->refs = 1;
- env->key = rsa;
- return env;
-}
-
-/** Helper, used by tor-gencert.c. Return the RSA from a
- * crypto_pk_t. */
-RSA *
-crypto_pk_get_rsa_(crypto_pk_t *env)
-{
- return env->key;
-}
-
-/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
- * private is set, include the private-key portion of the key. Return a valid
- * pointer on success, and NULL on failure. */
-MOCK_IMPL(EVP_PKEY *,
-crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
-{
- RSA *key = NULL;
- EVP_PKEY *pkey = NULL;
- tor_assert(env->key);
- if (private) {
- if (!(key = RSAPrivateKey_dup(env->key)))
- goto error;
- } else {
- if (!(key = RSAPublicKey_dup(env->key)))
- goto error;
- }
- if (!(pkey = EVP_PKEY_new()))
- goto error;
- if (!(EVP_PKEY_assign_RSA(pkey, key)))
- goto error;
- return pkey;
- error:
- if (pkey)
- EVP_PKEY_free(pkey);
- if (key)
- RSA_free(key);
- return NULL;
-}
-
-/** Allocate and return storage for a public key. The key itself will not yet
- * be set.
- */
-MOCK_IMPL(crypto_pk_t *,
-crypto_pk_new,(void))
-{
- RSA *rsa;
-
- rsa = RSA_new();
- tor_assert(rsa);
- return crypto_new_pk_from_rsa_(rsa);
-}
-
-/** Release a reference to an asymmetric key; when all the references
- * are released, free the key.
- */
-void
-crypto_pk_free_(crypto_pk_t *env)
-{
- if (!env)
- return;
-
- if (--env->refs > 0)
- return;
- tor_assert(env->refs == 0);
-
- if (env->key)
- RSA_free(env->key);
-
- tor_free(env);
-}
-
-/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
- * Return 0 on success, -1 on failure.
- */
-MOCK_IMPL(int,
-crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
-{
- tor_assert(env);
-
- if (env->key) {
- RSA_free(env->key);
- env->key = NULL;
- }
-
- {
- BIGNUM *e = BN_new();
- RSA *r = NULL;
- if (!e)
- goto done;
- if (! BN_set_word(e, 65537))
- goto done;
- r = RSA_new();
- if (!r)
- goto done;
- if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
- goto done;
-
- env->key = r;
- r = NULL;
- done:
- if (e)
- BN_clear_free(e);
- if (r)
- RSA_free(r);
- }
-
- if (!env->key) {
- crypto_openssl_log_errors(LOG_WARN, "generating RSA key");
- return -1;
- }
-
- return 0;
-}
-
-/** A PEM callback that always reports a failure to get a password */
-static int
-pem_no_password_cb(char *buf, int size, int rwflag, void *u)
-{
- (void)buf;
- (void)size;
- (void)rwflag;
- (void)u;
- return -1;
-}
-
-/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
- * into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
- * the string is nul-terminated.
- */
-int
-crypto_pk_read_private_key_from_string(crypto_pk_t *env,
- const char *s, ssize_t len)
-{
- BIO *b;
-
- tor_assert(env);
- tor_assert(s);
- tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
-
- /* Create a read-only memory BIO, backed by the string 's' */
- b = BIO_new_mem_buf((char*)s, (int)len);
- if (!b)
- return -1;
-
- if (env->key)
- RSA_free(env->key);
-
- env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
-
- BIO_free(b);
-
- if (!env->key) {
- crypto_openssl_log_errors(LOG_WARN, "Error parsing private key");
- return -1;
- }
- return 0;
-}
-
-/** Read a PEM-encoded private key from the file named by
- * <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
- */
-int
-crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
- const char *keyfile)
-{
- char *contents;
- int r;
-
- /* Read the file into a string. */
- contents = read_file_to_str(keyfile, 0, NULL);
- if (!contents) {
- log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
- return -1;
- }
-
- /* Try to parse it. */
- r = crypto_pk_read_private_key_from_string(env, contents, -1);
- memwipe(contents, 0, strlen(contents));
- tor_free(contents);
- if (r)
- return -1; /* read_private_key_from_string already warned, so we don't.*/
-
- /* Make sure it's valid. */
- if (crypto_pk_check_key(env) <= 0)
- return -1;
-
- return 0;
-}
-
-/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
- * success, -1 on failure. */
-static int
-crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
- size_t *len, int is_public)
-{
- BUF_MEM *buf;
- BIO *b;
- int r;
-
- tor_assert(env);
- tor_assert(env->key);
- tor_assert(dest);
-
- b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
- if (!b)
- return -1;
-
- /* Now you can treat b as if it were a file. Just use the
- * PEM_*_bio_* functions instead of the non-bio variants.
- */
- if (is_public)
- r = PEM_write_bio_RSAPublicKey(b, env->key);
- else
- r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
-
- if (!r) {
- crypto_openssl_log_errors(LOG_WARN, "writing RSA key to string");
- BIO_free(b);
- return -1;
- }
-
- BIO_get_mem_ptr(b, &buf);
-
- *dest = tor_malloc(buf->length+1);
- memcpy(*dest, buf->data, buf->length);
- (*dest)[buf->length] = 0; /* nul terminate it */
- *len = buf->length;
-
- BIO_free(b);
-
- return 0;
-}
-
-/** PEM-encode the public key portion of <b>env</b> and write it to a
- * newly allocated string. On success, set *<b>dest</b> to the new
- * string, *<b>len</b> to the string's length, and return 0. On
- * failure, return -1.
