commit 40759064756f668c25ad1347faa793fc0d6afe8b Author: Isis Lovecruft isis@torproject.org Date: Sat Apr 21 00:01:40 2018 +0000
Add vendored dependency on latest master commit of rand-0.5.0-pre.0.
The released version of rand-0.5.0-pre.0 on crates.io doesn't build, and the previous release, 0.4.2, doesn't give us any way to disable its dependencies upon libraries for supporting Google's Fuchsia OS, which itself has more dependencies that we don't need or want.
In any case, this vendored dependency is currently *only* a dev-dependency, meaning it's used only in testing (see /src/rust/rand/rng.rs). --- vendor/rand-8c5b0ac51d/CHANGELOG.md | 369 ++++++ vendor/rand-8c5b0ac51d/Cargo.toml | 60 + vendor/rand-8c5b0ac51d/LICENSE-APACHE | 201 ++++ vendor/rand-8c5b0ac51d/LICENSE-MIT | 25 + vendor/rand-8c5b0ac51d/README.md | 152 +++ vendor/rand-8c5b0ac51d/UPDATING.md | 266 +++++ vendor/rand-8c5b0ac51d/appveyor.yml | 39 + vendor/rand-8c5b0ac51d/benches/distributions.rs | 152 +++ vendor/rand-8c5b0ac51d/benches/generators.rs | 224 ++++ vendor/rand-8c5b0ac51d/benches/misc.rs | 134 +++ vendor/rand-8c5b0ac51d/examples/monte-carlo.rs | 52 + vendor/rand-8c5b0ac51d/examples/monty-hall.rs | 117 ++ vendor/rand-8c5b0ac51d/master.zip | Bin 0 -> 168983 bytes vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md | 21 + vendor/rand-8c5b0ac51d/rand_core/Cargo.toml | 29 + vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE | 201 ++++ vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT | 25 + vendor/rand-8c5b0ac51d/rand_core/README.md | 62 + vendor/rand-8c5b0ac51d/rand_core/src/error.rs | 163 +++ vendor/rand-8c5b0ac51d/rand_core/src/impls.rs | 543 +++++++++ vendor/rand-8c5b0ac51d/rand_core/src/le.rs | 70 ++ vendor/rand-8c5b0ac51d/rand_core/src/lib.rs | 438 +++++++ .../rand-8c5b0ac51d/src/distributions/binomial.rs | 172 +++ .../src/distributions/exponential.rs | 122 ++ vendor/rand-8c5b0ac51d/src/distributions/float.rs | 89 ++ vendor/rand-8c5b0ac51d/src/distributions/gamma.rs | 360 ++++++ .../rand-8c5b0ac51d/src/distributions/integer.rs | 138 +++ .../rand-8c5b0ac51d/src/distributions/log_gamma.rs | 51 + vendor/rand-8c5b0ac51d/src/distributions/mod.rs | 643 +++++++++++ vendor/rand-8c5b0ac51d/src/distributions/normal.rs | 192 ++++ vendor/rand-8c5b0ac51d/src/distributions/other.rs | 207 ++++ .../rand-8c5b0ac51d/src/distributions/poisson.rs | 157 +++ .../rand-8c5b0ac51d/src/distributions/uniform.rs | 650 +++++++++++ .../src/distributions/ziggurat_tables.rs | 280 +++++ vendor/rand-8c5b0ac51d/src/entropy_rng.rs | 167 +++ vendor/rand-8c5b0ac51d/src/jitter.rs | 875 ++++++++++++++ vendor/rand-8c5b0ac51d/src/lib.rs | 1206 ++++++++++++++++++++ vendor/rand-8c5b0ac51d/src/mock.rs | 61 + vendor/rand-8c5b0ac51d/src/os.rs | 833 ++++++++++++++ vendor/rand-8c5b0ac51d/src/prng/chacha.rs | 463 ++++++++ vendor/rand-8c5b0ac51d/src/prng/hc128.rs | 457 ++++++++ vendor/rand-8c5b0ac51d/src/prng/isaac.rs | 482 ++++++++ vendor/rand-8c5b0ac51d/src/prng/isaac64.rs | 474 ++++++++ vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs | 130 +++ vendor/rand-8c5b0ac51d/src/prng/mod.rs | 55 + vendor/rand-8c5b0ac51d/src/prng/xorshift.rs | 226 ++++ vendor/rand-8c5b0ac51d/src/read.rs | 129 +++ vendor/rand-8c5b0ac51d/src/reseeding.rs | 260 +++++ vendor/rand-8c5b0ac51d/src/seq.rs | 335 ++++++ vendor/rand-8c5b0ac51d/src/thread_rng.rs | 206 ++++ vendor/rand-8c5b0ac51d/utils/ci/install.sh | 49 + vendor/rand-8c5b0ac51d/utils/ci/script.sh | 27 + vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py | 127 +++ 53 files changed, 12966 insertions(+)
diff --git a/vendor/rand-8c5b0ac51d/CHANGELOG.md b/vendor/rand-8c5b0ac51d/CHANGELOG.md new file mode 100644 index 0000000..c0544e5 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/CHANGELOG.md @@ -0,0 +1,369 @@ +# Changelog +All notable changes to this project will be documented in this file. + +The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) +and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). + +A [separate changelog is kept for rand_core](rand_core/CHANGELOG.md). + +You may also find the [Update Guide](UPDATING.md) useful. + + +## [0.5.0] - Unreleased + +### Crate features and organisation +- Minimum Rust version update: 1.22.0. (#239) +- Create a seperate `rand_core` crate. (#288) +- Deprecate `rand_derive`. (#256) +- Add `log` feature. Logging is now available in `JitterRng`, `OsRng`, `EntropyRng` and `ReseedingRng`. (#246) +- Add `serde1` feature for some PRNGs. (#189) +- `stdweb` feature for `OsRng` support on WASM via stdweb. (#272, #336) + +### `Rng` trait +- Split `Rng` in `RngCore` and `Rng` extension trait. + `next_u32`, `next_u64` and `fill_bytes` are now part of `RngCore`. (#265) +- Add `Rng::sample`. (#256) +- Deprecate `Rng::gen_weighted_bool`. (#308) +- Add `Rng::gen_bool`. (#308) +- Remove `Rng::next_f32` and `Rng::next_f64`. (#273) +- Add optimized `Rng::fill` and `Rng::try_fill` methods. (#247) +- Deprecate `Rng::gen_iter`. (#286) +- Deprecate `Rng::gen_ascii_chars`. (#279) + +### `rand_core` crate +- `rand` now depends on new `rand_core` crate (#288) +- `RngCore` and `SeedableRng` are now part of `rand_core`. (#288) +- Add modules to help implementing RNGs `impl` and `le`. (#209, #228) +- Add `Error` and `ErrorKind`. (#225) +- Add `CryptoRng` marker trait. (#273) +- Add `BlockRngCore` trait. (#281) +- Add `BlockRng` and `BlockRng64` wrappers to help implementations. (#281, #325) +- Revise the `SeedableRng` trait. (#233) +- Remove default implementations for `RngCore::next_u64` and `RngCore::fill_bytes`. (#288) +- Add `RngCore::try_fill_bytes`. (#225) + +### Other traits and types +- Add `FromEntropy` trait. (#233, #375) +- Add `SmallRng` wrapper. (#296) +- Rewrite `ReseedingRng` to only work with `BlockRngCore` (substantial performance improvement). (#281) +- Deprecate `weak_rng`. Use `SmallRng` instead. (#296) +- Deprecate `random`. (#296) +- Deprecate `AsciiGenerator`. (#279) + +### Random number generators +- Switch `StdRng` and `thread_rng` to HC-128. (#277) +- `StdRng` must now be created with `from_entropy` instead of `new` +- Change `thread_rng` reseeding threshold to 32 MiB. (#277) +- PRNGs no longer implement `Copy`. (#209) +- `Debug` implementations no longer show internals. (#209) +- Implement serialization for `XorShiftRng`, `IsaacRng` and `Isaac64Rng` under the `serde1` feature. (#189) +- Implement `BlockRngCore` for `ChaChaCore` and `Hc128Core`. (#281) +- All PRNGs are now portable across big- and little-endian architectures. (#209) +- `Isaac64Rng::next_u32` no longer throws away half the results. (#209) +- Add `IsaacRng::new_from_u64` and `Isaac64Rng::new_from_u64`. (#209) +- Add the HC-128 CSPRNG `Hc128Rng`. (#210) +- Add `ChaChaRng::set_rounds` method. (#243) +- Changes to `JitterRng` to get its size down from 2112 to 24 bytes. (#251) +- Various performance improvements to all PRNGs. + +### Platform support and `OsRng` +- Add support for CloudABI. (#224) +- Remove support for NaCl. (#225) +- WASM support for `OsRng` via stdweb, behind the `stdweb` feature. (#272, #336) +- Use `getrandom` on more platforms for Linux, and on Android. (#338) +- Use the `SecRandomCopyBytes` interface on macOS. (#322) +- On systems that do not have a syscall interface, only keep a single file descriptor open for `OsRng`. (#239) +- On Unix, first try a single read from `/dev/random`, then `/dev/urandom`. (#338) +- Better error handling and reporting in `OsRng` (using new error type). (#225) +- `OsRng` now uses non-blocking when available. (#225) +- Add `EntropyRng`, which provides `OsRng`, but has `JitterRng` as a fallback. (#235) + +### Distributions +- New `Distribution` trait. (#256) +- Deprecate `Rand`, `Sample` and `IndependentSample` traits. (#256) +- Add a `Standard` distribution (replaces most `Rand` implementations). (#256) +- Add `Binomial` and `Poisson` distributions. (#96) +- Add `Alphanumeric` distribution. (#279) +- Remove `Open01` and `Closed01` distributions, use `Standard` instead (open distribution). (#274) +- Rework `Range` type, making it possible to implement it for user types. (#274) +- Add `Range::new_inclusive` for inclusive ranges. (#274) +- Add `Range::sample_single` to allow for optimized implementations. (#274) +- Use widening multiply method for much faster integer range reduction. (#274) +- `Standard` distributions for `bool` uses `Range`. (#274) +- `Standard` distributions for `bool` uses sign test. (#274) + + +## [0.4.2] - 2018-01-06 +### Changed +- Use `winapi` on Windows +- Update for Fuchsia OS +- Remove dev-dependency on `log` + + +## [0.4.1] - 2017-12-17 +### Added +- `no_std` support + + +## [0.4.0-pre.0] - 2017-12-11 +### Added +- `JitterRng` added as a high-quality alternative entropy source using the + system timer +- new `seq` module with `sample_iter`, `sample_slice`, etc. +- WASM support via dummy implementations (fail at run-time) +- Additional benchmarks, covering generators and new seq code + +### Changed +- `thread_rng` uses `JitterRng` if seeding from system time fails + (slower but more secure than previous method) + +### Deprecated + - `sample` function deprecated (replaced by `sample_iter`) + + +## [0.3.20] - 2018-01-06 +### Changed +- Remove dev-dependency on `log` +- Update `fuchsia-zircon` dependency to 0.3.2 + + +## [0.3.19] - 2017-12-27 +### Changed +- Require `log <= 0.3.8` for dev builds +- Update `fuchsia-zircon` dependency to 0.3 +- Fix broken links in docs (to unblock compiler docs testing CI) + + +## [0.3.18] - 2017-11-06 +### Changed +- `thread_rng` is seeded from the system time if `OsRng` fails +- `weak_rng` now uses `thread_rng` internally + + +## [0.3.17] - 2017-10-07 +### Changed + - Fuchsia: Magenta was renamed Zircon + +## [0.3.16] - 2017-07-27 +### Added +- Implement Debug for mote non-public types +- implement `Rand` for (i|u)i128 +- Support for Fuchsia + +### Changed +- Add inline attribute to SampleRange::construct_range. + This improves the benchmark for sample in 11% and for shuffle in 16%. +- Use `RtlGenRandom` instead of `CryptGenRandom` + + +## [0.3.15] - 2016-11-26 +### Added +- Add `Rng` trait method `choose_mut` +- Redox support + +### Changed +- Use `arc4rand` for `OsRng` on FreeBSD. +- Use `arc4random(3)` for `OsRng` on OpenBSD. + +### Fixed +- Fix filling buffers 4 GiB or larger with `OsRng::fill_bytes` on Windows + + +## [0.3.14] - 2016-02-13 +### Fixed +- Inline definitions from winapi/advapi32, wich decreases build times + + +## [0.3.13] - 2016-01-09 +### Fixed +- Compatible with Rust 1.7.0-nightly (needed some extra type annotations) + + +## [0.3.12] - 2015-11-09 +### Changed +- Replaced the methods in `next_f32` and `next_f64` with the technique described + Saito & Matsumoto at MCQMC'08. The new method should exhibit a slightly more + uniform distribution. +- Depend on libc 0.2 + +### Fixed +- Fix iterator protocol issue in `rand::sample` + + +## [0.3.11] - 2015-08-31 +### Added +- Implement `Rand` for arrays with n <= 32 + + +## [0.3.10] - 2015-08-17 +### Added +- Support for NaCl platforms + +### Changed +- Allow `Rng` to be `?Sized`, impl for `&mut R` and `Box<R>` where `R: ?Sized + Rng` + + +## [0.3.9] - 2015-06-18 +### Changed +- Use `winapi` for Windows API things + +### Fixed +- Fixed test on stable/nightly +- Fix `getrandom` syscall number for aarch64-unknown-linux-gnu + + +## [0.3.8] - 2015-04-23 +### Changed +- `log` is a dev dependency + +### Fixed +- Fix race condition of atomics in `is_getrandom_available` + + +## [0.3.7] - 2015-04-03 +### Fixed +- Derive Copy/Clone changes + + +## [0.3.6] - 2015-04-02 +### Changed +- Move to stable Rust! + + +## [0.3.5] - 2015-04-01 +### Fixed +- Compatible with Rust master + + +## [0.3.4] - 2015-03-31 +### Added +- Implement Clone for `Weighted` + +### Fixed +- Compatible with Rust master + + +## [0.3.3] - 2015-03-26 +### Fixed +- Fix compile on Windows + + +## [0.3.2] - 2015-03-26 + + +## [0.3.1] - 2015-03-26 +### Fixed +- Fix compile on Windows + + +## [0.3.0] - 2015-03-25 +### Changed +- Update to use log version 0.3.x + + +## [0.2.1] - 2015-03-22 +### Fixed +- Compatible with Rust master +- Fixed iOS compilation + + +## [0.2.0] - 2015-03-06 +### Fixed +- Compatible with Rust master (move from `old_io` to `std::io`) + + +## [0.1.4] - 2015-03-04 +### Fixed +- Compatible with Rust master (use wrapping ops) + + +## [0.1.3] - 2015-02-20 +### Fixed +- Compatible with Rust master + +### Removed +- Removed Copy inplementaions from RNGs + + +## [0.1.2] - 2015-02-03 +### Added +- Imported functionality from `std::rand`, including: + - `StdRng`, `SeedableRng`, `TreadRng`, `weak_rng()` + - `ReaderRng`: A wrapper around any Reader to treat it as an RNG. +- Imported documentation from `std::rand` +- Imported tests from `std::rand` + + +## [0.1.1] - 2015-02-03 +### Added +- Migrate to a cargo-compatible directory structure. + +### Fixed +- Do not use entropy during `gen_weighted_bool(1)` + + +## [Rust 0.12.0] - 2014-10-09 +### Added +- Impl Rand for tuples of arity 11 and 12 +- Include ChaCha pseudorandom generator +- Add `next_f64` and `next_f32` to Rng +- Implement Clone for PRNGs + +### Changed +- Rename `TaskRng` to `ThreadRng` and `task_rng` to `thread_rng` (since a + runtime is removed from Rust). + +### Fixed +- Improved performance of ISAAC and ISAAC64 by 30% and 12 % respectively, by + informing the optimiser that indexing is never out-of-bounds. + +### Removed +- Removed the Deprecated `choose_option` + + +## [Rust 0.11.0] - 2014-07-02 +### Added +- document when to use `OSRng` in cryptographic context, and explain why we use `/dev/urandom` instead of `/dev/random` +- `Rng::gen_iter()` which will return an infinite stream of random values +- `Rng::gen_ascii_chars()` which will return an infinite stream of random ascii characters + +### Changed +- Now only depends on libcore! +- Remove `Rng.choose()`, rename `Rng.choose_option()` to `.choose()` +- Rename OSRng to OsRng +- The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, + but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice + structure now has a lifetime associated with it. +- The `sample` method on `Rng` has been moved to a top-level function in the + `rand` module due to its dependence on `Vec`. + +### Removed +- `Rng::gen_vec()` was removed. Previous behavior can be regained with + `rng.gen_iter().take(n).collect()` +- `Rng::gen_ascii_str()` was removed. Previous behavior can be regained with + `rng.gen_ascii_chars().take(n).collect()` +- {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all + relied on being able to use an OSRng for seeding, but this is no longer + available in librand (where these types are defined). To retain the same + functionality, these types now implement the `Rand` trait so they can be + generated with a random seed from another random number generator. This allows + the stdlib to use an OSRng to create seeded instances of these RNGs. +- Rand implementations for `Box<T>` and `@T` were removed. These seemed to be + pretty rare in the codebase, and it allows for librand to not depend on + liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not + supported. +- Remove a slew of old deprecated functions + + +## [Rust 0.10] - 2014-04-03 +### Changed +- replace `Rng.shuffle's` functionality with `.shuffle_mut` +- bubble up IO errors when creating an OSRng + +### Fixed +- Use `fill()` instead of `read()` +- Rewrite OsRng in Rust for windows + +## [0.10-pre] - 2014-03-02 +### Added +- Seperate `rand` out of the standard library diff --git a/vendor/rand-8c5b0ac51d/Cargo.toml b/vendor/rand-8c5b0ac51d/Cargo.toml new file mode 100644 index 0000000..8dc9c3c --- /dev/null +++ b/vendor/rand-8c5b0ac51d/Cargo.toml @@ -0,0 +1,60 @@ +[package] +name = "rand" +version = "0.5.0-pre.0" # NB: When modifying, also modify html_root_url in lib.rs +authors = ["The Rust Project Developers"] +license = "MIT/Apache-2.0" +readme = "README.md" +repository = "https://github.com/rust-lang-nursery/rand" +documentation = "https://docs.rs/rand" +homepage = "https://crates.io/crates/rand" +description = """ +Random number generators and other randomness functionality. +""" +keywords = ["random", "rng"] +categories = ["algorithms", "no-std"] + +[badges] +travis-ci = { repository = "rust-lang-nursery/rand" } +appveyor = { repository = "alexcrichton/rand" } + +[features] +default = ["std" ] # without "std" rand uses libcore +nightly = ["i128_support"] # enables all features requiring nightly rust +std = ["rand_core/std", "alloc", "libc", "winapi", "cloudabi", "fuchsia-zircon"] +alloc = ["rand_core/alloc"] # enables Vec and Box support (without std) +i128_support = [] # enables i128 and u128 support +serde1 = ["serde", "serde_derive", "rand_core/serde1"] # enables serialization for PRNGs + +[workspace] +members = ["rand_core"] + +[dependencies] +rand_core = { path = "rand_core", version = "0.1.0", default-features = false } +log = { version = "0.4", optional = true } +serde = { version = "1", optional = true } +serde_derive = { version = "1", optional = true } + +[target.'cfg(unix)'.dependencies] +libc = { version = "0.2", optional = true } + +[target.'cfg(windows)'.dependencies] +winapi = { version = "0.3", features = ["minwindef", "ntsecapi", "profileapi", "winnt"], optional = true } + +[target.'cfg(target_os = "cloudabi")'.dependencies] +cloudabi = { version = "0.0.3", optional = true } + +[target.'cfg(target_os = "fuchsia")'.dependencies] +fuchsia-zircon = { version = "0.3.2", optional = true } + +[target.wasm32-unknown-unknown.dependencies] +# use with `--target wasm32-unknown-unknown --features=stdweb` +stdweb = { version = "0.4", optional = true } + +[dev-dependencies] +# This is for testing serde, unfortunately we can't specify feature-gated dev +# deps yet, see: https://github.com/rust-lang/cargo/issues/1596 +bincode = "1.0" + +[package.metadata.docs.rs] +all-features = true +rustdoc-args = [ "--all" ] # also document rand_core diff --git a/vendor/rand-8c5b0ac51d/LICENSE-APACHE b/vendor/rand-8c5b0ac51d/LICENSE-APACHE new file mode 100644 index 0000000..17d7468 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/LICENSE-APACHE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + https://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + +1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + +2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + +3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + +4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + +5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + +6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + +7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + +8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + +9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + +END OF TERMS AND CONDITIONS + +APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + +Copyright [yyyy] [name of copyright owner] + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. diff --git a/vendor/rand-8c5b0ac51d/LICENSE-MIT b/vendor/rand-8c5b0ac51d/LICENSE-MIT new file mode 100644 index 0000000..39d4bdb --- /dev/null +++ b/vendor/rand-8c5b0ac51d/LICENSE-MIT @@ -0,0 +1,25 @@ +Copyright (c) 2014 The Rust Project Developers + +Permission is hereby granted, free of charge, to any +person obtaining a copy of this software and associated +documentation files (the "Software"), to deal in the +Software without restriction, including without +limitation the rights to use, copy, modify, merge, +publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software +is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice +shall be included in all copies or substantial portions +of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR +IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. diff --git a/vendor/rand-8c5b0ac51d/README.md b/vendor/rand-8c5b0ac51d/README.md new file mode 100644 index 0000000..1f75787 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/README.md @@ -0,0 +1,152 @@ +# Rand + +[![Build Status](https://travis-ci.org/rust-lang-nursery/rand.svg?branch=master)%5D(https://t...) +[![Build Status](https://ci.appveyor.com/api/projects/status/github/rust-lang-nursery/rand?sv...) +[![Latest version](https://img.shields.io/crates/v/rand.svg)%5D(https://crates.io/crates/rand) +[![Documentation](https://docs.rs/rand/badge.svg)%5D(https://docs.rs/rand) +[![Minimum rustc version](https://img.shields.io/badge/rustc-1.22+-yellow.svg)%5D(https://github.com/r...) + +A Rust library for random number generators and other randomness functionality. + +See also: + +* [rand_core](https://crates.io/crates/rand_core) + +Documentation: +[master branch](https://rust-lang-nursery.github.io/rand/rand/index.html), +[by release](https://docs.rs/rand) + +## Usage + +Add this to your `Cargo.toml`: + +```toml +[dependencies] +rand = "0.5.0-pre.0" +``` + +and this to your crate root: + +```rust +extern crate rand; + +// example usage: +use rand::{Rng, thread_rng}; +let x: f64 = thread_rng().gen(); +``` + +## Versions + +Version 0.5 is available as a pre-release and contains many breaking changes. +See [the Upgrade Guide](UPDATING.md) for guidance on updating from previous +versions. + +Version 0.4 was released in December 2017. It contains almost no breaking +changes since the 0.3 series. + +For more details, see the [changelog](CHANGELOG.md). + +### Compatibility shims + +**As of now there is no compatibility shim between Rand 0.4 and 0.5.