commit 073830a301ab624f7c1ad648027cfd8c6b07fa89 Author: Isis Lovecruft isis@torproject.org Date: Sat Apr 21 00:01:10 2018 +0000
Add rand_core-0.1.0. --- crates/rand_core-0.1.0/.cargo-checksum.json | 1 + crates/rand_core-0.1.0/CHANGELOG.md | 21 ++ crates/rand_core-0.1.0/Cargo.toml | 41 +++ crates/rand_core-0.1.0/LICENSE-APACHE | 201 ++++++++++ crates/rand_core-0.1.0/LICENSE-MIT | 25 ++ crates/rand_core-0.1.0/README.md | 62 ++++ crates/rand_core-0.1.0/src/error.rs | 163 +++++++++ crates/rand_core-0.1.0/src/impls.rs | 543 ++++++++++++++++++++++++++++ crates/rand_core-0.1.0/src/le.rs | 70 ++++ crates/rand_core-0.1.0/src/lib.rs | 438 ++++++++++++++++++++++ 10 files changed, 1565 insertions(+)
diff --git a/crates/rand_core-0.1.0/.cargo-checksum.json b/crates/rand_core-0.1.0/.cargo-checksum.json new file mode 100644 index 0000000..de1ab60 --- /dev/null +++ b/crates/rand_core-0.1.0/.cargo-checksum.json @@ -0,0 +1 @@ +{"files":{"CHANGELOG.md":"add524e5ce5fb184fc37321b5f0af395da8b4747b7337085b9c1ed111f0be696","Cargo.toml":"2c94142ff7115733706f788d86600e988b8cd037305322b37dd0586dabf3da4b","LICENSE-APACHE":"aaff376532ea30a0cd5330b9502ad4a4c8bf769c539c87ffe78819d188a18ebf","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"7af34faa2066872019a746fbdb230033e374d2f9b7a37443c31fee75be1d0cab","src/error.rs":"e243f77fddd537b1d3538057ee4173b1aaabbd8f25d3a1ab03fb4f59629c2d3a","src/impls.rs":"d6c44bc26dc7965977dea4212a7cfb6505cf0360176b3772fac1b6be282a9361","src/le.rs":"d2c029d5d215769eb6136d3678053d013cad49996c67cd6734412b5249869634","src/lib.rs":"3705f608b6347c9944c166ac38d83755e65a7a240ef3037af4534f9e6139a08e"},"package":"0224284424a4b818387b58d59336c288f99b48f69681aa60cc681fe038bbca5d"} \ No newline at end of file diff --git a/crates/rand_core-0.1.0/CHANGELOG.md b/crates/rand_core-0.1.0/CHANGELOG.md new file mode 100644 index 0000000..0358bdc --- /dev/null +++ b/crates/rand_core-0.1.0/CHANGELOG.md @@ -0,0 +1,21 @@ +# Changelog +All notable changes to this project will be documented in this file. + +The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) +and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). + + +## [0.1.0] - TODO - date +(Split out of the Rand crate, changes here are relative to rand 0.4.2) +- `RngCore` and `SeedableRng` are now part of `rand_core`. (#288) +- Add modules to help implementing RNGs `impl` and `le`. (#209, #228) +- Add `Error` and `ErrorKind`. (#225) +- Add `CryptoRng` marker trait. (#273) +- Add `BlockRngCore` trait. (#281) +- Add `BlockRng` and `BlockRng64` wrappers to help implementations. (#281, #325) +- Revise the `SeedableRng` trait. (#233) +- Remove default implementations for `RngCore::next_u64` and `RngCore::fill_bytes`. (#288) +- Add `RngCore::try_fill_bytes`. (#225) + +## [0.0.1] - 2017-09-14 (yanked) +Experimental version as part of the rand crate refactor. diff --git a/crates/rand_core-0.1.0/Cargo.toml b/crates/rand_core-0.1.0/Cargo.toml new file mode 100644 index 0000000..9702a4b --- /dev/null +++ b/crates/rand_core-0.1.0/Cargo.toml @@ -0,0 +1,41 @@ +# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO +# +# When uploading crates to the registry Cargo will automatically +# "normalize" Cargo.toml files for maximal compatibility +# with all versions of Cargo and also rewrite `path` dependencies +# to registry (e.g. crates.io) dependencies +# +# If you believe there's an error in this file please file an +# issue against the rust-lang/cargo repository. If you're +# editing this file be aware that the upstream Cargo.toml +# will likely look very different (and much more reasonable) + +[package] +name = "rand_core" +version = "0.1.0" +authors = ["The Rust Project Developers"] +description = "Core random number generator traits and tools for implementation.\n" +homepage = "https://crates.io/crates/rand_core" +documentation = "https://docs.rs/rand_core" +readme = "README.md" +keywords = ["random", "rng"] +categories = ["algorithms", "no-std"] +license = "MIT/Apache-2.0" +repository = "https://github.com/rust-lang-nursery/rand" +[dependencies.serde] +version = "1" +optional = true + +[dependencies.serde_derive] +version = "1" +optional = true + +[features] +alloc = [] +serde1 = ["serde", "serde_derive"] +std = ["alloc"] +[badges.appveyor] +repository = "alexcrichton/rand" + +[badges.travis-ci] +repository = "rust-lang-nursery/rand" diff --git a/crates/rand_core-0.1.0/LICENSE-APACHE b/crates/rand_core-0.1.0/LICENSE-APACHE new file mode 100644 index 0000000..17d7468 --- /dev/null +++ b/crates/rand_core-0.1.0/LICENSE-APACHE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + https://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + +1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + +2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + +3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + +4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + +5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + +6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + +7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + +8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + +9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + +END OF TERMS AND CONDITIONS + +APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + +Copyright [yyyy] [name of copyright owner] + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. diff --git a/crates/rand_core-0.1.0/LICENSE-MIT b/crates/rand_core-0.1.0/LICENSE-MIT new file mode 100644 index 0000000..39d4bdb --- /dev/null +++ b/crates/rand_core-0.1.0/LICENSE-MIT @@ -0,0 +1,25 @@ +Copyright (c) 2014 The Rust Project Developers + +Permission is hereby granted, free of charge, to any +person obtaining a copy of this software and associated +documentation files (the "Software"), to deal in the +Software without restriction, including without +limitation the rights to use, copy, modify, merge, +publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software +is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice +shall be included in all copies or substantial portions +of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR +IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. diff --git a/crates/rand_core-0.1.0/README.md b/crates/rand_core-0.1.0/README.md new file mode 100644 index 0000000..2949222 --- /dev/null +++ b/crates/rand_core-0.1.0/README.md @@ -0,0 +1,62 @@ +# rand_core + +[![Build Status](https://travis-ci.org/rust-lang-nursery/rand.svg)%5D(https://travis-ci.org/r...) +[![Build Status](https://ci.appveyor.com/api/projects/status/github/rust-lang-nursery/rand?sv...) +[![Latest version](https://img.shields.io/crates/v/rand_core.svg)%5D(https://crates.io/crates/r...) +[![Documentation](https://docs.rs/rand_core/badge.svg)%5D(https://docs.rs/rand_core) +[![Minimum rustc version](https://img.shields.io/badge/rustc-1.22+-yellow.svg)%5D(https://github.com/r...) + +Core traits and error types of the [rand] library, plus tools for implementing +RNGs. + +This crate is intended for use when implementing the core trait, `RngCore`; it +defines the core traits to be implemented as well as several small functions to +aid in their implementation and types required for error handling. + +The main [rand] crate re-exports most items defined in this crate, along with +tools to convert the integer samples generated by `RngCore` to many different +applications (including sampling from restricted ranges, conversion to floating +point, list permutations and secure initialisation of RNGs). Most users should +prefer to use the main [rand] crate. + +Documentation: +[master branch](https://rust-lang-nursery.github.io/rand/rand_core/index.html), +[by release](https://docs.rs/rand_core) + +[Changelog](CHANGELOG.md) + +[rand]: https://crates.io/crates/rand + + +## Functionality + +The `rand_core` crate provides: + +- base random number generator traits +- error-reporting types +- functionality to aid implementation of RNGs + +The traits and error types are also available via `rand`. + +## Crate Features + +`rand_core` supports `no_std` and `alloc`-only configurations, as well as full +`std` functionality. The differences between `no_std` and full `std` are small, +comprising `RngCore` support for `Box<R>` types where `R: RngCore`, as well as +extensions to the `Error` type's functionality. + +Due to [rust-lang/cargo#1596](https://github.com/rust-lang/cargo/issues/1596), +`rand_core` is built without `std` support by default. Since features are +unioned across the whole dependency tree, any crate using `rand` with its +default features will also enable `std` support in `rand_core`. + +The `serde1` feature can be used to derive `Serialize` and `Deserialize` for RNG +implementations that use the `BlockRng` or `BlockRng64` wrappers. + + +# License + +`rand_core` is distributed under the terms of both the MIT license and the +Apache License (Version 2.0). + +See [LICENSE-APACHE](LICENSE-APACHE) and [LICENSE-MIT](LICENSE-MIT) for details. diff --git a/crates/rand_core-0.1.0/src/error.rs b/crates/rand_core-0.1.0/src/error.rs new file mode 100644 index 0000000..34cfbf8 --- /dev/null +++ b/crates/rand_core-0.1.0/src/error.rs @@ -0,0 +1,163 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Error types + +use core::fmt; + +#[cfg(feature="std")] +use std::error::Error as stdError; + +/// Error kind which can be matched over. +#[derive(PartialEq, Eq, Debug, Copy, Clone)] +pub enum ErrorKind { + /// Feature is not available; not recoverable. + /// + /// This is the most permanent failure type and implies the error cannot be + /// resolved simply by retrying (e.g. the feature may not exist in this + /// build of the application or on the current platform). + Unavailable, + /// General failure; there may be a chance of recovery on retry. + /// + /// This is the catch-all kind for errors from known and unknown sources + /// which do not have a more specific kind / handling method. + /// + /// It is suggested to retry a couple of times or retry later when + /// handling; some error sources may be able to resolve themselves, + /// although this is not likely. + Unexpected, + /// A transient failure which likely can be resolved or worked around. + /// + /// This error kind exists for a few specific cases where it is known that + /// the error likely can be resolved internally, but is reported anyway. + Transient, + /// Not ready yet: recommended to try again a little later. + /// + /// This error kind implies the generator needs more time or needs some + /// other part of the application to do something else first before it is + /// ready for use; for example this may be used by external generators + /// which require time for initialization. + NotReady, + #[doc(hidden)] + __Nonexhaustive, +} + +impl ErrorKind { + /// True if this kind of error may resolve itself on retry. + /// + /// See also `should_wait()`. + pub fn should_retry(self) -> bool { + self != ErrorKind::Unavailable + } + + /// True if we should retry but wait before retrying + /// + /// This implies `should_retry()` is true. + pub fn should_wait(self) -> bool { + self == ErrorKind::NotReady + } + + /// A description of this error kind + pub fn description(self) -> &'static str { + match self { + ErrorKind::Unavailable => "permanently unavailable", + ErrorKind::Unexpected => "unexpected failure", + ErrorKind::Transient => "transient failure", + ErrorKind::NotReady => "not ready yet", + ErrorKind::__Nonexhaustive => unreachable!