- */
-int
-crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
- size_t *len)
-{
- return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
-}
-
-/** PEM-encode the private key portion of <b>env</b> and write it to a
- * newly allocated string. On success, set *<b>dest</b> to the new
- * string, *<b>len</b> to the string's length, and return 0. On
- * failure, return -1.
- */
-int
-crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
- size_t *len)
-{
- return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
-}
-
-/** Read a PEM-encoded public key from the first <b>len</b> characters of
- * <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
- * failure.
- */
-int
-crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
- size_t len)
-{
- BIO *b;
-
- tor_assert(env);
- tor_assert(src);
- tor_assert(len<INT_MAX);
-
- b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
- if (!b)
- return -1;
-
- BIO_write(b, src, (int)len);
-
- if (env->key)
- RSA_free(env->key);
- env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
- BIO_free(b);
- if (!env->key) {
- crypto_openssl_log_errors(LOG_WARN, "reading public key from string");
- return -1;
- }
-
- return 0;
-}
-
-/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
- * PEM-encoded. Return 0 on success, -1 on failure.
- */
-int
-crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
- const char *fname)
-{
- BIO *bio;
- char *cp;
- long len;
- char *s;
- int r;
-
- tor_assert(crypto_pk_private_ok(env));
-
- if (!(bio = BIO_new(BIO_s_mem())))
- return -1;
- if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
- == 0) {
- crypto_openssl_log_errors(LOG_WARN, "writing private key");
- BIO_free(bio);
- return -1;
- }
- len = BIO_get_mem_data(bio, &cp);
- tor_assert(len >= 0);
- s = tor_malloc(len+1);
- memcpy(s, cp, len);
- s[len]='\0';
- r = write_str_to_file(fname, s, 0);
- BIO_free(bio);
- memwipe(s, 0, strlen(s));
- tor_free(s);
- return r;
-}
-
-/** Return true iff <b>env</b> has a valid key.
- */
-int
-crypto_pk_check_key(crypto_pk_t *env)
-{
- int r;
- tor_assert(env);
-
- r = RSA_check_key(env->key);
- if (r <= 0)
- crypto_openssl_log_errors(LOG_WARN,"checking RSA key");
- return r;
-}
-
-/** Return true iff <b>key</b> contains the private-key portion of the RSA
- * key. */
-int
-crypto_pk_key_is_private(const crypto_pk_t *key)
-{
- tor_assert(key);
- return crypto_pk_private_ok(key);
-}
-
-/** Return true iff <b>env</b> contains a public key whose public exponent
- * equals 65537.
- */
-int
-crypto_pk_public_exponent_ok(crypto_pk_t *env)
-{
- tor_assert(env);
- tor_assert(env->key);
-
- const BIGNUM *e;
-
-#ifdef OPENSSL_1_1_API
- const BIGNUM *n, *d;
- RSA_get0_key(env->key, &n, &e, &d);
-#else
- e = env->key->e;
-#endif /* defined(OPENSSL_1_1_API) */
- return BN_is_word(e, 65537);
-}
-
-/** Compare the public-key components of a and b. Return less than 0
- * if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
- * considered to be less than all non-NULL keys, and equal to itself.
- *
- * Note that this may leak information about the keys through timing.
- */
-int
-crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
-{
- int result;
- char a_is_non_null = (a != NULL) && (a->key != NULL);
- char b_is_non_null = (b != NULL) && (b->key != NULL);
- char an_argument_is_null = !a_is_non_null | !b_is_non_null;
-
- result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
- if (an_argument_is_null)
- return result;
-
- const BIGNUM *a_n, *a_e;
- const BIGNUM *b_n, *b_e;
-
-#ifdef OPENSSL_1_1_API
- const BIGNUM *a_d, *b_d;
- RSA_get0_key(a->key, &a_n, &a_e, &a_d);
- RSA_get0_key(b->key, &b_n, &b_e, &b_d);
-#else
- a_n = a->key->n;
- a_e = a->key->e;
- b_n = b->key->n;
- b_e = b->key->e;
-#endif /* defined(OPENSSL_1_1_API) */
-
- tor_assert(a_n != NULL && a_e != NULL);
- tor_assert(b_n != NULL && b_e != NULL);
-
- result = BN_cmp(a_n, b_n);
- if (result)
- return result;
- return BN_cmp(a_e, b_e);
-}
-
/** Compare the public-key components of a and b. Return non-zero iff
* a==b. A NULL key is considered to be distinct from all non-NULL
* keys, and equal to itself.
@@ -520,98 +62,6 @@ crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
return (crypto_pk_cmp_keys(a, b) == 0);
}
-/** Return the size of the public key modulus in <b>env</b>, in bytes. */
-size_t
-crypto_pk_keysize(const crypto_pk_t *env)
-{
- tor_assert(env);
- tor_assert(env->key);
-
- return (size_t) RSA_size((RSA*)env->key);
-}
-
-/** Return the size of the public key modulus of <b>env</b>, in bits. */
-int
-crypto_pk_num_bits(crypto_pk_t *env)
-{
- tor_assert(env);
- tor_assert(env->key);
-
-#ifdef OPENSSL_1_1_API
- /* It's so stupid that there's no other way to check that n is valid
- * before calling RSA_bits().