** +It is also not entirely obvious how to make one due to the large differences +between the two versions, although it would be possible to implement the new +`RngCore` for any implementation of the old `Rng` (or vice-versa; unfortunately +not both as that would result in circular implementation). If we implement a +compatibility shim it will be optional (opt-in via a feature). + +There is a compatibility shim from 0.3 to 0.4 forcibly upgrading all Rand 0.3 +users; this is largely due to the small differences between the two versions. + +### Rust version requirements + +The 0.5 release of Rand will require **Rustc version 1.22 or greater**. +Rand 0.4 and 0.3 (since approx. June 2017) require Rustc version 1.15 or +greater. Subsets of the Rand code may work with older Rust versions, but this +is not supported. + +Travis CI always has a build with a pinned version of Rustc matching the oldest +supported Rust release. The current policy is that this can be updated in any +Rand release if required, but the change must be noted in the changelog. + +## Functionality + +The `rand_core` crate provides: + +- base random number generator traits +- error-reporting types +- functionality to aid implementation of RNGs + +The `rand` crate provides: + +- most content from `rand_core` (re-exported) +- fresh entropy: `EntropyRng`, `OsRng`, `JitterRng` +- pseudo-random number generators: `StdRng`, `SmallRng`, `prng` module +- convenient, auto-seeded crypto-grade thread-local generator: `thread_rng` +- `distributions` producing many different types of random values: + - a `Standard` distribution for integers, floats,and derived types + including tuples, arrays and `Option` + - unbiased sampling from specified `Range`s + - sampling from exponential/normal/gamma distributions + - sampling from binomial/poisson distributions + - `gen_bool` aka Bernoulli distribution +- `seq`-uence related functionality: + - sampling a subset of elements + - randomly shuffling a list + +## Crate Features + +By default, Rand is built with all stable features available. The following +optional features are available: + +- `alloc` can be used instead of `std` to provide `Vec` and `Box` +- `i128_support` enables support for generating `u128` and `i128` values +- `log` enables some logging via the `log` crate +- `nightly` enables all unstable features (`i128_support`) +- `serde1` enables serialization for some types, via Serde version 1 +- `stdweb` enables support for `OsRng` on WASM via stdweb. +- `std` enabled by default; by setting "default-features = false" `no_std` + mode is activated; this removes features depending on `std` functionality: + - `OsRng` is entirely unavailable + - `JitterRng` code is still present, but a nanosecond timer must be + provided via `JitterRng::new_with_timer` + - Since no external entropy is available, it is not possible to create + generators with fresh seeds (user must provide entropy) + - `thread_rng`, `weak_rng` and `random` are all disabled + - exponential, normal and gamma type distributions are unavailable + since `exp` and `log` functions are not provided in `core` + - any code requiring `Vec` or `Box` + +## Testing + +Unfortunately, `cargo test` does not test everything. The following tests are +recommended: + +``` +# Basic tests for Rand and sub-crates +cargo test --all + +# Test no_std support +cargo test --tests --no-default-features +# Test no_std+alloc support +cargo test --tests --no-default-features --features alloc + +# Test log and serde support +cargo test --features serde1,log + +# Test 128-bit support (requires nightly) +cargo test --all --features nightly + +# Benchmarks (requires nightly) +cargo bench +# or just to test the benchmark code: +cargo test --benches +``` + + +# License + +Rand is distributed under the terms of both the MIT +license and the Apache License (Version 2.0). + +See [LICENSE-APACHE](LICENSE-APACHE) and [LICENSE-MIT](LICENSE-MIT) for details. diff --git a/vendor/rand-8c5b0ac51d/UPDATING.md b/vendor/rand-8c5b0ac51d/UPDATING.md new file mode 100644 index 0000000..6e009b7 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/UPDATING.md @@ -0,0 +1,266 @@ +# Update Guide + +This guide gives a few more details than the [changelog], in particular giving +guidance on how to use new features and migrate away from old ones. + +[changelog]: CHANGELOG.md + +## Rand 0.5 + +The 0.5 release has quite significant changes over the 0.4 release; as such, +it may be worth reading through the following coverage of breaking changes. +This release also contains many optimisations, which are not detailed below. + +### Crates + +We have a new crate: `rand_core`! This crate houses some important traits, +`RngCore`, `BlockRngCore`, `SeedableRng` and `CryptoRng`, the error types, as +well as two modules with helpers for implementations: `le` and `impls`. It is +recommended that implementations of generators use the `rand_core` crate while +other users use only the `rand` crate, which re-exports most parts of `rand_core`. + +The `rand_derive` crate has been deprecated due to very low usage and +deprecation of `Rand`. + +### Features + +Several new Cargo feature flags have been added: + +- `alloc`, used without `std`, allows use of `Box` and `Vec` +- `serde1` adds serialization support to some PRNGs +- `log` adds logging in a few places (primarily to `OsRng` and `JitterRng`) + +### `Rng` and friends (core traits) + +`Rng` trait has been split into two traits, a "back end" `RngCore` (implemented +by generators) and a "front end" `Rng` implementing all the convenient extension +methods. + +Implementations of generators must `impl RngCore` instead. Usage of `rand_core` +for implementations is encouraged; the `rand_core::{le, impls}` modules may +prove useful. + +Users of `Rng` *who don't need to implement it* won't need to make so many +changes; often users can forget about `RngCore` and only import `Rng`. Instead +of `RngCore::next_u32()` / `next_u64()` users should prefer `Rng::gen()`, and +instead of `RngCore::fill_bytes(dest)`, `Rng::fill(dest)` can be used. + +#### `Rng` / `RngCore` methods + +To allow error handling from fallible sources (e.g. `OsRng`), a new +`RngCore::try_fill_bytes` method has been added; for example `EntropyRng` uses +this mechanism to fall back to `JitterRng` if `OsRng` fails, and various +handlers produce better error messages. +As before, the other methods will panic on failure, but since these are usually +used with algorithmic generators which are usually infallible, this is +considered an appropriate compromise. + +A few methods from the old `Rng` have been removed or deprecated: + +- `next_f32` and `next_f64`; these are no longer implementable by generators; + use `gen` instead +- `gen_iter`; users may instead use standard iterators with closures: + `::std::iter::repeat(()).map(|()| rng.gen())` +- `gen_ascii_chars`; use `repeat` as above and `rng.sample(Alphanumeric)` +- `gen_weighted_bool(n)`; use `gen_bool(1.0 / n)` instead + +`Rng` has a few new methods: + +- `sample(distr)` is a shortcut for `distr.sample(rng)` for any `Distribution` +- `gen_bool(p)` generates a boolean with probability `p` of being true +- `fill` and `try_fill`, corresponding to `fill_bytes` and `try_fill_bytes` + respectively (i.e. the only difference is error handling); these can fill + and integer slice / array directly, and provide better performance + than `gen()` + +#### Constructing PRNGs + +##### New randomly-initialised PRNGs + +A new trait has been added: `FromEntropy`. This is automatically implemented for +any type supporting `SeedableRng`, and provides construction from fresh, strong +entropy: + +```rust +use rand::{ChaChaRng, FromEntropy}; + +let mut rng = ChaChaRng::from_entropy(); +``` + +##### Seeding PRNGs + +The `SeedableRng` trait has been modified to include the seed type via an +associated type (`SeedableRng::Seed`) instead of a template parameter +(`SeedableRng<Seed>`). Additionally, all PRNGs now seed from a byte-array +(`[u8; N]` for some fixed N). This allows generic handling of PRNG seeding +which was not previously possible. + +PRNGs are no longer constructed from other PRNGs via `Rand` support / `gen()`, +but through `SeedableRng::from_rng`, which allows error handling and is +intentionally explicit. + +`SeedableRng::reseed` has been removed since it has no utility over `from_seed` +and its performance advantage is questionable. + +Implementations of `SeedableRng` may need to change their `Seed` type to a +byte-array; this restriction has been made to ensure portable handling of +Endianness. Helper functions are available in `rand_core::le` to read `u32` and +`u64` values from byte arrays. + +#### Block-based PRNGs + +rand_core has a new helper trait, `BlockRngCore`, and implementation, +`BlockRng`. These are for use by generators which generate a block of random +data at a time instead of word-sized values. Using this trait and implementation +has two advantages: optimised `RngCore` methods are provided, and the PRNG can +be used with `ReseedingRng` with very low overhead. + +#### Cryptographic RNGs + +A new trait has been added: `CryptoRng`. This is purely a marker trait to +indicate which generators should be suitable for cryptography, e.g. +`fn foo<R: Rng + CryptoRng>(rng: &mut R)`. *Suitability for cryptographic +use cannot be guaranteed.* + +### Error handling + +A new `Error` type has been added, designed explicitly for no-std compatibility, +simplicity, and enough flexibility for our uses (carrying a `cause` when +possible): +```rust +pub struct Error { + pub kind: ErrorKind, + pub msg: &'static str, + // some fields omitted +} +``` +The associated `ErrorKind` allows broad classification of errors into permanent, +unexpected, transient and not-yet-ready kinds. + +The following use the new error type: + +- `RngCore::try_fill_bytes` +- `Rng::try_fill` +- `OsRng::new` +- `JitterRng::new` + +### External generators + +We have a new generator, `EntropyRng`, which wraps `OsRng` and `JitterRng` +(preferring to use the former, but falling back to the latter if necessary). +This allows easy construction with fallback via `SeedableRng::from_rng`, +e.g. `IsaacRng::from_rng(EntropyRng::new())?`. This is equivalent to using +`FromEntropy` except for error handling. + +It is recommended to use `EntropyRng` over `OsRng` to avoid errors on platforms +with broken system generator, but it should be noted that the `JitterRng` +fallback is very slow. + +### PRNGs + +*Pseudo-Random Number Generators* (i.e. deterministic algorithmic generators) +have had a few changes since 0.4, and are now housed in the `prng` module +(old names remain temporarily available for compatibility; eventually these +generators will likely be housed outside the `rand` crate). + +All PRNGs now do not implement `Copy` to prevent accidental copying of the +generator's state (and thus repetitions of generated values). Explicit cloning +via `Clone` is still available. All PRNGs now have a custom implementation of +`Debug` which does not print any internal state; this helps avoid accidentally +leaking cryptographic generator state in log files. External PRNG +implementations are advised to follow this pattern (see also doc on `RngCore`). + +`SmallRng` has been added as a wrapper, currently around `XorShiftRng` (but +likely another algorithm soon). This is for uses where small state and fast +initialisation are important but cryptographic strength is not required. +(Actual performance of generation varies by benchmark; dependending on usage +this may or may not be the fastest algorithm, but will always be fast.) + +#### `ReseedingRng` + +The `ReseedingRng` wrapper has been signficantly altered to reduce overhead. +Unfortunately the new `ReseedingRng` is not compatible with all RNGs, but only +those using `BlockRngCore`. + +#### ISAAC PRNGs + +The `IsaacRng` and `Isaac64Rng` PRNGs now have an additional construction +method: `new_from_u64(seed)`. 