(), + } + } +} + + +/// Error type of random number generators +/// +/// This is a relatively simple error type, designed for compatibility with and +/// without the Rust `std` library. It embeds a "kind" code, a message (static +/// string only), and an optional chained cause (`std` only). The `kind` and +/// `msg` fields can be accessed directly; cause can be accessed via +/// `std::error::Error::cause` or `Error::take_cause`. Construction can only be +/// done via `Error::new` or `Error::with_cause`. +#[derive(Debug)] +pub struct Error { + /// The error kind + pub kind: ErrorKind, + /// The error message + pub msg: &'static str, + #[cfg(feature="std")] + cause: Option<Box<stdError + Send + Sync>>, +} + +impl Error { + /// Create a new instance, with specified kind and a message. + pub fn new(kind: ErrorKind, msg: &'static str) -> Self { + #[cfg(feature="std")] { + Error { kind, msg, cause: None } + } + #[cfg(not(feature="std"))] { + Error { kind, msg } + } + } + + /// Create a new instance, with specified kind, message, and a + /// chained cause. + /// + /// Note: `stdError` is an alias for `std::error::Error`. + /// + /// If not targetting `std` (i.e. `no_std`), this function is replaced by + /// another with the same prototype, except that there are no bounds on the + /// type `E` (because both `Box` and `stdError` are unavailable), and the + /// `cause` is ignored. + #[cfg(feature="std")] + pub fn with_cause<E>(kind: ErrorKind, msg: &'static str, cause: E) -> Self + where E: Into<Box<stdError + Send + Sync>> + { + Error { kind, msg, cause: Some(cause.into()) } + } + + /// Create a new instance, with specified kind, message, and a + /// chained cause. + /// + /// In `no_std` mode the *cause* is ignored. + #[cfg(not(feature="std"))] + pub fn with_cause<E>(kind: ErrorKind, msg: &'static str, _cause: E) -> Self { + Error { kind, msg } + } + + /// Take the cause, if any. This allows the embedded cause to be extracted. + /// This uses `Option::take`, leaving `self` with no cause. + #[cfg(feature="std")] + pub fn take_cause(&mut self) -> Option<Box<stdError + Send + Sync>> { + self.cause.take() + } +} + +impl fmt::Display for Error { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + #[cfg(feature="std")] { + if let Some(ref cause) = self.cause { + return write!(f, "{} ({}); cause: {}", + self.msg, self.kind.description(), cause); + } + } + write!(f, "{} ({})", self.msg, self.kind.description()) + } +} + +#[cfg(feature="std")] +impl stdError for Error { + fn description(&self) -> &str { + self.msg + } + + fn cause(&self) -> Option<&stdError> { + self.cause.as_ref().map(|e| e.as_ref() as &stdError) + } +} diff --git a/crates/rand_core-0.1.0/src/impls.rs b/crates/rand_core-0.1.0/src/impls.rs new file mode 100644 index 0000000..530a2ed --- /dev/null +++ b/crates/rand_core-0.1.0/src/impls.rs @@ -0,0 +1,543 @@ +// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Helper functions for implementing `RngCore` functions. +//! +//! For cross-platform reproducibility, these functions all use Little Endian: +//! least-significant part first. For example, `next_u64_via_u32` takes `u32` +//! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32` +//! from `next_u64` in little-endian order, one should use `next_u64() as u32`. +//! +//! Byte-swapping (like the std `to_le` functions) is only needed to convert +//! to/from byte sequences, and since its purpose is reproducibility, +//! non-reproducible sources (e.g. `OsRng`) need not bother with it. + +use core::convert::AsRef; +use core::intrinsics::transmute; +use core::ptr::copy_nonoverlapping; +use core::{fmt, slice}; +use core::cmp::min; +use core::mem::size_of; +use {RngCore, BlockRngCore, CryptoRng, SeedableRng, Error}; + +#[cfg(feature="serde1")] use serde::{Serialize, Deserialize}; + +/// Implement `next_u64` via `next_u32`, little-endian order. +pub fn next_u64_via_u32<R: RngCore + ?Sized>(rng: &mut R) -> u64 { + // Use LE; we explicitly generate one value before the next. + let x = u64::from(rng.next_u32()); + let y = u64::from(rng.next_u32()); + (y << 32) | x +} + +/// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order. +/// +/// The fastest way to fill a slice is usually to work as long as possible with +/// integers. That is why this method mostly uses `next_u64`, and only when +/// there are 4 or less bytes remaining at the end of the slice it uses +/// `next_u32` once. +pub fn fill_bytes_via_next<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) { + let mut left = dest; + while left.len() >= 8 { + let (l, r) = {left}.split_at_mut(8); + left = r; + let chunk: [u8; 8] = unsafe { + transmute(rng.next_u64().to_le()) + }; + l.copy_from_slice(&chunk); + } + let n = left.len(); + if n > 4 { + let chunk: [u8; 8] = unsafe { + transmute(rng.next_u64().to_le()) + }; + left.copy_from_slice(&chunk[..n]); + } else if n > 0 { + let chunk: [u8; 4] = unsafe { + transmute(rng.next_u32().to_le()) + }; + left.copy_from_slice(&chunk[..n]); + } +} + +macro_rules! impl_uint_from_fill { + ($rng:expr, $ty:ty, $N:expr) => ({ + debug_assert!($N == size_of::<$ty>()); + + let mut int: $ty = 0; + unsafe { + let ptr = &mut int as *mut $ty as *mut u8; + let slice = slice::from_raw_parts_mut(ptr, $N); + $rng.fill_bytes(slice); + } + int + }); +} + +macro_rules! fill_via_chunks { + ($src:expr, $dst:expr, $ty:ty, $size:expr) => ({ + let chunk_size_u8 = min($src.len() * $size, $dst.len()); + let chunk_size = (chunk_size_u8 + $size - 1) / $size; + if cfg!(target_endian="little") { + unsafe { + copy_nonoverlapping( + $src.as_ptr() as *const u8, + $dst.as_mut_ptr(), + chunk_size_u8); + } + } else { + for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) { + let tmp = n.to_le(); + let src_ptr = &tmp as *const $ty as *const u8; + unsafe { + copy_nonoverlapping(src_ptr, + chunk.as_mut_ptr(), + chunk.len()); + } + } + } + + (chunk_size, chunk_size_u8) + }); +} + +/// Implement `fill_bytes` by reading chunks from the output buffer of a block +/// based RNG. +/// +/// The return values are `(consumed_u32, filled_u8)`. +/// +/// `filled_u8` is the number of filled bytes in `dest`, which may be less than +/// the length of `dest`. +/// `consumed_u32` is the number of words consumed from `src`, which is the same +/// as `filled_u8 / 4` rounded up. +/// +/// # Example +/// (from `IsaacRng`) +/// +/// ```rust,ignore +/// fn fill_bytes(&mut self, dest: &mut [u8]) { +/// let mut read_len = 0; +/// while read_len < dest.len() { +/// if self.index >= self.rsl.len() { +/// self.isaac(); +/// } +/// +/// let (consumed_u32, filled_u8) = +/// impls::fill_via_u32_chunks(&mut self.rsl[self.index..], +/// &mut dest[read_len..]); +/// +/// self.index += consumed_u32; +/// read_len += filled_u8; +/// } +/// } +/// ``` +pub fn fill_via_u32_chunks(src: &[u32], dest: &mut [u8]) -> (usize, usize) { + fill_via_chunks!