- */
- const BIGNUM *n, *e, *d;
- RSA_get0_key(env->key, &n, &e, &d);
- tor_assert(n != NULL);
-
- return RSA_bits(env->key);
-#else /* !(defined(OPENSSL_1_1_API)) */
- tor_assert(env->key->n);
- return BN_num_bits(env->key->n);
-#endif /* defined(OPENSSL_1_1_API) */
-}
-
-/** Increase the reference count of <b>env</b>, and return it.
- */
-crypto_pk_t *
-crypto_pk_dup_key(crypto_pk_t *env)
-{
- tor_assert(env);
- tor_assert(env->key);
-
- env->refs++;
- return env;
-}
-
-#ifdef TOR_UNIT_TESTS
-/** For testing: replace dest with src. (Dest must have a refcount
- * of 1) */
-void
-crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
-{
- tor_assert(dest);
- tor_assert(dest->refs == 1);
- tor_assert(src);
- RSA_free(dest->key);
- dest->key = RSAPrivateKey_dup(src->key);
-}
-#endif /* defined(TOR_UNIT_TESTS) */
-
-/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
- * Returns NULL on failure. */
-crypto_pk_t *
-crypto_pk_copy_full(crypto_pk_t *env)
-{
- RSA *new_key;
- int privatekey = 0;
- tor_assert(env);
- tor_assert(env->key);
-
- if (crypto_pk_private_ok(env)) {
- new_key = RSAPrivateKey_dup(env->key);
- privatekey = 1;
- } else {
- new_key = RSAPublicKey_dup(env->key);
- }
- if (!new_key) {
- /* LCOV_EXCL_START
- *
- * We can't cause RSA*Key_dup() to fail, so we can't really test this.
- */
- log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
- privatekey?"private":"public");
- crypto_openssl_log_errors(LOG_ERR,
- privatekey ? "Duplicating a private key" :
- "Duplicating a public key");
- tor_fragile_assert();
- return NULL;
- /* LCOV_EXCL_STOP */
- }
-
- return crypto_new_pk_from_rsa_(new_key);
-}
-
/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
* bytes of data from <b>from</b>, with padding type 'padding',
* storing the results on <b>to</b>.
@@ -754,179 +204,6 @@ crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
return -1;
}
-/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
- * in <b>env</b>, using the padding method <b>padding</b>. On success,
- * write the result to <b>to</b>, and return the number of bytes
- * written. On failure, return -1.
- *
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
- * at least the length of the modulus of <b>env</b>.
- */
-int
-crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
- const char *from, size_t fromlen, int padding)
-{
- int r;
- tor_assert(env);
- tor_assert(from);
- tor_assert(to);
- tor_assert(fromlen<INT_MAX);
- tor_assert(tolen >= crypto_pk_keysize(env));
-
- r = RSA_public_encrypt((int)fromlen,
- (unsigned char*)from, (unsigned char*)to,
- env->key, crypto_get_rsa_padding(padding));
- if (r<0) {
- crypto_openssl_log_errors(LOG_WARN, "performing RSA encryption");
- return -1;
- }
- return r;
-}
-
-/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
- * in <b>env</b>, using the padding method <b>padding</b>. On success,
- * write the result to <b>to</b>, and return the number of bytes
- * written. On failure, return -1.
- *
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
- * at least the length of the modulus of <b>env</b>.
- */
-int
-crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
- size_t tolen,
- const char *from, size_t fromlen,
- int padding, int warnOnFailure)
-{
- int r;
- tor_assert(env);
- tor_assert(from);
- tor_assert(to);
- tor_assert(env->key);
- tor_assert(fromlen<INT_MAX);
- tor_assert(tolen >= crypto_pk_keysize(env));
- if (!crypto_pk_key_is_private(env))
- /* Not a private key */
- return -1;
-
- r = RSA_private_decrypt((int)fromlen,
- (unsigned char*)from, (unsigned char*)to,
- env->key, crypto_get_rsa_padding(padding));
-
- if (r<0) {
- crypto_openssl_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
- "performing RSA decryption");
- return -1;
- }
- return r;
-}
-
-/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
- * public key in <b>env</b>, using PKCS1 padding. On success, write the
- * signed data to <b>to</b>, and return the number of bytes written.
- * On failure, return -1.
- *
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
- * at least the length of the modulus of <b>env</b>.
- */
-MOCK_IMPL(int,
-crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
- size_t tolen,
- const char *from, size_t fromlen))
-{
- int r;
- tor_assert(env);
- tor_assert(from);
- tor_assert(to);
- tor_assert(fromlen < INT_MAX);
- tor_assert(tolen >= crypto_pk_keysize(env));
- r = RSA_public_decrypt((int)fromlen,
- (unsigned char*)from, (unsigned char*)to,
- env->key, RSA_PKCS1_PADDING);
-
- if (r<0) {
- crypto_openssl_log_errors(LOG_INFO, "checking RSA signature");
- return -1;
- }
- return r;
-}
-
-/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
- * <b>env</b>, using PKCS1 padding. On success, write the signature to
- * <b>to</b>, and return the number of bytes written. On failure, return
- * -1.