64 bits of state is insufficient for cryptography +but may be of use in simulations and games. This will likely be superceeded by +a method to construct any PRNG from any hashable object in the future. + +#### HC-128 + +This is a new cryptographic generator, selected as one of the "stream ciphers +suitable for widespread adoption" by eSTREAM. This is now the default +cryptographic generator, used by `StdRng` and `thread_rng()`. + +### Helper functions/traits + +The `Rand` trait has been deprecated. Instead, users are encouraged to use +`Standard` which is a real distribution and supports the same sampling as + `Rand`.`Rng::gen()` now uses `Standard` and should work exactly as before. + +The `random()` function has been removed; users may simply use +`thread_rng().gen()` instead or may choose to cache +`let mut rng = thread_rng();` locally, or even use a different generator. + +`weak_rng()` has been deprecated; use `SmallRng::from_entropy()` instead. + +### Distributions + +The `Sample` and `IndependentSample` traits have been replaced by a single +trait, `Distribution`. This is largely equivalent to `IndependentSample`, but +with `ind_sample` replaced by just `sample`. Support for mutable distributions +has been dropped; although it appears there may be a few genuine uses, these +are not used widely enough to justify the existance of two independent traits +or of having to provide mutable access to a distribution object. Both `Sample` +and `IndependentSample` are still available, but deprecated; they will be +removed in a future release. + +`Distribution::sample` (as well as several other functions) can now be called +directly on type-erased (unsized) RNGs. + +`RandSample` has been removed (see `Rand` deprecation and new `Standard` +distribution). + +The `Open01` and `Closed01` wrappers have been removed. `Rng::gen()` (via +`Standard`) now yields samples from `(0, 1)` for floats; i.e. the same as the +old `Open01`. This is considered sufficient for most uses. + +#### Uniform distributions + +Two new distributions are available: + +- `Standard` produces uniformly-distributed samples for many different types, + and acts as a replacement for `Rand` +- `Alphanumeric` samples `char`s from the ranges `a-z A-Z 0-9` + +##### Ranges + +The `Range` distribution has been heavily adapted, while remaining largely +backwards compatible: + +- `Range::new(low, high)` remains (half open `[low, high)`) +- `Range::new_inclusive(low, high)` has been added, including `high` in the sample range +- `Range::sample_single(low, high, rng)` is a faster variant for single usage sampling from `[low, high)` + +`Range` can now be implemented for user-defined types; see the `RangeImpl` type. +`SampleRange` has been adapted to suit the new `Range` model. + +#### Non-uniform distributions + +Two distributions have been added: + +- Poisson, modelling the number of events expected from a constant-rate + source within a fixed time interval (e.g. nuclear decay) +- Binomial, modelling the outcome of a fixed number of yes-no trials + +The sampling methods are based on those in "Numerical Recipes in C". + +##### Exponential and Normal distributions + +The main `Exp` and `Normal` distributions are unchanged, however the +"standard" versions, `Exp1` and `StandardNormal` are no longer wrapper types, +but full distributions. Instead of writing `let Exp1(x) = rng.gen();` you now +write `let x = rng.sample(Exp1);`. diff --git a/vendor/rand-8c5b0ac51d/appveyor.yml b/vendor/rand-8c5b0ac51d/appveyor.yml new file mode 100644 index 0000000..d9b613e --- /dev/null +++ b/vendor/rand-8c5b0ac51d/appveyor.yml @@ -0,0 +1,39 @@ +environment: + + # At the time this was added AppVeyor was having troubles with checking + # revocation of SSL certificates of sites like static.rust-lang.org and what + # we think is crates.io. The libcurl HTTP client by default checks for + # revocation on Windows and according to a mailing list [1] this can be + # disabled. + # + # The `CARGO_HTTP_CHECK_REVOKE` env var here tells cargo to disable SSL + # revocation checking on Windows in libcurl. Note, though, that rustup, which + # we're using to download Rust here, also uses libcurl as the default backend. + # Unlike Cargo, however, rustup doesn't have a mechanism to disable revocation + # checking. To get rustup working we set `RUSTUP_USE_HYPER` which forces it to + # use the Hyper instead of libcurl backend. Both Hyper and libcurl use + # schannel on Windows but it appears that Hyper configures it slightly + # differently such that revocation checking isn't turned on by default. + # + # [1]: https://curl.haxx.se/mail/lib-2016-03/0202.html + RUSTUP_USE_HYPER: 1 + CARGO_HTTP_CHECK_REVOKE: false + + matrix: + - TARGET: x86_64-pc-windows-msvc + - TARGET: i686-pc-windows-msvc +install: + - appveyor DownloadFile https://win.rustup.rs/ -FileName rustup-init.exe + - rustup-init.exe -y --default-host %TARGET% --default-toolchain nightly + - set PATH=%PATH%;C:\Users\appveyor.cargo\bin + - rustc -V + - cargo -V + +build: false + +test_script: + - cargo test --benches + - cargo test --all + - cargo test --features serde1,log,nightly + - cargo test --all --tests --no-default-features --features=alloc + - cargo test --tests --no-default-features --features=serde1 diff --git a/vendor/rand-8c5b0ac51d/benches/distributions.rs b/vendor/rand-8c5b0ac51d/benches/distributions.rs new file mode 100644 index 0000000..24e0e7f --- /dev/null +++ b/vendor/rand-8c5b0ac51d/benches/distributions.rs @@ -0,0 +1,152 @@ +#![feature(test)] +#![cfg_attr(feature = "i128_support", feature(i128_type, i128))] + +extern crate test; +extern crate rand; + +const RAND_BENCH_N: u64 = 1000; + +use std::mem::size_of; +use test::{black_box, Bencher}; + +use rand::{Rng, FromEntropy, XorShiftRng}; +use rand::distributions::*; + +macro_rules! distr_int { + ($fnn:ident, $ty:ty, $distr:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = XorShiftRng::from_entropy(); + let distr = $distr; + + b.iter(|| { + let mut accum = 0 as $ty; + for _ in 0..::RAND_BENCH_N { + let x: $ty = distr.sample(&mut rng); + accum = accum.wrapping_add(x); + } + black_box(accum); + }); + b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; + } + } +} + +macro_rules! distr_float { + ($fnn:ident, $ty:ty, $distr:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = XorShiftRng::from_entropy(); + let distr = $distr; + + b.iter(|| { + let mut accum = 0.0; + for _ in 0..::RAND_BENCH_N { + let x: $ty = distr.sample(&mut rng); + accum += x; + } + black_box(accum); + }); + b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; + } + } +} + +macro_rules! distr { + ($fnn:ident, $ty:ty, $distr:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = XorShiftRng::from_entropy(); + let distr = $distr; + + b.iter(|| { + for _ in 0..::RAND_BENCH_N { + let x: $ty = distr.sample(&mut rng); + black_box(x); + } + }); + b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; + } + } +} + +// uniform +distr_int!(distr_uniform_i8, i8, Uniform::new(20i8, 100)); +distr_int!(distr_uniform_i16, i16, Uniform::new(-500i16, 2000)); +distr_int!(distr_uniform_i32, i32, Uniform::new(-200_000_000i32, 800_000_000)); +distr_int!(distr_uniform_i64, i64, Uniform::new(3i64, 123_456_789_123)); +#[cfg(feature = "i128_support")] +distr_int!(distr_uniform_i128, i128, Uniform::new(-123_456_789_123i128, 123_456_789_123_456_789)); + +distr_float!(distr_uniform_f32, f32, Uniform::new(2.26f32, 2.319)); +distr_float!(distr_uniform_f64, f64, Uniform::new(2.26f64, 2.319)); + +// standard +distr_int!(distr_standard_i8, i8, Standard); +distr_int!(distr_standard_i16, i16, Standard); +distr_int!(distr_standard_i32, i32, Standard); +distr_int!(distr_standard_i64, i64, Standard); +#[cfg(feature = "i128_support")] +distr_int!(distr_standard_i128, i128, Standard); + +distr!(distr_standard_bool, bool, Standard); +distr!(distr_standard_alphanumeric, char, Alphanumeric); +distr!(distr_standard_codepoint, char, Standard); + +distr_float!(distr_standard_f32, f32, Standard); +distr_float!(distr_standard_f64, f64, Standard); + +// distributions +distr_float!(distr_exp, f64, Exp::new(1.23 * 4.56)); +distr_float!(distr_normal, f64, Normal::new(-1.23, 4.56)); +distr_float!(distr_log_normal, f64, LogNormal::new(-1.23, 4.56)); +distr_float!(distr_gamma_large_shape, f64, Gamma::new(10., 1.0)); +distr_float!(distr_gamma_small_shape, f64, Gamma::new(0.1, 1.0)); +distr_int!(distr_binomial, u64, Binomial::new(20, 0.7)); +distr_int!(distr_poisson, u64, Poisson::new(4.0)); + + +// construct and sample from a range +macro_rules! gen_range_int { + ($fnn:ident, $ty:ident, $low:expr, $high:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = XorShiftRng::from_entropy(); + + b.iter(|| { + let mut high = $high; + let mut accum: $ty = 0; + for _ in 0..::RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen_range($low, high)); + // force recalculation of range each time + high = high.wrapping_add(1) & std::$ty::MAX; + } + black_box(accum); + }); + b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; + } + } +} + +gen_range_int!(gen_range_i8, i8, -20i8, 100); +gen_range_int!(gen_range_i16, i16, -500i16, 2000); +gen_range_int!(gen_range_i32, i32, -200_000_000i32, 800_000_000); +gen_range_int!(gen_range_i64, i64, 3i64, 123_456_789_123); +#[cfg(feature = "i128_support")] +gen_range_int!(gen_range_i128, i128, -12345678901234i128, 123_456_789_123_456_789); + +#[bench] +fn dist_iter(b: &mut Bencher) { + let mut rng = XorShiftRng::from_entropy(); + let distr = Normal::new(-2.71828, 3.14159); + let mut iter = distr.sample_iter(&mut rng); + + b.iter(|| { + let mut accum = 0.0; + for _ in 0..::RAND_BENCH_N { + accum += iter.next().unwrap(); + } + black_box(accum); + }); + b.bytes = size_of::<f64>() as u64 * ::RAND_BENCH_N; +} diff --git a/vendor/rand-8c5b0ac51d/benches/generators.rs b/vendor/rand-8c5b0ac51d/benches/generators.rs new file mode 100644 index 0000000..a86798d --- /dev/null +++ b/vendor/rand-8c5b0ac51d/benches/generators.rs @@ -0,0 +1,224 @@ +#![feature(test)] + +extern crate test; +extern crate rand; + +const RAND_BENCH_N: u64 = 1000; +const BYTES_LEN: usize = 1024; + +use std::mem::size_of; +use test::{black_box, Bencher}; + +use rand::{RngCore, Rng, SeedableRng, FromEntropy}; +use rand::{StdRng, SmallRng, OsRng, EntropyRng, ReseedingRng}; +use rand::prng::{XorShiftRng, Hc128Rng, IsaacRng, Isaac64Rng, ChaChaRng}; +use rand::prng::hc128::Hc128Core; +use rand::jitter::JitterRng; +use rand::thread_rng; + +macro_rules! gen_bytes { + ($fnn:ident, $gen:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = $gen; + let mut buf = [0u8; BYTES_LEN]; + b.iter(|| { + for _ in 0..RAND_BENCH_N { + rng.fill_bytes(&mut buf); + black_box(buf); + } + }); + b.bytes = BYTES_LEN as u64 * RAND_BENCH_N; + } + } +} + +gen_bytes!