(src, dest, u32, 4) +} + +/// Implement `fill_bytes` by reading chunks from the output buffer of a block +/// based RNG. +/// +/// The return values are `(consumed_u64, filled_u8)`. +/// `filled_u8` is the number of filled bytes in `dest`, which may be less than +/// the length of `dest`. +/// `consumed_u64` is the number of words consumed from `src`, which is the same +/// as `filled_u8 / 8` rounded up. +/// +/// See `fill_via_u32_chunks` for an example. +pub fn fill_via_u64_chunks(src: &[u64], dest: &mut [u8]) -> (usize, usize) { + fill_via_chunks!(src, dest, u64, 8) +} + +/// Implement `next_u32` via `fill_bytes`, little-endian order. +pub fn next_u32_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u32 { + impl_uint_from_fill!(rng, u32, 4) +} + +/// Implement `next_u64` via `fill_bytes`, little-endian order. +pub fn next_u64_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u64 { + impl_uint_from_fill!(rng, u64, 8) +} + +/// Wrapper around PRNGs that implement [`BlockRngCore`] to keep a results +/// buffer and offer the methods from [`RngCore`]. +/// +/// `BlockRng` has heavily optimized implementations of the [`RngCore`] methods +/// reading values from the results buffer, as well as +/// calling `BlockRngCore::generate` directly on the output array when +/// `fill_bytes` / `try_fill_bytes` is called on a large array. These methods +/// also handle the bookkeeping of when to generate a new batch of values. +/// No generated values are ever thown away. +/// +/// Currently `BlockRng` only implements `RngCore` for buffers which are slices +/// of `u32` elements; this may be extended to other types in the future. +/// +/// For easy initialization `BlockRng` also implements [`SeedableRng`]. +/// +/// [`BlockRngCore`]: ../BlockRngCore.t.html +/// [`RngCore`]: ../RngCore.t.html +/// [`SeedableRng`]: ../SeedableRng.t.html +#[derive(Clone)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct BlockRng<R: BlockRngCore + ?Sized> { + #[cfg_attr(feature="serde1", serde(bound( + serialize = "R::Results: Serialize", + deserialize = "R::Results: Deserialize<'de>")))] + results: R::Results, + index: usize, + core: R, +} + +// Custom Debug implementation that does not expose the contents of `results`. +impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng<R> { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt.debug_struct("BlockRng") + .field("core", &self.core) + .field("result_len", &self.results.as_ref().len()) + .field("index", &self.index) + .finish() + } +} + +impl<R: BlockRngCore> BlockRng<R> { + /// Create a new `BlockRng` from an existing RNG implementing + /// `BlockRngCore`. Results will be generated on first use. + pub fn new(core: R) -> BlockRng<R>{ + let results_empty = R::Results::default(); + BlockRng { + core, + index: results_empty.as_ref().len(), + results: results_empty, + } + } + + /// Return a reference the wrapped `BlockRngCore`. + pub fn inner(&self) -> &R { + &self.core + } + + /// Return a mutable reference the wrapped `BlockRngCore`. + pub fn inner_mut(&mut self) -> &mut R { + &mut self.core + } + + // Reset the number of available results. + // This will force a new set of results to be generated on next use. + pub fn reset(&mut self) { + self.index = self.results.as_ref().len(); + } +} + +impl<R: BlockRngCore<Item=u32>> RngCore for BlockRng<R> +where <R as BlockRngCore>::Results: AsRef<[u32]> +{ + #[inline(always)] + fn next_u32(&mut self) -> u32 { + if self.index >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + + let value = self.results.as_ref()[self.index]; + self.index += 1; + value + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + let read_u64 = |results: &[u32], index| { + if cfg!(any(target_arch = "x86", target_arch = "x86_64")) { + // requires little-endian CPU supporting unaligned reads: + unsafe { *(&results[index] as *const u32 as *const u64) } + } else { + let x = u64::from(results[index]); + let y = u64::from(results[index + 1]); + (y << 32) | x + } + }; + + let len = self.results.as_ref().len(); + + let index = self.index; + if index < len-1 { + self.index += 2; + // Read an u64 from the current index + read_u64(self.results.as_ref(), index) + } else if index >= len { + self.core.generate(&mut self.results); + self.index = 2; + read_u64(self.results.as_ref(), 0) + } else { + let x = u64::from(self.results.as_ref()[len-1]); + self.core.generate(&mut self.results); + self.index = 1; + let y = u64::from(self.results.as_ref()[0]); + (y << 32) | x + } + } + + // As an optimization we try to write directly into the output buffer. + // This is only enabled for little-endian platforms where unaligned writes + // are known to be safe and fast. + #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut filled = 0; + + // Continue filling from the current set of results + if self.index < self.results.as_ref().len() { + let (consumed_u32, filled_u8) = + fill_via_u32_chunks(&self.results.as_ref()[self.index..], + dest); + + self.index += consumed_u32; + filled += filled_u8; + } + + let len_remainder = + (dest.len() - filled) % (self.results.as_ref().len() * 4); + let end_direct = dest.len() - len_remainder; + + while filled < end_direct { + let dest_u32: &mut R::Results = unsafe { + &mut *(dest[filled..].as_mut_ptr() as + *mut <R as BlockRngCore>::Results) + }; + self.core.generate(dest_u32); + filled += self.results.as_ref().len() * 4; + } + self.index = self.results.as_ref().len(); + + if len_remainder > 0 { + self.core.generate(&mut self.results); + let (consumed_u32, _) = + fill_via_u32_chunks(self.results.as_ref(), + &mut