- *
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
- * at least the length of the modulus of <b>env</b>.
- */
-int
-crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
- const char *from, size_t fromlen)
-{
- int r;
- tor_assert(env);
- tor_assert(from);
- tor_assert(to);
- tor_assert(fromlen < INT_MAX);
- tor_assert(tolen >= crypto_pk_keysize(env));
- if (!crypto_pk_key_is_private(env))
- /* Not a private key */
- return -1;
-
- r = RSA_private_encrypt((int)fromlen,
- (unsigned char*)from, (unsigned char*)to,
- (RSA*)env->key, RSA_PKCS1_PADDING);
- if (r<0) {
- crypto_openssl_log_errors(LOG_WARN, "generating RSA signature");
- return -1;
- }
- return r;
-}
-
-/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
- * Return -1 on error, or the number of characters used on success.
- */
-int
-crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
-{
- int len;
- unsigned char *buf = NULL;
-
- len = i2d_RSAPublicKey(pk->key, &buf);
- if (len < 0 || buf == NULL)
- return -1;
-
- if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
- OPENSSL_free(buf);
- return -1;
- }
- /* We don't encode directly into 'dest', because that would be illegal
- * type-punning. (C99 is smarter than me, C99 is smarter than me...)
- */
- memcpy(dest,buf,len);
- OPENSSL_free(buf);
- return len;
-}
-
-/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
- * success and NULL on failure.
- */
-crypto_pk_t *
-crypto_pk_asn1_decode(const char *str, size_t len)
-{
- RSA *rsa;
- unsigned char *buf;
- const unsigned char *cp;
- cp = buf = tor_malloc(len);
- memcpy(buf,str,len);
- rsa = d2i_RSAPublicKey(NULL, &cp, len);
- tor_free(buf);
- if (!rsa) {
- crypto_openssl_log_errors(LOG_WARN,"decoding public key");
- return NULL;
- }
- return crypto_new_pk_from_rsa_(rsa);
-}
-
/** Given a private or public key <b>pk</b>, put a fingerprint of the
* public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
* space). Return 0 on success, -1 on failure.
@@ -1111,75 +388,3 @@ crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
tor_free(buf);
return rv;
}
-
-/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
- * Base64 encoding of the DER representation of the private key as a NUL
- * terminated string, and return it via <b>priv_out</b>. Return 0 on
- * success, -1 on failure.
- *
- * It is the caller's responsibility to sanitize and free the resulting buffer.
- */
-int
-crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
-{
- unsigned char *der = NULL;
- int der_len;
- int ret = -1;
-
- *priv_out = NULL;
-
- der_len = i2d_RSAPrivateKey(pk->key, &der);
- if (der_len < 0 || der == NULL)
- return ret;
-
- size_t priv_len = base64_encode_size(der_len, 0) + 1;
- char *priv = tor_malloc_zero(priv_len);
- if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
- *priv_out = priv;
- ret = 0;
- } else {
- tor_free(priv);
- }
-
- memwipe(der, 0, der_len);
- OPENSSL_free(der);
- return ret;
-}
-
-/** Given a string containing the Base64 encoded DER representation of the
- * private key <b>str</b>, decode and return the result on success, or NULL
- * on failure.
- */
-crypto_pk_t *
-crypto_pk_base64_decode(const char *str, size_t len)
-{
- crypto_pk_t *pk = NULL;
-
- char *der = tor_malloc_zero(len + 1);
- int der_len = base64_decode(der, len, str, len);
- if (der_len <= 0) {
- log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
- goto out;
- }
-
- const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
- RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
- if (!rsa) {
- crypto_openssl_log_errors(LOG_WARN, "decoding private key");
- goto out;
- }
-
- pk = crypto_new_pk_from_rsa_(rsa);
-
- /* Make sure it's valid. */
- if (crypto_pk_check_key(pk) <= 0) {
- crypto_pk_free(pk);
- pk = NULL;
- goto out;
- }
-
- out:
- memwipe(der, 0, len + 1);
- tor_free(der);
- return pk;
-}
diff --git a/src/lib/crypt_ops/crypto_rsa_openssl.c b/src/lib/crypt_ops/crypto_rsa_openssl.c
new file mode 100644
index 000000000..c57a2e39e
--- /dev/null
+++ b/src/lib/crypt_ops/crypto_rsa_openssl.c
@@ -0,0 +1,815 @@
+/* Copyright (c) 2001, Matej Pfajfar.
+ * Copyright (c) 2001-2004, Roger Dingledine.
+ * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
+ * Copyright (c) 2007-2018, The Tor Project, Inc. */
+/* See LICENSE for licensing information */
+
+/**
+ * \file crypto_rsa.c
+ * \brief OpenSSL implementations of our RSA code.