(gen_bytes_xorshift, XorShiftRng::from_entropy()); +gen_bytes!(gen_bytes_hc128, Hc128Rng::from_entropy()); +gen_bytes!(gen_bytes_isaac, IsaacRng::from_entropy()); +gen_bytes!(gen_bytes_isaac64, Isaac64Rng::from_entropy()); +gen_bytes!(gen_bytes_std, StdRng::from_entropy()); +gen_bytes!(gen_bytes_small, SmallRng::from_entropy()); +gen_bytes!(gen_bytes_os, OsRng::new().unwrap()); + +macro_rules! gen_uint { + ($fnn:ident, $ty:ty, $gen:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = $gen; + b.iter(|| { + let mut accum: $ty = 0; + for _ in 0..RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen::<$ty>()); + } + black_box(accum); + }); + b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; + } + } +} + +gen_uint!(gen_u32_xorshift, u32, XorShiftRng::from_entropy()); +gen_uint!(gen_u32_hc128, u32, Hc128Rng::from_entropy()); +gen_uint!(gen_u32_isaac, u32, IsaacRng::from_entropy()); +gen_uint!(gen_u32_isaac64, u32, Isaac64Rng::from_entropy()); +gen_uint!(gen_u32_std, u32, StdRng::from_entropy()); +gen_uint!(gen_u32_small, u32, SmallRng::from_entropy()); +gen_uint!(gen_u32_os, u32, OsRng::new().unwrap()); + +gen_uint!(gen_u64_xorshift, u64, XorShiftRng::from_entropy()); +gen_uint!(gen_u64_hc128, u64, Hc128Rng::from_entropy()); +gen_uint!(gen_u64_isaac, u64, IsaacRng::from_entropy()); +gen_uint!(gen_u64_isaac64, u64, Isaac64Rng::from_entropy()); +gen_uint!(gen_u64_std, u64, StdRng::from_entropy()); +gen_uint!(gen_u64_small, u64, SmallRng::from_entropy()); +gen_uint!(gen_u64_os, u64, OsRng::new().unwrap()); + +// Do not test JitterRng like the others by running it RAND_BENCH_N times per, +// measurement, because it is way too slow. Only run it once. +#[bench] +fn gen_u64_jitter(b: &mut Bencher) { + let mut rng = JitterRng::new().unwrap(); + b.iter(|| { + black_box(rng.gen::<u64>()); + }); + b.bytes = size_of::<u64>() as u64; +} + +macro_rules! init_gen { + ($fnn:ident, $gen:ident) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = XorShiftRng::from_entropy(); + b.iter(|| { + let r2 = $gen::from_rng(&mut rng).unwrap(); + black_box(r2); + }); + } + } +} + +init_gen!(init_xorshift, XorShiftRng); +init_gen!(init_hc128, Hc128Rng); +init_gen!(init_isaac, IsaacRng); +init_gen!(init_isaac64, Isaac64Rng); +init_gen!(init_chacha, ChaChaRng); + +#[bench] +fn init_jitter(b: &mut Bencher) { + b.iter(|| { + black_box(JitterRng::new().unwrap()); + }); +} + +macro_rules! chacha_rounds { + ($fn1:ident, $fn2:ident, $fn3:ident, $rounds:expr) => { + #[bench] + fn $fn1(b: &mut Bencher) { + let mut rng = ChaChaRng::from_entropy(); + rng.set_rounds($rounds); + let mut buf = [0u8; BYTES_LEN]; + b.iter(|| { + for _ in 0..RAND_BENCH_N { + rng.fill_bytes(&mut buf); + black_box(buf); + } + }); + b.bytes = BYTES_LEN as u64 * RAND_BENCH_N; + } + + #[bench] + fn $fn2(b: &mut Bencher) { + let mut rng = ChaChaRng::from_entropy(); + rng.set_rounds($rounds); + b.iter(|| { + let mut accum: u32 = 0; + for _ in 0..RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen::<u32>()); + } + black_box(accum); + }); + b.bytes = size_of::<u32>() as u64 * RAND_BENCH_N; + } + + #[bench] + fn $fn3(b: &mut Bencher) { + let mut rng = ChaChaRng::from_entropy(); + rng.set_rounds($rounds); + b.iter(|| { + let mut accum: u64 = 0; + for _ in 0..RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen::<u64>()); + } + black_box(accum); + }); + b.bytes = size_of::<u64>() as u64 * RAND_BENCH_N; + } + } +} + +chacha_rounds!(gen_bytes_chacha8, gen_u32_chacha8, gen_u64_chacha8, 8); +chacha_rounds!(gen_bytes_chacha12, gen_u32_chacha12, gen_u64_chacha12, 12); +chacha_rounds!(gen_bytes_chacha20, gen_u32_chacha20, gen_u64_chacha20, 20); + + +const RESEEDING_THRESHOLD: u64 = 1024*1024*1024; // something high enough to get + // deterministic measurements + +#[bench] +fn reseeding_hc128_bytes(b: &mut Bencher) { + let mut rng = ReseedingRng::new(Hc128Core::from_entropy(), + RESEEDING_THRESHOLD, + EntropyRng::new()); + let mut buf = [0u8; BYTES_LEN]; + b.iter(|| { + for _ in 0..RAND_BENCH_N { + rng.fill_bytes(&mut buf); + black_box(buf); + } + }); + b.bytes = BYTES_LEN as u64 * RAND_BENCH_N; +} + +macro_rules! reseeding_uint { + ($fnn:ident, $ty:ty) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = ReseedingRng::new(Hc128Core::from_entropy(), + RESEEDING_THRESHOLD, + EntropyRng::new()); + b.iter(|| { + let mut accum: $ty = 0; + for _ in 0..RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen::<$ty>()); + } + black_box(accum); + }); + b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; + } + } +} + +reseeding_uint!(reseeding_hc128_u32, u32); +reseeding_uint!(reseeding_hc128_u64, u64); + + +macro_rules! threadrng_uint { + ($fnn:ident, $ty:ty) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = thread_rng(); + b.iter(|| { + let mut accum: $ty = 0; + for _ in 0..RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen::<$ty>()); + } + black_box(accum); + }); + b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; + } + } +} + +threadrng_uint!(thread_rng_u32, u32); +threadrng_uint!(thread_rng_u64, u64); diff --git a/vendor/rand-8c5b0ac51d/benches/misc.rs b/vendor/rand-8c5b0ac51d/benches/misc.rs new file mode 100644 index 0000000..258f082 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/benches/misc.rs @@ -0,0 +1,134 @@ +#![feature(test)] + +extern crate test; +extern crate rand; + +const RAND_BENCH_N: u64 = 1000; + +use test::{black_box, Bencher}; + +use rand::{SeedableRng, SmallRng, Rng, thread_rng}; +use rand::seq::*; + +#[bench] +fn misc_gen_bool(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let mut accum = true; + for _ in 0..::RAND_BENCH_N { + accum ^= rng.gen_bool(0.18); + } + black_box(accum); + }) +} + +#[bench] +fn misc_gen_bool_var(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let mut p = 0.18; + let mut accum = true; + for _ in 0..::RAND_BENCH_N { + accum ^= rng.gen_bool(p); + p += 0.0001; + } + black_box(accum); + }) +} + +#[bench] +fn misc_shuffle_100(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x : &mut [usize] = &mut [1; 100]; + b.iter(|| { + rng.shuffle(x); + black_box(&x); + }) +} + +#[bench] +fn misc_sample_iter_10_of_100(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x : &[usize] = &[1; 100]; + b.iter(|| { + black_box(sample_iter(&mut rng, x, 10).unwrap_or_else(|e| e)); + }) +} + +#[bench] +fn misc_sample_slice_10_of_100(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x : &[usize] = &[1; 100]; + b.iter(|| { + black_box(sample_slice(&mut rng, x, 10)); + }) +} + +#[bench] +fn misc_sample_slice_ref_10_of_100(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x : &[usize] = &[1; 100]; + b.iter(|| { + black_box(sample_slice_ref(&mut rng, x, 10)); + }) +} + +macro_rules! sample_indices { + ($name:ident, $amount:expr, $length:expr) => { + #[bench] + fn $name(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + b.iter(|| { + black_box(sample_indices(&mut rng, $length, $amount)); + }) + } + } +} + +sample_indices!(misc_sample_indices_10_of_1k, 10, 1000); +sample_indices!(misc_sample_indices_50_of_1k, 50, 1000); +sample_indices!(misc_sample_indices_100_of_1k, 100, 1000); + +#[bench] +fn gen_1k_iter_repeat(b: &mut Bencher) { + use std::iter; + let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let v: Vec<u64> = iter::repeat(()).map(|()| rng.gen()).take(128).collect(); + black_box(v); + }); + b.bytes = 1024; +} + +#[bench] +#[allow(deprecated)] +fn gen_1k_gen_iter(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let v: Vec<u64> = rng.gen_iter().take(128).collect(); + black_box(v); + }); + b.bytes = 1024; +} + +#[bench] +fn gen_1k_sample_iter(b: &mut Bencher) { + use rand::distributions::{Distribution, Standard}; + let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let v: Vec<u64> = Standard.sample_iter(&mut rng).take(128).collect(); + black_box(v); + }); + b.bytes = 1024; +} + +#[bench] +fn gen_1k_fill(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); + let mut buf = [0u64; 128]; + b.iter(|| { + rng.fill(&mut buf[..]); + black_box(buf); + }); + b.bytes = 1024; +} diff --git a/vendor/rand-8c5b0ac51d/examples/monte-carlo.rs b/vendor/rand-8c5b0ac51d/examples/monte-carlo.rs new file mode 100644 index 0000000..c18108a --- /dev/null +++ b/vendor/rand-8c5b0ac51d/examples/monte-carlo.rs @@ -0,0 +1,52 @@ +// Copyright 2013-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! # Monte Carlo estimation of π +//! +//! Imagine that we have a square with sides of length 2 and a unit circle +//! (radius = 1), both centered at the origin. The areas are: +//! +//! ```text +//! area of circle = πr² = π * r * r = π +//! area of square = 2² = 4 +//! ``` +//! +//! The circle is entirely within the square, so if we sample many points +//! randomly from the square, roughly π / 4 of them should be inside the circle. +//! +//! We can use the above fact to estimate the value of π: pick many points in +//! the square at random, calculate the fraction that fall within the circle, +//! and multiply this fraction by 4. + +#![cfg(feature="std")] + + +extern crate rand; + +use rand::distributions::{Distribution, Uniform}; + +fn main() { + let range = Uniform::new(-1.0f64, 1.0); + let mut rng = rand::thread_rng(); + + let total = 1_000_000; + let mut in_circle = 0; + + for _ in 0..total { + let a = range.sample(&mut rng); + let b = range.sample(&mut rng); + if a*a + b*b <= 1.0 { + in_circle += 1; + } + } + + // prints something close to 3.14159... + println!