dest[filled..]); + + self.index = consumed_u32; + } + } + + #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut read_len = 0; + while read_len < dest.len() { + if self.index >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + let (consumed_u32, filled_u8) = + fill_via_u32_chunks(&self.results.as_ref()[self.index..], + &mut dest[read_len..]); + + self.index += consumed_u32; + read_len += filled_u8; + } + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.fill_bytes(dest); + Ok(()) + } +} + +impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng<R> { + type Seed = R::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + Self::new(R::from_seed(seed)) + } + + fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { + Ok(Self::new(R::from_rng(rng)?)) + } +} + + + +/// Wrapper around PRNGs that implement [`BlockRngCore`] to keep a results +/// buffer and offer the methods from [`RngCore`]. +/// +/// This is similar to [`BlockRng`], but specialized for algorithms that operate +/// on `u64` values. +/// +/// [`BlockRngCore`]: ../BlockRngCore.t.html +/// [`RngCore`]: ../RngCore.t.html +/// [`BlockRng`]: struct.BlockRng.html +#[derive(Clone)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct BlockRng64<R: BlockRngCore + ?Sized> { + #[cfg_attr(feature="serde1", serde(bound( + serialize = "R::Results: Serialize", + deserialize = "R::Results: Deserialize<'de>")))] + results: R::Results, + index: usize, + half_used: bool, // true if only half of the previous result is used + core: R, +} + +// Custom Debug implementation that does not expose the contents of `results`. +impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng64<R> { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt.debug_struct("BlockRng64") + .field("core", &self.core) + .field("result_len", &self.results.as_ref().len()) + .field("index", &self.index) + .field("half_used", &self.half_used) + .finish() + } +} + +impl<R: BlockRngCore> BlockRng64<R> { + /// Create a new `BlockRng` from an existing RNG implementing + /// `BlockRngCore`. Results will be generated on first use. + pub fn new(core: R) -> BlockRng64<R>{ + let results_empty = R::Results::default(); + BlockRng64 { + core, + index: results_empty.as_ref().len(), + half_used: false, + results: results_empty, + } + } + + /// Return a mutable reference the wrapped `BlockRngCore`. + pub fn inner(&mut self) -> &mut R { + &mut self.core + } + + // Reset the number of available results. + // This will force a new set of results to be generated on next use. + pub fn reset(&mut self) { + self.index = self.results.as_ref().len(); + } +} + +impl<R: BlockRngCore<Item=u64>> RngCore for BlockRng64<R> +where <R as BlockRngCore>::Results: AsRef<[u64]> +{ + #[inline(always)] + fn next_u32(&mut self) -> u32 { + let mut index = self.index * 2 - self.half_used as usize; + if index >= self.results.as_ref().len() * 2 { + self.core.generate(&mut self.results); + self.index = 0; + // `self.half_used` is by definition `false` + self.half_used = false; + index = 0; + } + + self.half_used = !self.half_used; + self.index += self.half_used as usize; + + // Index as if this is a u32 slice. + unsafe { + let results = + &*(self.results.as_ref() as *const [u64] as *const [u32]); + if cfg!(target_endian = "little") { + *results.get_unchecked(index) + } else { + *results.get_unchecked(index ^ 1) + } + } + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + if self.index >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + + let value = self.results.as_ref()[self.index]; + self.index += 1; + self.half_used = false; + value + } + + // As an optimization we try to write directly into the output buffer. + // This is only enabled for little-endian platforms where unaligned writes + // are known to be safe and fast. + #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut filled = 0; + self.half_used = false; + + // Continue filling from the current set of results + if self.index < self.results.as_ref().len() { + let (consumed_u64, filled_u8) = + fill_via_u64_chunks(&self.results.as_ref()[self.index..], + dest); + + self.index += consumed_u64; + filled += filled_u8; + } + + let len_remainder = + (dest.len() - filled) % (self.results.as_ref().len() * 8); + let end_direct = dest.len() - len_remainder; + + while filled < end_direct { + let dest_u64: &mut R::Results = unsafe { + ::core::mem::transmute(dest[filled..].as_mut_ptr()) + }; + self.core.generate(dest_u64); + filled += self.results.as_ref().len() * 8; + } + self.index = self.results.as_ref().len(); + + if len_remainder > 0 { + self.core.generate(&mut self.results); + let (consumed_u64, _) = + fill_via_u64_chunks(&mut self.results.as_ref(), + &mut dest[filled..]); + + self.index = consumed_u64; + } + } + + #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut read_len = 0; + self.half_used = false; + while read_len < dest.len() { + if self.index as usize >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + + let (consumed_u64, filled_u8) = + fill_via_u64_chunks(&self.results.as_ref()[self.index as usize..], + &mut dest[read_len..]); + + self.index += consumed_u64; + read_len += filled_u8; + } + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + Ok(self.fill_bytes(dest)) + } +} + +impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng64<R> { + type Seed = R::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + Self::new(R::from_seed(seed)) + } + + fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { + Ok(Self::new(R::from_rng(rng)?)) + } +} + +impl<R: BlockRngCore + CryptoRng> CryptoRng for BlockRng<R> {} + +// TODO: implement tests for the above diff --git a/crates/rand_core-0.1.0/src/le.rs b/crates/rand_core-0.1.0/src/le.rs new file mode 100644 index 0000000..bcc560e --- /dev/null +++ b/crates/rand_core-0.1.0/src/le.rs @@ -0,0 +1,70 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Little-Endian utilities +//! +//! Little-Endian order has been chosen for internal usage; this makes some +//! useful functions available. + +use core::ptr; + +macro_rules! read_slice { + ($src:expr, $dst:expr, $size:expr, $which:ident) => {{ + assert_eq!