+ **/
+
+#include "lib/crypt_ops/compat_openssl.h"
+#include "lib/crypt_ops/crypto_rsa.h"
+#include "lib/crypt_ops/crypto_util.h"
+#include "lib/ctime/di_ops.h"
+#include "lib/log/util_bug.h"
+#include "lib/fs/files.h"
+
+DISABLE_GCC_WARNING(redundant-decls)
+
+#include <openssl/err.h>
+#include <openssl/rsa.h>
+#include <openssl/pem.h>
+#include <openssl/evp.h>
+#include <openssl/engine.h>
+#include <openssl/rand.h>
+#include <openssl/bn.h>
+#include <openssl/conf.h>
+
+ENABLE_GCC_WARNING(redundant-decls)
+
+#include "lib/log/log.h"
+#include "lib/encoding/binascii.h"
+
+#include <string.h>
+
+/** Declaration for crypto_pk_t structure. */
+struct crypto_pk_t
+{
+ int refs; /**< reference count, so we don't have to copy keys */
+ RSA *key; /**< The key itself */
+};
+
+/** used internally: quicly validate a crypto_pk_t object as a private key.
+ * Return 1 iff the public key is valid, 0 if obviously invalid.
+ */
+static int
+crypto_pk_private_ok(const crypto_pk_t *k)
+{
+#ifdef OPENSSL_1_1_API
+ if (!k || !k->key)
+ return 0;
+
+ const BIGNUM *p, *q;
+ RSA_get0_factors(k->key, &p, &q);
+ return p != NULL; /* XXX/yawning: Should we check q? */
+#else /* !(defined(OPENSSL_1_1_API)) */
+ return k && k->key && k->key->p;
+#endif /* defined(OPENSSL_1_1_API) */
+}
+
+/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
+crypto_pk_t *
+crypto_new_pk_from_rsa_(RSA *rsa)
+{
+ crypto_pk_t *env;
+ tor_assert(rsa);
+ env = tor_malloc(sizeof(crypto_pk_t));
+ env->refs = 1;
+ env->key = rsa;
+ return env;
+}
+
+/** Helper, used by tor-gencert.c. Return the RSA from a
+ * crypto_pk_t. */
+RSA *
+crypto_pk_get_rsa_(crypto_pk_t *env)
+{
+ return env->key;
+}
+
+/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
+ * private is set, include the private-key portion of the key. Return a valid
+ * pointer on success, and NULL on failure. */
+MOCK_IMPL(EVP_PKEY *,
+crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
+{
+ RSA *key = NULL;
+ EVP_PKEY *pkey = NULL;
+ tor_assert(env->key);
+ if (private) {
+ if (!(key = RSAPrivateKey_dup(env->key)))
+ goto error;
+ } else {
+ if (!(key = RSAPublicKey_dup(env->key)))
+ goto error;
+ }
+ if (!(pkey = EVP_PKEY_new()))
+ goto error;
+ if (!(EVP_PKEY_assign_RSA(pkey, key)))
+ goto error;
+ return pkey;
+ error:
+ if (pkey)
+ EVP_PKEY_free(pkey);
+ if (key)
+ RSA_free(key);
+ return NULL;
+}
+
+/** Allocate and return storage for a public key. The key itself will not yet
+ * be set.
+ */
+MOCK_IMPL(crypto_pk_t *,
+crypto_pk_new,(void))
+{
+ RSA *rsa;
+
+ rsa = RSA_new();
+ tor_assert(rsa);
+ return crypto_new_pk_from_rsa_(rsa);
+}
+
+/** Release a reference to an asymmetric key; when all the references
+ * are released, free the key.
+ */
+void
+crypto_pk_free_(crypto_pk_t *env)
+{
+ if (!env)
+ return;
+
+ if (--env->refs > 0)
+ return;
+ tor_assert(env->refs == 0);
+
+ if (env->key)
+ RSA_free(env->key);
+
+ tor_free(env);
+}
+
+/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
+ * Return 0 on success, -1 on failure.
+ */
+MOCK_IMPL(int,
+crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
+{
+ tor_assert(env);
+
+ if (env->key) {
+ RSA_free(env->key);
+ env->key = NULL;
+ }
+
+ {
+ BIGNUM *e = BN_new();
+ RSA *r = NULL;
+ if (!e)
+ goto done;
+ if (! BN_set_word(e, 65537))
+ goto done;
+ r = RSA_new();
+ if (!r)
+ goto done;
+ if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
+ goto done;
+
+ env->key = r;
+ r = NULL;
+ done:
+ if (e)
+ BN_clear_free(e);
+ if (r)
+ RSA_free(r);
+ }
+
+ if (!env->key) {
+ crypto_openssl_log_errors(LOG_WARN, "generating RSA key");
+ return -1;
+ }
+
+ return 0;
+}
+
+/** A PEM callback that always reports a failure to get a password */
+static int
+pem_no_password_cb(char *buf, int size, int rwflag, void *u)
+{
+ (void)buf;
+ (void)size;
+ (void)rwflag;
+ (void)u;
+ return -1;
+}
+
+/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
+ * into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
+ * the string is nul-terminated.