("π is approximately {}", 4. * (in_circle as f64) / (total as f64)); +} diff --git a/vendor/rand-8c5b0ac51d/examples/monty-hall.rs b/vendor/rand-8c5b0ac51d/examples/monty-hall.rs new file mode 100644 index 0000000..3750f8f --- /dev/null +++ b/vendor/rand-8c5b0ac51d/examples/monty-hall.rs @@ -0,0 +1,117 @@ +// Copyright 2013-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! ## Monty Hall Problem +//! +//! This is a simulation of the [Monty Hall Problem][]: +//! +//! > Suppose you're on a game show, and you're given the choice of three doors: +//! > Behind one door is a car; behind the others, goats. You pick a door, say +//! > No. 1, and the host, who knows what's behind the doors, opens another +//! > door, say No. 3, which has a goat. He then says to you, "Do you want to +//! > pick door No. 2?" Is it to your advantage to switch your choice? +//! +//! The rather unintuitive answer is that you will have a 2/3 chance of winning +//! if you switch and a 1/3 chance of winning if you don't, so it's better to +//! switch. +//! +//! This program will simulate the game show and with large enough simulation +//! steps it will indeed confirm that it is better to switch. +//! +//! [Monty Hall Problem]: https://en.wikipedia.org/wiki/Monty_Hall_problem + +#![cfg(feature="std")] + + +extern crate rand; + +use rand::Rng; +use rand::distributions::{Distribution, Uniform}; + +struct SimulationResult { + win: bool, + switch: bool, +} + +// Run a single simulation of the Monty Hall problem. +fn simulate<R: Rng>(random_door: &Uniform<u32>, rng: &mut R) + -> SimulationResult { + let car = random_door.sample(rng); + + // This is our initial choice + let mut choice = random_door.sample(rng); + + // The game host opens a door + let open = game_host_open(car, choice, rng); + + // Shall we switch? + let switch = rng.gen(); + if switch { + choice = switch_door(choice, open); + } + + SimulationResult { win: choice == car, switch } +} + +// Returns the door the game host opens given our choice and knowledge of +// where the car is. The game host will never open the door with the car. +fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 { + let choices = free_doors(&[car, choice]); + rand::seq::sample_slice(rng, &choices, 1)[0] +} + +// Returns the door we switch to, given our current choice and +// the open door. There will only be one valid door. +fn switch_door(choice: u32, open: u32) -> u32 { + free_doors(&[choice, open])[0] +} + +fn free_doors(blocked: &[u32]) -> Vec<u32> { + (0..3).filter(|x| !blocked.contains(x)).collect() +} + +fn main() { + // The estimation will be more accurate with more simulations + let num_simulations = 10000; + + let mut rng = rand::thread_rng(); + let random_door = Uniform::new(0u32, 3); + + let (mut switch_wins, mut switch_losses) = (0, 0); + let (mut keep_wins, mut keep_losses) = (0, 0); + + println!("Running {} simulations...", num_simulations); + for _ in 0..num_simulations { + let result = simulate(&random_door, &mut rng); + + match (result.win, result.switch) { + (true, true) => switch_wins += 1, + (true, false) => keep_wins += 1, + (false, true) => switch_losses += 1, + (false, false) => keep_losses += 1, + } + } + + let total_switches = switch_wins + switch_losses; + let total_keeps = keep_wins + keep_losses; + + println!("Switched door {} times with {} wins and {} losses", + total_switches, switch_wins, switch_losses); + + println!("Kept our choice {} times with {} wins and {} losses", + total_keeps, keep_wins, keep_losses); + + // With a large number of simulations, the values should converge to + // 0.667 and 0.333 respectively. + println!("Estimated chance to win if we switch: {}", + switch_wins as f32 / total_switches as f32); + println!("Estimated chance to win if we don't: {}", + keep_wins as f32 / total_keeps as f32); +} diff --git a/vendor/rand-8c5b0ac51d/master.zip b/vendor/rand-8c5b0ac51d/master.zip new file mode 100644 index 0000000..1bf77e4 Binary files /dev/null and b/vendor/rand-8c5b0ac51d/master.zip differ diff --git a/vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md b/vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md new file mode 100644 index 0000000..0358bdc --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md @@ -0,0 +1,21 @@ +# Changelog +All notable changes to this project will be documented in this file. + +The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) +and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). + + +## [0.1.0] - TODO - date +(Split out of the Rand crate, changes here are relative to rand 0.4.2) +- `RngCore` and `SeedableRng` are now part of `rand_core`. (#288) +- Add modules to help implementing RNGs `impl` and `le`. (#209, #228) +- Add `Error` and `ErrorKind`. (#225) +- Add `CryptoRng` marker trait. (#273) +- Add `BlockRngCore` trait. (#281) +- Add `BlockRng` and `BlockRng64` wrappers to help implementations. (#281, #325) +- Revise the `SeedableRng` trait. (#233) +- Remove default implementations for `RngCore::next_u64` and `RngCore::fill_bytes`. (#288) +- Add `RngCore::try_fill_bytes`. (#225) + +## [0.0.1] - 2017-09-14 (yanked) +Experimental version as part of the rand crate refactor. diff --git a/vendor/rand-8c5b0ac51d/rand_core/Cargo.toml b/vendor/rand-8c5b0ac51d/rand_core/Cargo.toml new file mode 100644 index 0000000..e307f4d --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/Cargo.toml @@ -0,0 +1,29 @@ +[package] +name = "rand_core" +version = "0.1.0" # NB: When modifying, also modify html_root_url in lib.rs +authors = ["The Rust Project Developers"] +license = "MIT/Apache-2.0" +readme = "README.md" +repository = "https://github.com/rust-lang-nursery/rand" +documentation = "https://docs.rs/rand_core" +homepage = "https://crates.io/crates/rand_core" +description = """ +Core random number generator traits and tools for implementation. +""" +keywords = ["random", "rng"] +categories = ["algorithms", "no-std"] + +[badges] +travis-ci = { repository = "rust-lang-nursery/rand" } +appveyor = { repository = "alexcrichton/rand" } + +[features] +# Bug: https://github.com/rust-lang/cargo/issues/4361 +# default = ["std"] +std = ["alloc"] # use std library; should be default but for above bug +alloc = [] # enables Vec and Box support without std +serde1 = ["serde", "serde_derive"] # enables serde for BlockRng wrapper + +[dependencies] +serde = { version = "1", optional = true } +serde_derive = { version = "1", optional = true } diff --git a/vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE b/vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE new file mode 100644 index 0000000..17d7468 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + https://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + +1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + +2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + +3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + +4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + +5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + +6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + +7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + +8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + +9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + +END OF TERMS AND CONDITIONS + +APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + +Copyright [yyyy] [name of copyright owner] + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. diff --git a/vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT b/vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT new file mode 100644 index 0000000..39d4bdb --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT @@ -0,0 +1,25 @@ +Copyright (c) 2014 The Rust Project Developers + +Permission is hereby granted, free of charge, to any +person obtaining a copy of this software and associated +documentation files (the "Software"), to deal in the +Software without restriction, including without +limitation the rights to use, copy, modify, merge, +publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software +is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice +shall be included in all copies or substantial portions +of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR +IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. diff --git a/vendor/rand-8c5b0ac51d/rand_core/README.md b/vendor/rand-8c5b0ac51d/rand_core/README.md new file mode 100644 index 0000000..2949222 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/README.md @@ -0,0 +1,62 @@ +# rand_core + +[![Build Status](https://travis-ci.org/rust-lang-nursery/rand.svg)%5D(https://travis-ci.org/r...) +[![Build Status](https://ci.appveyor.com/api/projects/status/github/rust-lang-nursery/rand?sv...) +[![Latest version](https://img.shields.io/crates/v/rand_core.svg)%5D(https://crates.io/crates/r...) +[![Documentation](https://docs.rs/rand_core/badge.svg)%5D(https://docs.rs/rand_core) +[![Minimum rustc version](https://img.shields.io/badge/rustc-1.22+-yellow.svg)%5D(https://github.com/r...) + +Core traits and error types of the [rand] library, plus tools for implementing +RNGs. + +This crate is intended for use when implementing the core trait, `RngCore`; it +defines the core traits to be implemented as well as several small functions to +aid in their implementation and types required for error handling. + +The main [rand] crate re-exports most items defined in this crate, along with +tools to convert the integer samples generated by `RngCore` to many different +applications (including sampling from restricted ranges, conversion to floating +point, list permutations and secure initialisation of RNGs). Most users should +prefer to use the main [rand] crate. + +Documentation: +[master branch](https://rust-lang-nursery.github.io/rand/rand_core/index.html), +[by release](https://docs.rs/rand_core) + +[Changelog](CHANGELOG.md) + +[rand]: https://crates.io/crates/rand + + +## Functionality + +The `rand_core` crate provides: + +- base random number generator traits +- error-reporting types +- functionality to aid implementation of RNGs + +The traits and error types are also available via `rand`. + +## Crate Features + +`rand_core` supports `no_std` and `alloc`-only configurations, as well as full +`std` functionality. The differences between `no_std` and full `std` are small, +comprising `RngCore` support for `Box<R>` types where `R: RngCore`, as well as +extensions to the `Error` type's functionality. + +Due to [rust-lang/cargo#1596](https://github.com/rust-lang/cargo/issues/1596), +`rand_core` is built without `std` support by default. Since features are +unioned across the whole dependency tree, any crate using `rand` with its +default features will also enable `std` support in `rand_core`. + +The `serde1` feature can be used to derive `Serialize` and `Deserialize` for RNG +implementations that use the `BlockRng` or `BlockRng64` wrappers. + + +# License + +`rand_core` is distributed under the terms of both the MIT license and the +Apache License (Version 2.0). + +See [LICENSE-APACHE](LICENSE-APACHE) and [LICENSE-MIT](LICENSE-MIT) for details. diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/error.rs b/vendor/rand-8c5b0ac51d/rand_core/src/error.rs new file mode 100644 index 0000000..34cfbf8 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/src/error.rs @@ -0,0 +1,163 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Error types + +use core::fmt; + +#[cfg(feature="std")] +use std::error::Error as stdError; + +/// Error kind which can be matched over. +#[derive(PartialEq, Eq, Debug, Copy, Clone)] +pub enum ErrorKind { + /// Feature is not available; not recoverable. + /// + /// This is the most permanent failure type and implies the error cannot be + /// resolved simply