($src.len(), $size * $dst.len()); + + unsafe { + ptr::copy_nonoverlapping( + $src.as_ptr(), + $dst.as_mut_ptr() as *mut u8, + $src.len()); + } + for v in $dst.iter_mut() { + *v = v.$which(); + } + }}; +} + +/// Reads unsigned 32 bit integers from `src` into `dst`. +/// Borrowed from the `byteorder` crate. +#[inline] +pub fn read_u32_into(src: &[u8], dst: &mut [u32]) { + read_slice!(src, dst, 4, to_le); +} + +/// Reads unsigned 64 bit integers from `src` into `dst`. +/// Borrowed from the `byteorder` crate. +#[inline] +pub fn read_u64_into(src: &[u8], dst: &mut [u64]) { + read_slice!(src, dst, 8, to_le); +} + +#[test] +fn test_read() { + let bytes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; + + let mut buf = [0u32; 4]; + read_u32_into(&bytes, &mut buf); + assert_eq!(buf[0], 0x04030201); + assert_eq!(buf[3], 0x100F0E0D); + + let mut buf = [0u32; 3]; + read_u32_into(&bytes[1..13], &mut buf); // unaligned + assert_eq!(buf[0], 0x05040302); + assert_eq!(buf[2], 0x0D0C0B0A); + + let mut buf = [0u64; 2]; + read_u64_into(&bytes, &mut buf); + assert_eq!(buf[0], 0x0807060504030201); + assert_eq!(buf[1], 0x100F0E0D0C0B0A09); + + let mut buf = [0u64; 1]; + read_u64_into(&bytes[7..15], &mut buf); // unaligned + assert_eq!(buf[0], 0x0F0E0D0C0B0A0908); +} diff --git a/crates/rand_core-0.1.0/src/lib.rs b/crates/rand_core-0.1.0/src/lib.rs new file mode 100644 index 0000000..74d4e59 --- /dev/null +++ b/crates/rand_core-0.1.0/src/lib.rs @@ -0,0 +1,438 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Random number generation traits +//! +//! This crate is mainly of interest to crates publishing implementations of +//! [`RngCore`]. Other users are encouraged to use the [rand] crate instead +//! which re-exports the main traits and error types. +//! +//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number +//! generators and external random-number sources. +//! +//! [`SeedableRng`] is an extension trait for construction from fixed seeds and +//! other random number generators. +//! +//! [`Error`] is provided for error-handling. It is safe to use in `no_std` +//! environments. +//! +//! The [`impls`] and [`le`] sub-modules include a few small functions to assist +//! implementation of [`RngCore`]. +//! +//! [rand]: https://crates.io/crates/rand +//! [`RngCore`]: trait.RngCore.html +//! [`SeedableRng`]: trait.SeedableRng.html +//! [`Error`]: struct.Error.html +//! [`impls`]: impls/index.html +//! [`le`]: le/index.html + +#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", + html_favicon_url = "https://www.rust-lang.org/favicon.ico", + html_root_url = "https://docs.rs/rand_core/0.1.0")] + +#![deny(missing_debug_implementations)] + +#![cfg_attr(not(feature="std"), no_std)] +#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] + +#[cfg(feature="std")] extern crate core; +#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc; +#[cfg(feature="serde1")] extern crate serde; +#[cfg(feature="serde1")] #[macro_use] extern crate serde_derive; + + +use core::default::Default; +use core::convert::AsMut; + +#[cfg(all(feature="alloc", not(feature="std")))] use alloc::boxed::Box; + +pub use error::{ErrorKind, Error}; + + +mod error; +pub mod impls; +pub mod le; + + +/// The core of a random number generator. +/// +/// This trait encapsulates the low-level functionality common to all +/// generators, and is the "back end", to be implemented by generators. +/// End users should normally use [`Rng`] from the [rand] crate, which is +/// automatically implemented for every type implementing `RngCore`. +/// +/// Three different methods for generating random data are provided since the +/// optimal implementation of each is dependent on the type of generator. There +/// is no required relationship between the output of each; e.g. many +/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64` +/// values and drop any remaining unused bytes. +/// +/// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error +/// handling; it is not deemed sufficiently useful to add equivalents for +/// [`next_u32`] or [`next_u64`] since the latter methods are almost always used +/// with algorithmic generators (PRNGs), which are normally infallible. +/// +/// Algorithmic generators implementing [`SeedableRng`] should normally have +/// *portable, reproducible* output, i.e. fix Endianness when converting values +/// to avoid platform differences, and avoid making any changes which affect +/// output (except by communicating that the release has breaking changes). +/// +/// Typically implementators will implement only one of the methods available +/// in this trait directly, then use the helper functions from the +/// [`rand_core::impls`] module to implement the other methods. +/// +/// It is recommended that implementations also implement: +/// +/// - `Debug` with a custom implementation which *does not* print any internal +/// state (at least, [`CryptoRng`]s should not risk leaking state through +/// `Debug`). +/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde +/// support optional at the crate level in PRNG libs. +/// - `Clone`, if possible. +/// - *never* implement `Copy` (accidental copies may cause repeated values). +/// - *do not* implement `Default` for pseudorandom generators, but instead +/// implement [`SeedableRng`], to guide users towards proper seeding. +/// External / hardware RNGs can choose to implement `Default`. +/// - `Eq` and `PartialEq` could be implemented, but are probably not useful. +/// +/// # Example +/// +/// A simple example, obviously not generating very *random* output: +/// +/// ```rust +/// use rand_core::{RngCore, Error, impls}; +/// +/// struct CountingRng(u64); +/// +/// impl RngCore for CountingRng { +/// fn next_u32(&mut self) -> u32 { +/// self.next_u64() as u32 +/// } +/// +/// fn next_u64(&mut self) -> u64 { +/// self.0 += 1; +/// self.0 +/// } +/// +/// fn fill_bytes(&mut self, dest: &mut [u8]) { +/// impls::fill_bytes_via_next(self, dest) +/// } +/// +/// fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { +/// Ok(self.fill_bytes(dest)) +/// } +/// } +/// ``` +/// +/// [rand]: https://crates.io/crates/rand +/// [`Rng`]: ../rand/trait.Rng.html +/// [`SeedableRng`]: trait.SeedableRng.html +/// [`rand_core::impls`]: ../rand_core/impls/index.html +/// [`try_fill_bytes`]: trait.RngCore.html#tymethod.try_fill_bytes +/// [`fill_bytes`]: trait.RngCore.html#tymethod.fill_bytes +/// [`next_u32`]: trait.RngCore.html#tymethod.next_u32 +/// [`next_u64`]: trait.RngCore.html#tymethod.next_u64 +/// [`CryptoRng`]: trait.CryptoRng.html +pub trait RngCore { + /// Return the next random `u32`. + /// + /// RNGs must implement at least one method from this trait directly. In + /// the case this method is not implemented directly, it can be implemented + /// using `self.next_u64() as u32` or + /// [via `fill_bytes`](../rand_core/impls/fn.next_u32_via_fill.html). + fn next_u32(&mut self) -> u32; + + /// Return the next random `u64`. + /// + /// RNGs must implement at least one method from this trait directly. In + /// the case this method is not implemented directly, it can be implemented + /// [via `next_u32`](../rand_core/impls/fn.next_u64_via_u32.html) or + /// [via `fill_bytes`](../rand_core/impls/fn.next_u64_via_fill.html). + fn next_u64(&mut self) -> u64; + + /// Fill `dest` with random data. + /// + /// RNGs must implement at least one method from this trait directly. In + /// the case this method is not implemented directly, it can be implemented + /// [via `next_u*`](../rand_core/impls/fn.fill_bytes_via_next.html) or + /// via `try_fill_bytes`; if this generator can fail the implementation + /// must choose how best to handle errors here (e.g. panic with a + /// descriptive message or log a warning and retry a few times). + /// + /// This method should guarantee that `dest` is entirely filled + /// with new data, and may panic if this is impossible + /// (e.g. reading past the end of a file that is being used as the + /// source of randomness). + fn fill_bytes(&mut self, dest: &mut [u8]); + + /// Fill `dest` entirely with random data. + /// + /// This is the only method which allows an RNG to report errors while + /// generating random data thus making this the primary method implemented + /// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used + /// directly to generate keys and to seed (infallible) PRNGs. + /// + /// Other than error handling, this method is identical to [`fill_bytes`]; + /// thus this may be implemented using `Ok(self.fill_bytes(dest))` or + /// `fill_bytes` may be implemented with + /// `self.try_fill_bytes(dest).unwrap()` or more specific error handling. + /// + /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>; +} + +/// A trait for RNGs which do not generate random numbers individually, but in +/// blocks (typically `[u32; N]`). This technique is commonly used by +/// cryptographic RNGs to improve performance. +/// +/// Usage of this trait is optional, but provides two advantages: +/// implementations only need to concern themselves with generation of the +/// block, not the various [`RngCore`] methods (especially [`fill_bytes`], where the +/// optimal implementations are not trivial), and this allows `ReseedingRng` to +/// perform periodic reseeding with very low overhead. +/// +/// # Example +/// +/// ```norun +/// use rand_core::BlockRngCore; +/// use rand_core::impls::BlockRng; +/// +/// struct MyRngCore; +/// +/// impl BlockRngCore for MyRngCore { +/// type Results = [u32; 16]; +/// +/// fn generate(&mut self, results: &mut Self::Results) { +/// unimplemented!() +/// } +/// } +/// +/// impl SeedableRng for MyRngCore { +/// type Seed = unimplemented!(); +/// fn from_seed(seed: Self::Seed) -> Self { +/// unimplemented!() +/// } +/// } +/// +/// // optionally, also implement CryptoRng for MyRngCore +/// +/// // Final RNG. +/// type MyRng = BlockRng<u32, MyRngCore>; +/// ``` +/// +/// [`RngCore`]: trait.RngCore.html +/// [`fill_bytes`]: trait.RngCore.html#tymethod.fill_bytes +pub trait BlockRngCore { + /// Results element type, e.g. `u32`. + type Item; + + /// Results type. This is the 'block' an RNG implementing `BlockRngCore` + /// generates, which will usually be an array like `[u32; 16]`. + type Results: AsRef<[Self::Item]> + Default; + + /// Generate a new block of results. + fn generate(&mut self, results: &mut Self::Results); +} + +/// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`] +/// implementation is supposed to be cryptographically secure. +/// +/// *Cryptographically secure generators*, also known as *CSPRNGs*, should +/// satisfy an additional properties over other generators: given the first +/// *k* bits of an algorithm's output +/// sequence, it should not be possible using polynomial-time algorithms to +/// predict the next bit with probability significantly greater than 50%. +/// +/// Some generators may satisfy an additional property, however this is not +/// required by this trait: if the CSPRNG's state is revealed, it should not be +/// computationally-feasible to reconstruct output prior to this. Some other +/// generators allow backwards-computation and are consided *reversible*. +/// +/// Note that this trait is provided for guidance only and cannot guarantee +/// suitability for cryptographic applications. In general it should only be +/// implemented for well-reviewed code implementing well-regarded algorithms. +/// +/// Note also that use of a `CryptoRng` does not protect against other +/// weaknesses such as seeding from a weak entropy source or leaking state. +/// +/// [`RngCore`]: trait.RngCore.html +/// [`BlockRngCore`]: trait.BlockRngCore.html +pub trait CryptoRng {} + +/// A random number generator that can be explicitly seeded. +/// +/// This trait encapsulates the low-level functionality common