+ */
+int
+crypto_pk_read_private_key_from_string(crypto_pk_t *env,
+ const char *s, ssize_t len)
+{
+ BIO *b;
+
+ tor_assert(env);
+ tor_assert(s);
+ tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
+
+ /* Create a read-only memory BIO, backed by the string 's' */
+ b = BIO_new_mem_buf((char*)s, (int)len);
+ if (!b)
+ return -1;
+
+ if (env->key)
+ RSA_free(env->key);
+
+ env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
+
+ BIO_free(b);
+
+ if (!env->key) {
+ crypto_openssl_log_errors(LOG_WARN, "Error parsing private key");
+ return -1;
+ }
+ return 0;
+}
+
+/** Read a PEM-encoded private key from the file named by
+ * <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
+ */
+int
+crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
+ const char *keyfile)
+{
+ char *contents;
+ int r;
+
+ /* Read the file into a string. */
+ contents = read_file_to_str(keyfile, 0, NULL);
+ if (!contents) {
+ log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
+ return -1;
+ }
+
+ /* Try to parse it. */
+ r = crypto_pk_read_private_key_from_string(env, contents, -1);
+ memwipe(contents, 0, strlen(contents));
+ tor_free(contents);
+ if (r)
+ return -1; /* read_private_key_from_string already warned, so we don't.*/
+
+ /* Make sure it's valid. */
+ if (crypto_pk_check_key(env) <= 0)
+ return -1;
+
+ return 0;
+}
+
+/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
+ * success, -1 on failure. */
+static int
+crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
+ size_t *len, int is_public)
+{
+ BUF_MEM *buf;
+ BIO *b;
+ int r;
+
+ tor_assert(env);
+ tor_assert(env->key);
+ tor_assert(dest);
+
+ b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
+ if (!b)
+ return -1;
+
+ /* Now you can treat b as if it were a file. Just use the
+ * PEM_*_bio_* functions instead of the non-bio variants.
+ */
+ if (is_public)
+ r = PEM_write_bio_RSAPublicKey(b, env->key);
+ else
+ r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
+
+ if (!r) {
+ crypto_openssl_log_errors(LOG_WARN, "writing RSA key to string");
+ BIO_free(b);
+ return -1;
+ }
+
+ BIO_get_mem_ptr(b, &buf);
+
+ *dest = tor_malloc(buf->length+1);
+ memcpy(*dest, buf->data, buf->length);
+ (*dest)[buf->length] = 0; /* nul terminate it */
+ *len = buf->length;
+
+ BIO_free(b);
+
+ return 0;
+}
+
+/** PEM-encode the public key portion of <b>env</b> and write it to a
+ * newly allocated string. On success, set *<b>dest</b> to the new
+ * string, *<b>len</b> to the string's length, and return 0. On
+ * failure, return -1.
+ */
+int
+crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
+ size_t *len)
+{
+ return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
+}
+
+/** PEM-encode the private key portion of <b>env</b> and write it to a
+ * newly allocated string. On success, set *<b>dest</b> to the new
+ * string, *<b>len</b> to the string's length, and return 0. On
+ * failure, return -1.
+ */
+int
+crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
+ size_t *len)
+{
+ return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
+}
+
+/** Read a PEM-encoded public key from the first <b>len</b> characters of
+ * <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
+ * failure.
+ */
+int
+crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
+ size_t len)
+{
+ BIO *b;
+
+ tor_assert(env);
+ tor_assert(src);
+ tor_assert(len<INT_MAX);
+
+ b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
+ if (!b)
+ return -1;
+
+ BIO_write(b, src, (int)len);
+
+ if (env->key)
+ RSA_free(env->key);
+ env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
+ BIO_free(b);
+ if (!env->key) {
+ crypto_openssl_log_errors(LOG_WARN, "reading public key from string");
+ return -1;
+ }
+
+ return 0;
+}
+
+/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
+ * PEM-encoded. Return 0 on success, -1 on failure.
+ */
+int
+crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
+ const char *fname)
+{
+ BIO *bio;
+ char *cp;
+ long len;
+ char *s;
+ int r;
+
+ tor_assert(crypto_pk_private_ok(env));
+
+ if (!(bio = BIO_new(BIO_s_mem())))
+ return -1;
+ if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
+ == 0) {
+ crypto_openssl_log_errors(LOG_WARN, "writing private key");
+ BIO_free(bio);
+ return -1;
+ }
+ len = BIO_get_mem_data(bio, &cp);
+ tor_assert(len >= 0);
+ s = tor_malloc(len+1);
+ memcpy(s, cp, len);
+ s[len]='\0';
+ r = write_str_to_file(fname, s, 0);
+ BIO_free(bio);
+ memwipe(s, 0, strlen(s));
+ tor_free(s);
+ return r;
+}
+
+/** Return true iff <b>env</b> has a valid key.
+ */
+int
+crypto_pk_check_key(crypto_pk_t *env)
+{
+ int r;
+ tor_assert(env);
+
+ r = RSA_check_key(env->key);
+ if (r <= 0)
+ crypto_openssl_log_errors(LOG_WARN,"checking RSA key");
+ return r;
+}
+
+/** Return true iff <b>key</b> contains the private-key portion of the RSA
+ * key. */
+int
+crypto_pk_key_is_private(const crypto_pk_t *key)
+{
+ tor_assert(key);
+ return crypto_pk_private_ok(key);
+}
+
+/** Return true iff <b>env</b> contains a public key whose public exponent
+ * equals 65537.