by retrying (e.g. the feature may not exist in this + /// build of the application or on the current platform). + Unavailable, + /// General failure; there may be a chance of recovery on retry. + /// + /// This is the catch-all kind for errors from known and unknown sources + /// which do not have a more specific kind / handling method. + /// + /// It is suggested to retry a couple of times or retry later when + /// handling; some error sources may be able to resolve themselves, + /// although this is not likely. + Unexpected, + /// A transient failure which likely can be resolved or worked around. + /// + /// This error kind exists for a few specific cases where it is known that + /// the error likely can be resolved internally, but is reported anyway. + Transient, + /// Not ready yet: recommended to try again a little later. + /// + /// This error kind implies the generator needs more time or needs some + /// other part of the application to do something else first before it is + /// ready for use; for example this may be used by external generators + /// which require time for initialization. + NotReady, + #[doc(hidden)] + __Nonexhaustive, +} + +impl ErrorKind { + /// True if this kind of error may resolve itself on retry. + /// + /// See also `should_wait()`. + pub fn should_retry(self) -> bool { + self != ErrorKind::Unavailable + } + + /// True if we should retry but wait before retrying + /// + /// This implies `should_retry()` is true. + pub fn should_wait(self) -> bool { + self == ErrorKind::NotReady + } + + /// A description of this error kind + pub fn description(self) -> &'static str { + match self { + ErrorKind::Unavailable => "permanently unavailable", + ErrorKind::Unexpected => "unexpected failure", + ErrorKind::Transient => "transient failure", + ErrorKind::NotReady => "not ready yet", + ErrorKind::__Nonexhaustive => unreachable!(), + } + } +} + + +/// Error type of random number generators +/// +/// This is a relatively simple error type, designed for compatibility with and +/// without the Rust `std` library. It embeds a "kind" code, a message (static +/// string only), and an optional chained cause (`std` only). The `kind` and +/// `msg` fields can be accessed directly; cause can be accessed via +/// `std::error::Error::cause` or `Error::take_cause`. Construction can only be +/// done via `Error::new` or `Error::with_cause`. +#[derive(Debug)] +pub struct Error { + /// The error kind + pub kind: ErrorKind, + /// The error message + pub msg: &'static str, + #[cfg(feature="std")] + cause: Option<Box<stdError + Send + Sync>>, +} + +impl Error { + /// Create a new instance, with specified kind and a message. + pub fn new(kind: ErrorKind, msg: &'static str) -> Self { + #[cfg(feature="std")] { + Error { kind, msg, cause: None } + } + #[cfg(not(feature="std"))] { + Error { kind, msg } + } + } + + /// Create a new instance, with specified kind, message, and a + /// chained cause. + /// + /// Note: `stdError` is an alias for `std::error::Error`. + /// + /// If not targetting `std` (i.e. `no_std`), this function is replaced by + /// another with the same prototype, except that there are no bounds on the + /// type `E` (because both `Box` and `stdError` are unavailable), and the + /// `cause` is ignored. + #[cfg(feature="std")] + pub fn with_cause<E>(kind: ErrorKind, msg: &'static str, cause: E) -> Self + where E: Into<Box<stdError + Send + Sync>> + { + Error { kind, msg, cause: Some(cause.into()) } + } + + /// Create a new instance, with specified kind, message, and a + /// chained cause. + /// + /// In `no_std` mode the *cause* is ignored. + #[cfg(not(feature="std"))] + pub fn with_cause<E>(kind: ErrorKind, msg: &'static str, _cause: E) -> Self { + Error { kind, msg } + } + + /// Take the cause, if any. This allows the embedded cause to be extracted. + /// This uses `Option::take`, leaving `self` with no cause. + #[cfg(feature="std")] + pub fn take_cause(&mut self) -> Option<Box<stdError + Send + Sync>> { + self.cause.take() + } +} + +impl fmt::Display for Error { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + #[cfg(feature="std")] { + if let Some(ref cause) = self.cause { + return write!(f, "{} ({}); cause: {}", + self.msg, self.kind.description(), cause); + } + } + write!(f, "{} ({})", self.msg, self.kind.description()) + } +} + +#[cfg(feature="std")] +impl stdError for Error { + fn description(&self) -> &str { + self.msg + } + + fn cause(&self) -> Option<&stdError> { + self.cause.as_ref().map(|e| e.as_ref() as &stdError) + } +} diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/impls.rs b/vendor/rand-8c5b0ac51d/rand_core/src/impls.rs new file mode 100644 index 0000000..530a2ed --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/src/impls.rs @@ -0,0 +1,543 @@ +// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Helper functions for implementing `RngCore` functions. +//! +//! For cross-platform reproducibility, these functions all use Little Endian: +//! least-significant part first. For example, `next_u64_via_u32` takes `u32` +//! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32` +//! from `next_u64` in little-endian order, one should use `next_u64() as u32`. +//! +//! Byte-swapping (like the std `to_le` functions) is only needed to convert +//! to/from byte sequences, and since its purpose is reproducibility, +//! non-reproducible sources (e.g. `OsRng`) need not bother with it. + +use core::convert::AsRef; +use core::intrinsics::transmute; +use core::ptr::copy_nonoverlapping; +use core::{fmt, slice}; +use core::cmp::min; +use core::mem::size_of; +use {RngCore, BlockRngCore, CryptoRng, SeedableRng, Error}; + +#[cfg(feature="serde1")] use serde::{Serialize, Deserialize}; + +/// Implement `next_u64` via `next_u32`, little-endian order. +pub fn next_u64_via_u32<R: RngCore + ?Sized>(rng: &mut R) -> u64 { + // Use LE; we explicitly generate one value before the next. + let x = u64::from(rng.next_u32()); + let y = u64::from(rng.next_u32()); + (y << 32) | x +} + +/// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order. +/// +/// The fastest way to fill a slice is usually to work as long as possible with +/// integers. That is why this method mostly uses `next_u64`, and only when +/// there are 4 or less bytes remaining at the end of the slice it uses +/// `next_u32` once. +pub fn fill_bytes_via_next<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) { + let mut left = dest; + while left.len() >= 8 { + let (l, r) = {left}.split_at_mut(8); + left = r; + let chunk: [u8; 8] = unsafe { + transmute(rng.next_u64().to_le()) + }; + l.copy_from_slice(&chunk); + } + let n = left.len(); + if n > 4 { + let chunk: [u8; 8] = unsafe { + transmute(rng.next_u64().to_le()) + }; + left.copy_from_slice(&chunk[..n]); + } else if n > 0 { + let chunk: [u8; 4] = unsafe { + transmute(rng.next_u32().to_le()) + }; + left.copy_from_slice(&chunk[..n]); + } +} + +macro_rules! impl_uint_from_fill { + ($rng:expr, $ty:ty, $N:expr) => ({ + debug_assert!($N == size_of::<$ty>()); + + let mut int: $ty = 0; + unsafe { + let ptr = &mut int as *mut $ty as *mut u8; + let slice = slice::from_raw_parts_mut(ptr, $N); + $rng.fill_bytes(slice); + } + int + }); +} + +macro_rules! fill_via_chunks { + ($src:expr, $dst:expr, $ty:ty, $size:expr) => ({ + let chunk_size_u8 = min($src.len() * $size, $dst.len()); + let chunk_size = (chunk_size_u8 + $size - 1) / $size; + if cfg!(target_endian="little") { + unsafe { + copy_nonoverlapping( + $src.as_ptr() as *const u8, + $dst.as_mut_ptr(), + chunk_size_u8); + } + } else { + for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) { + let tmp = n.to_le(); + let src_ptr = &tmp as *const $ty as *const u8; + unsafe { + copy_nonoverlapping(src_ptr, + chunk.as_mut_ptr(), + chunk.len()); + } + } + } + + (chunk_size, chunk_size_u8) + }); +} + +/// Implement `fill_bytes` by reading chunks from the output buffer of a block +/// based RNG. +/// +/// The return values are `(consumed_u32, filled_u8)`. +/// +/// `filled_u8` is the number of filled bytes in `dest`, which may be less than +/// the length of `dest`. +/// `consumed_u32` is the number of words consumed from `src`, which is the same +/// as `filled_u8 / 4` rounded up. +/// +/// # Example +/// (from `IsaacRng`) +/// +/// ```rust,ignore +/// fn fill_bytes(&mut self, dest: &mut [u8]) { +/// let mut read_len = 0; +/// while read_len < dest.len() { +/// if self.index >= self.rsl.len() { +/// self.isaac(); +/// } +/// +/// let (consumed_u32, filled_u8) = +/// impls::fill_via_u32_chunks(&mut self.rsl[self.index..], +/// &mut dest[read_len..]); +/// +/// self.index += consumed_u32; +/// read_len += filled_u8; +/// } +/// } +/// ``` +pub fn fill_via_u32_chunks(src: &[u32], dest: &mut [u8]) -> (usize, usize) { + fill_via_chunks!(src, dest, u32, 4) +} + +/// Implement `fill_bytes` by reading chunks from the output buffer of a block +/// based RNG. +/// +/// The return values are `(consumed_u64, filled_u8)`. +/// `filled_u8` is the number of filled bytes in `dest`, which may be less than +/// the length of `dest`. +/// `consumed_u64` is the number of words consumed from `src`, which is the same +/// as `filled_u8 / 8` rounded up. +/// +/// See `fill_via_u32_chunks` for an example. +pub fn fill_via_u64_chunks(src: &[u64], dest: &mut [u8]) -> (usize, usize) { + fill_via_chunks!(src, dest, u64, 8) +} + +/// Implement `next_u32` via `fill_bytes`, little-endian order. +pub fn next_u32_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u32 { + impl_uint_from_fill!(rng, u32, 4) +} + +/// Implement `next_u64` via `fill_bytes`, little-endian order. +pub fn next_u64_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u64 { + impl_uint_from_fill!