to all +/// pseudo-random number generators (PRNGs, or algorithmic generators). +/// +/// The [`rand::FromEntropy`] trait is automatically implemented for every type +/// implementing `SeedableRng`, providing a convenient `from_entropy()` +/// constructor. +/// +/// [`rand::FromEntropy`]: ../rand/trait.FromEntropy.html +pub trait SeedableRng: Sized { + /// Seed type, which is restricted to types mutably-dereferencable as `u8` + /// arrays (we recommend `[u8; N]` for some `N`). + /// + /// It is recommended to seed PRNGs with a seed of at least circa 100 bits, + /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with + /// partially overlapping periods. + /// + /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`. + /// + /// + /// # Implementing `SeedableRng` for RNGs with large seeds + /// + /// Note that the required traits `core::default::Default` and + /// `core::convert::AsMut<u8>` are not implemented for large arrays + /// `[u8; N]` with `N` > 32. To be able to implement the traits required by + /// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be + /// used: + /// + /// ``` + /// use rand_core::SeedableRng; + /// + /// const N: usize = 64; + /// pub struct MyRngSeed(pub [u8; N]); + /// pub struct MyRng(MyRngSeed); + /// + /// impl Default for MyRngSeed { + /// fn default() -> MyRngSeed { + /// MyRngSeed([0; N]) + /// } + /// } + /// + /// impl AsMut<[u8]> for MyRngSeed { + /// fn as_mut(&mut self) -> &mut [u8] { + /// &mut self.0 + /// } + /// } + /// + /// impl SeedableRng for MyRng { + /// type Seed = MyRngSeed; + /// + /// fn from_seed(seed: MyRngSeed) -> MyRng { + /// MyRng(seed) + /// } + /// } + /// ``` + type Seed: Sized + Default + AsMut<[u8]>; + + /// Create a new PRNG using the given seed. + /// + /// PRNG implementations are allowed to assume that bits in the seed are + /// well distributed. That means usually that the number of one and zero + /// bits are about equal, and values like 0, 1 and (size - 1) are unlikely. + /// + /// PRNG implementations are recommended to be reproducible. A PRNG seeded + /// using this function with a fixed seed should produce the same sequence + /// of output in the future and on different architectures (with for example + /// different endianness). + /// + /// It is however not required that this function yield the same state as a + /// reference implementation of the PRNG given equivalent seed; if necessary + /// another constructor replicating behaviour from a reference + /// implementation can be added. + /// + /// PRNG implementations should make sure `from_seed` never panics. In the + /// case that some special values (like an all zero seed) are not viable + /// seeds it is preferable to map these to alternative constant value(s), + /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad + /// seed"). This is assuming only a small number of values must be rejected. + fn from_seed(seed: Self::Seed) -> Self; + + /// Create a new PRNG seeded from another `Rng`. + /// + /// This is the recommended way to initialize PRNGs with fresh entropy. The + /// [`FromEntropy`] trait provides a convenient `from_entropy` method + /// based on `from_rng`. + /// + /// Usage of this method is not recommended when reproducibility is required + /// since implementing PRNGs are not required to fix Endianness and are + /// allowed to modify implementations in new releases. + /// + /// It is important to use a good source of randomness to initialize the + /// PRNG. Cryptographic PRNG may be rendered insecure when seeded from a + /// non-cryptographic PRNG or with insufficient entropy. + /// Many non-cryptographic PRNGs will show statistical bias in their first + /// results if their seed numbers are small or if there is a simple pattern + /// between them. + /// + /// Prefer to seed from a strong external entropy source like [`OsRng`] or + /// from a cryptographic PRNG; if creating a new generator for cryptographic + /// uses you *must* seed from a strong source. + /// + /// Seeding a small PRNG from another small PRNG is possible, but + /// something to be careful with. An extreme example of how this can go + /// wrong is seeding an Xorshift RNG from another Xorshift RNG, which + /// will effectively clone the generator. In general seeding from a + /// generator which is hard to predict is probably okay. + /// + /// PRNG implementations are allowed to assume that a good RNG is provided + /// for seeding, and that it is cryptographically secure when appropriate. + /// + /// [`FromEntropy`]: ../rand/trait.FromEntropy.html + /// [`OsRng`]: ../rand/os/struct.OsRng.html + fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { + let mut seed = Self::Seed::default(); + rng.try_fill_bytes(seed.as_mut())?; + Ok(Self::from_seed(seed)) + } +} + +// Implement `RngCore` for references to an `RngCore`. +// Force inlining all functions, so that it is up to the `RngCore` +// implementation and the optimizer to decide on inlining. +impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + (**self).next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + (**self).next_u64() + } + + #[inline(always)] + fn fill_bytes(&mut self, dest: &mut [u8]) { + (**self).fill_bytes(dest) + } + + #[inline(always)] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + (**self).try_fill_bytes(dest) + } +} + +// Implement `RngCore` for boxed references to an `RngCore`. +// Force inlining all functions, so that it is up to the `RngCore` +// implementation and the optimizer to decide on inlining. +#[cfg(feature="alloc")] +impl<R: RngCore + ?Sized> RngCore for Box<R> { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + (**self).next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + (**self).next_u64() + } + + #[inline(always)] + fn fill_bytes(&mut self, dest: &mut [u8]) { + (**self).fill_bytes(dest) + } + + #[inline(always)] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + (**self).try_fill_bytes(dest) + } +}
tor-commits@lists.torproject.org