+ */
+int
+crypto_pk_public_exponent_ok(crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+ const BIGNUM *e;
+
+#ifdef OPENSSL_1_1_API
+ const BIGNUM *n, *d;
+ RSA_get0_key(env->key, &n, &e, &d);
+#else
+ e = env->key->e;
+#endif /* defined(OPENSSL_1_1_API) */
+ return BN_is_word(e, 65537);
+}
+
+/** Compare the public-key components of a and b. Return less than 0
+ * if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
+ * considered to be less than all non-NULL keys, and equal to itself.
+ *
+ * Note that this may leak information about the keys through timing.
+ */
+int
+crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
+{
+ int result;
+ char a_is_non_null = (a != NULL) && (a->key != NULL);
+ char b_is_non_null = (b != NULL) && (b->key != NULL);
+ char an_argument_is_null = !a_is_non_null | !b_is_non_null;
+
+ result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
+ if (an_argument_is_null)
+ return result;
+
+ const BIGNUM *a_n, *a_e;
+ const BIGNUM *b_n, *b_e;
+
+#ifdef OPENSSL_1_1_API
+ const BIGNUM *a_d, *b_d;
+ RSA_get0_key(a->key, &a_n, &a_e, &a_d);
+ RSA_get0_key(b->key, &b_n, &b_e, &b_d);
+#else
+ a_n = a->key->n;
+ a_e = a->key->e;
+ b_n = b->key->n;
+ b_e = b->key->e;
+#endif /* defined(OPENSSL_1_1_API) */
+
+ tor_assert(a_n != NULL && a_e != NULL);
+ tor_assert(b_n != NULL && b_e != NULL);
+
+ result = BN_cmp(a_n, b_n);
+ if (result)
+ return result;
+ return BN_cmp(a_e, b_e);
+}
+
+/** Return the size of the public key modulus in <b>env</b>, in bytes. */
+size_t
+crypto_pk_keysize(const crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+ return (size_t) RSA_size((RSA*)env->key);
+}
+
+/** Return the size of the public key modulus of <b>env</b>, in bits. */
+int
+crypto_pk_num_bits(crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+#ifdef OPENSSL_1_1_API
+ /* It's so stupid that there's no other way to check that n is valid
+ * before calling RSA_bits().
+ */
+ const BIGNUM *n, *e, *d;
+ RSA_get0_key(env->key, &n, &e, &d);
+ tor_assert(n != NULL);
+
+ return RSA_bits(env->key);
+#else /* !(defined(OPENSSL_1_1_API)) */
+ tor_assert(env->key->n);
+ return BN_num_bits(env->key->n);
+#endif /* defined(OPENSSL_1_1_API) */
+}
+
+/** Increase the reference count of <b>env</b>, and return it.
+ */
+crypto_pk_t *
+crypto_pk_dup_key(crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+ env->refs++;
+ return env;
+}
+
+#ifdef TOR_UNIT_TESTS
+/** For testing: replace dest with src. (Dest must have a refcount
+ * of 1) */
+void
+crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
+{
+ tor_assert(dest);
+ tor_assert(dest->refs == 1);
+ tor_assert(src);
+ RSA_free(dest->key);
+ dest->key = RSAPrivateKey_dup(src->key);
+}
+#endif /* defined(TOR_UNIT_TESTS) */
+
+/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
+ * Returns NULL on failure. */
+crypto_pk_t *
+crypto_pk_copy_full(crypto_pk_t *env)
+{
+ RSA *new_key;
+ int privatekey = 0;
+ tor_assert(env);
+ tor_assert(env->key);
+
+ if (crypto_pk_private_ok(env)) {
+ new_key = RSAPrivateKey_dup(env->key);
+ privatekey = 1;
+ } else {
+ new_key = RSAPublicKey_dup(env->key);
+ }
+ if (!new_key) {
+ /* LCOV_EXCL_START
+ *
+ * We can't cause RSA*Key_dup() to fail, so we can't really test this.
+ */
+ log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
+ privatekey?"private":"public");
+ crypto_openssl_log_errors(LOG_ERR,
+ privatekey ? "Duplicating a private key" :
+ "Duplicating a public key");
+ tor_fragile_assert();
+ return NULL;
+ /* LCOV_EXCL_STOP */
+ }
+
+ return crypto_new_pk_from_rsa_(new_key);
+}
+
+/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
+ * in <b>env</b>, using the padding method <b>padding</b>. On success,
+ * write the result to <b>to</b>, and return the number of bytes
+ * written. On failure, return -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+int
+crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
+ const char *from, size_t fromlen, int padding)
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(fromlen<INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+
+ r = RSA_public_encrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ env->key, crypto_get_rsa_padding(padding));
+ if (r<0) {
+ crypto_openssl_log_errors(LOG_WARN, "performing RSA encryption");
+ return -1;
+ }
+ return r;
+}
+
+/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
+ * in <b>env</b>, using the padding method <b>padding</b>. On success,
+ * write the result to <b>to</b>, and return the number of bytes
+ * written. On failure, return -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+int
+crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
+ size_t tolen,
+ const char *from, size_t fromlen,
+ int padding, int warnOnFailure)
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(env->key);
+ tor_assert(fromlen<INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+ if (!crypto_pk_key_is_private(env))
+ /* Not a private key */
+ return -1;
+
+ r = RSA_private_decrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ env->key, crypto_get_rsa_padding(padding));
+
+ if (r<0) {
+ crypto_openssl_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
+ "performing RSA decryption");
+ return -1;
+ }
+ return r;
+}
+
+/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
+ * public key in <b>env</b>, using PKCS1 padding. On success, write the
+ * signed data to <b>to</b>, and return the number of bytes written.
+ * On failure, return -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+MOCK_IMPL(int,
+crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
+ size_t tolen,
+ const char *from, size_t fromlen))
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(fromlen < INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+ r = RSA_public_decrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ env->key, RSA_PKCS1_PADDING);
+
+ if (r<0) {
+ crypto_openssl_log_errors(LOG_INFO, "checking RSA signature");
+ return -1;
+ }
+ return r;
+}
+
+/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
+ * <b>env</b>, using PKCS1 padding. On success, write the signature to
+ * <b>to</b>, and return the number of bytes written. On failure, return
+ * -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+int
+crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
+ const char *from, size_t fromlen)
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(fromlen < INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+ if (!crypto_pk_key_is_private(env))
+ /* Not a private key */
+ return -1;
+
+ r = RSA_private_encrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ (RSA*)env->key, RSA_PKCS1_PADDING);
+ if (r<0) {
+ crypto_openssl_log_errors(LOG_WARN, "generating RSA signature");
+ return -1;
+ }
+ return r;
+}
+
+/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
+ * Return -1 on error, or the number of characters used on success.
+ */
+int
+crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
+{
+ int len;
+ unsigned char *buf = NULL;
+
+ len = i2d_RSAPublicKey(pk->key, &buf);
+ if (len < 0 || buf == NULL)
+ return -1;
+
+ if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
+ OPENSSL_free(buf);
+ return -1;
+ }
+ /* We don't encode directly into 'dest', because that would be illegal
+ * type-punning. (C99 is smarter than me, C99 is smarter than me...)
+ */
+ memcpy(dest,buf,len);
+ OPENSSL_free(buf);
+ return len;
+}
+
+/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
+ * success and NULL on failure.
+ */
+crypto_pk_t *
+crypto_pk_asn1_decode(const char *str, size_t len)
+{
+ RSA *rsa;
+ unsigned char *buf;
+ const unsigned char *cp;
+ cp = buf = tor_malloc(len);
+ memcpy(buf,str,len);
+ rsa = d2i_RSAPublicKey(NULL, &cp, len);
+ tor_free(buf);
+ if (!rsa) {
+ crypto_openssl_log_errors(LOG_WARN,"decoding public key");
+ return NULL;
+ }
+ return crypto_new_pk_from_rsa_(rsa);
+}
+
+/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
+ * Base64 encoding of the DER representation of the private key as a NUL
+ * terminated string, and return it via <b>priv_out</b>. Return 0 on
+ * success, -1 on failure.
+ *
+ * It is the caller's responsibility to sanitize and free the resulting buffer.
+ */
+int
+crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
+{
+ unsigned char *der = NULL;
+ int der_len;
+ int ret = -1;
+
+ *priv_out = NULL;
+
+ der_len = i2d_RSAPrivateKey(pk->key, &der);
+ if (der_len < 0 || der == NULL)
+ return ret;
+
+ size_t priv_len = base64_encode_size(der_len, 0) + 1;
+ char *priv = tor_malloc_zero(priv_len);
+ if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
+ *priv_out = priv;
+ ret = 0;
+ } else {
+ tor_free(priv);
+ }
+
+ memwipe(der, 0, der_len);
+ OPENSSL_free(der);
+ return ret;
+}
+
+/** Given a string containing the Base64 encoded DER representation of the
+ * private key <b>str</b>, decode and return the result on success, or NULL
+ * on failure.
+ */
+crypto_pk_t *
+crypto_pk_base64_decode(const char *str, size_t len)
+{
+ crypto_pk_t *pk = NULL;
+
+ char *der = tor_malloc_zero(len + 1);
+ int der_len = base64_decode(der, len, str, len);
+ if (der_len <= 0) {
+ log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
+ goto out;
+ }
+
+ const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
+ RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
+ if (!rsa) {
+ crypto_openssl_log_errors(LOG_WARN, "decoding private key");
+ goto out;
+ }
+
+ pk = crypto_new_pk_from_rsa_(rsa);
+
+ /* Make sure it's valid. */
+ if (crypto_pk_check_key(pk) <= 0) {
+ crypto_pk_free(pk);
+ pk = NULL;
+ goto out;
+ }
+
+ out:
+ memwipe(der, 0, len + 1);
+ tor_free(der);
+ return pk;
+}
diff --git a/src/lib/crypt_ops/include.am b/src/lib/crypt_ops/include.am
index f6164dd21..69bd7c2db 100644
--- a/src/lib/crypt_ops/include.am
+++ b/src/lib/crypt_ops/include.am
@@ -19,6 +19,7 @@ src_lib_libtor_crypt_ops_a_SOURCES = \
src/lib/crypt_ops/crypto_pwbox.c \
src/lib/crypt_ops/crypto_rand.c \
src/lib/crypt_ops/crypto_rsa.c \
+ src/lib/crypt_ops/crypto_rsa_openssl.c \
src/lib/crypt_ops/crypto_s2k.c \
src/lib/crypt_ops/crypto_util.c \
src/lib/crypt_ops/digestset.c