(rng, u64, 8) +} + +/// Wrapper around PRNGs that implement [`BlockRngCore`] to keep a results +/// buffer and offer the methods from [`RngCore`]. +/// +/// `BlockRng` has heavily optimized implementations of the [`RngCore`] methods +/// reading values from the results buffer, as well as +/// calling `BlockRngCore::generate` directly on the output array when +/// `fill_bytes` / `try_fill_bytes` is called on a large array. These methods +/// also handle the bookkeeping of when to generate a new batch of values. +/// No generated values are ever thown away. +/// +/// Currently `BlockRng` only implements `RngCore` for buffers which are slices +/// of `u32` elements; this may be extended to other types in the future. +/// +/// For easy initialization `BlockRng` also implements [`SeedableRng`]. +/// +/// [`BlockRngCore`]: ../BlockRngCore.t.html +/// [`RngCore`]: ../RngCore.t.html +/// [`SeedableRng`]: ../SeedableRng.t.html +#[derive(Clone)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct BlockRng<R: BlockRngCore + ?Sized> { + #[cfg_attr(feature="serde1", serde(bound( + serialize = "R::Results: Serialize", + deserialize = "R::Results: Deserialize<'de>")))] + results: R::Results, + index: usize, + core: R, +} + +// Custom Debug implementation that does not expose the contents of `results`. +impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng<R> { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt.debug_struct("BlockRng") + .field("core", &self.core) + .field("result_len", &self.results.as_ref().len()) + .field("index", &self.index) + .finish() + } +} + +impl<R: BlockRngCore> BlockRng<R> { + /// Create a new `BlockRng` from an existing RNG implementing + /// `BlockRngCore`. Results will be generated on first use. + pub fn new(core: R) -> BlockRng<R>{ + let results_empty = R::Results::default(); + BlockRng { + core, + index: results_empty.as_ref().len(), + results: results_empty, + } + } + + /// Return a reference the wrapped `BlockRngCore`. + pub fn inner(&self) -> &R { + &self.core + } + + /// Return a mutable reference the wrapped `BlockRngCore`. + pub fn inner_mut(&mut self) -> &mut R { + &mut self.core + } + + // Reset the number of available results. + // This will force a new set of results to be generated on next use. + pub fn reset(&mut self) { + self.index = self.results.as_ref().len(); + } +} + +impl<R: BlockRngCore<Item=u32>> RngCore for BlockRng<R> +where <R as BlockRngCore>::Results: AsRef<[u32]> +{ + #[inline(always)] + fn next_u32(&mut self) -> u32 { + if self.index >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + + let value = self.results.as_ref()[self.index]; + self.index += 1; + value + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + let read_u64 = |results: &[u32], index| { + if cfg!(any(target_arch = "x86", target_arch = "x86_64")) { + // requires little-endian CPU supporting unaligned reads: + unsafe { *(&results[index] as *const u32 as *const u64) } + } else { + let x = u64::from(results[index]); + let y = u64::from(results[index + 1]); + (y << 32) | x + } + }; + + let len = self.results.as_ref().len(); + + let index = self.index; + if index < len-1 { + self.index += 2; + // Read an u64 from the current index + read_u64(self.results.as_ref(), index) + } else if index >= len { + self.core.generate(&mut self.results); + self.index = 2; + read_u64(self.results.as_ref(), 0) + } else { + let x = u64::from(self.results.as_ref()[len-1]); + self.core.generate(&mut self.results); + self.index = 1; + let y = u64::from(self.results.as_ref()[0]); + (y << 32) | x + } + } + + // As an optimization we try to write directly into the output buffer. + // This is only enabled for little-endian platforms where unaligned writes + // are known to be safe and fast. + #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut filled = 0; + + // Continue filling from the current set of results + if self.index < self.results.as_ref().len() { + let (consumed_u32, filled_u8) = + fill_via_u32_chunks(&self.results.as_ref()[self.index..], + dest); + + self.index += consumed_u32; + filled += filled_u8; + } + + let len_remainder = + (dest.len() - filled) % (self.results.as_ref().len() * 4); + let end_direct = dest.len() - len_remainder; + + while filled < end_direct { + let dest_u32: &mut R::Results = unsafe { + &mut *(dest[filled..].as_mut_ptr() as + *mut <R as BlockRngCore>::Results) + }; + self.core.generate(dest_u32); + filled += self.results.as_ref().len() * 4; + } + self.index = self.results.as_ref().len(); + + if len_remainder > 0 { + self.core.generate(&mut self.results); + let (consumed_u32, _) = + fill_via_u32_chunks(self.results.as_ref(), + &mut dest[filled..]); + + self.index = consumed_u32; + } + } + + #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut read_len = 0; + while read_len < dest.len() { + if self.index >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + let (consumed_u32, filled_u8) = + fill_via_u32_chunks(&self.results.as_ref()[self.index..], + &mut dest[read_len..]); + + self.index += consumed_u32; + read_len += filled_u8; + } + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.fill_bytes(dest); + Ok(()) + } +} + +impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng<R> { + type Seed = R::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + Self::new(R::from_seed(seed)) + } + + fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { + Ok(Self::new(R::from_rng(rng)?)) + } +} + + + +/// Wrapper around PRNGs that implement [`BlockRngCore`] to keep a results +/// buffer and offer the methods from [`RngCore`]. +/// +/// This is similar to [`BlockRng`], but specialized for algorithms that operate +/// on `u64` values. +/// +/// [`BlockRngCore`]: ../BlockRngCore.t.html +/// [`RngCore`]: ../RngCore.t.html +/// [`BlockRng`]: struct.BlockRng.html +#[derive(Clone)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct BlockRng64<R: BlockRngCore + ?Sized> { + #[cfg_attr(feature="serde1", serde(bound( + serialize = "R::Results: Serialize", + deserialize = "R::Results: Deserialize<'de>")))] + results: R::Results, + index: usize, + half_used: bool, // true if only half of the previous result is used + core: R, +} + +// Custom Debug implementation that does not expose the contents of `results`. +impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng64<R> { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt.debug_struct("BlockRng64") + .field("core", &self.core) + .field("result_len", &self.results.as_ref().len()) + .field("index", &self.index) + .field("half_used", &self.half_used) + .finish() + } +} + +impl<R: BlockRngCore> BlockRng64<R> { + /// Create a new `BlockRng` from an existing RNG implementing + /// `BlockRngCore`. Results will be generated on first use. + pub fn new(core: R) -> BlockRng64<R>{ + let results_empty = R::Results::default(); + BlockRng64 { + core, + index: results_empty.as_ref().len(), + half_used: false, + results: results_empty, + } + } + + /// Return a mutable reference the wrapped `BlockRngCore`. + pub fn inner(&mut self) -> &mut R { + &mut self.core + } + + // Reset the number of available results. + // This will force a new set of results to be generated on next use. + pub fn reset(&mut self) { + self.index = self.results.as_ref().len(); + } +} + +impl<R: BlockRngCore<Item=u64>> RngCore for BlockRng64<R> +where <R as BlockRngCore>::Results: AsRef<[u64]> +{ + #[inline(always)] + fn next_u32(&mut self) -> u32 { + let mut index = self.index * 2 - self.half_used as usize; + if index >= self.results.as_ref().len() * 2 { + self.core.generate(&mut self.results); + self.index = 0; + // `self.half_used` is by definition `false` + self.half_used = false; + index = 0; + } + + self.half_used = !self.half_used; + self.index += self.half_used as usize; + + // Index as if this is a u32 slice. + unsafe { + let results = + &*(self.results.as_ref() as *const [u64] as *const [u32]); + if cfg!(target_endian = "little") { + *results.get_unchecked(index) + } else { + *results.get_unchecked(index ^ 1) + } + } + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + if self.index >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + + let value = self.results.as_ref()[self.index]; + self.index += 1; + self.half_used = false; + value + } + + // As an optimization we try to write directly into the output buffer. + // This is only enabled for little-endian platforms where unaligned writes + // are known to be safe and fast. + #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut filled = 0; + self.half_used = false; + + // Continue filling from the current set of results + if self.index < self.results.as_ref().len() { + let (consumed_u64, filled_u8) = + fill_via_u64_chunks(&self.results.as_ref()[self.index..], + dest); + + self.index += consumed_u64; + filled += filled_u8; + } + + let len_remainder = + (dest.len() - filled) % (self.results.as_ref().len() * 8); + let end_direct = dest.len() - len_remainder; + + while filled < end_direct { + let dest_u64: &mut R::Results = unsafe { + ::core::mem::transmute(dest[filled..].as_mut_ptr()) + }; + self.core.generate(dest_u64); + filled += self.results.as_ref().len() * 8; + } + self.index = self.results.as_ref().len(); + + if len_remainder > 0 { + self.core.generate(&mut self.results); + let (consumed_u64, _) = + fill_via_u64_chunks(&mut self.results.as_ref(), + &mut dest[filled..]); + + self.index = consumed_u64; + } + } + + #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut read_len = 0; + self.half_used = false; + while read_len < dest.len() { + if self.index as usize >= self.results.as_ref().len() { + self.core.generate(&mut self.results); + self.index = 0; + } + + let (consumed_u64, filled_u8) = + fill_via_u64_chunks(&self.results.as_ref()[self.index as usize..], + &mut dest[read_len..]); + + self.index += consumed_u64; + read_len += filled_u8; + } + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + Ok(self.fill_bytes(dest)) + } +} + +impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng64<R> { + type Seed = R::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + Self::new(R::from_seed(seed)) + } + + fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { + Ok(Self::new(R::from_rng(rng)?)) + } +} + +impl<R: BlockRngCore + CryptoRng> CryptoRng for BlockRng<R> {} + +// TODO: implement tests for the above diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/le.rs b/vendor/rand-8c5b0ac51d/rand_core/src/le.rs new file mode 100644 index 0000000..bcc560e --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/src/le.rs @@ -0,0 +1,70 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Little-Endian utilities +//! +//! Little-Endian order has been chosen for internal usage; this makes some +//! useful functions available. + +use core::ptr; + +macro_rules! read_slice { + ($src:expr, $dst:expr, $size:expr, $which:ident) => {{ + assert_eq!($src.len(), $size * $dst.len()); + + unsafe { + ptr::copy_nonoverlapping( + $src.as_ptr(), + $dst.as_mut_ptr() as *mut u8, + $src.len()); + } + for v in $dst.iter_mut() { + *v = v.$which(); + } + }}; +} + +/// Reads unsigned 32 bit integers from `src` into `dst`. +/// Borrowed from the `byteorder` crate. +#[inline] +pub fn read_u32_into(src: &[u8], dst: &mut [u32]) { + read_slice!(src, dst, 4, to_le); +} + +/// Reads unsigned 64 bit integers from `src` into `dst`. +/// Borrowed from the `byteorder` crate. +#[inline] +pub fn read_u64_into(src: &[u8], dst: &mut [u64]) { + read_slice!(src, dst, 8, to_le); +} + +#[test] +fn test_read() { + let bytes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; + + let mut buf = [0u32; 4]; + read_u32_into(&bytes, &mut buf); + assert_eq!(buf[0], 0x04030201); + assert_eq!(buf[3], 0x100F0E0D); + + let mut buf = [0u32; 3]; + read_u32_into(&bytes[1..13], &mut buf); // unaligned + assert_eq!(buf[0], 0x05040302); + assert_eq!(buf[2], 0x0D0C0B0A); + + let mut buf = [0u64; 2]; + read_u64_into(&bytes, &mut buf); + assert_eq!(buf[0], 0x0807060504030201); + assert_eq!(buf[1], 0x100F0E0D0C0B0A09); + + let mut buf = [0u64; 1]; + read_u64_into(&bytes[7..15], &mut buf); // unaligned + assert_eq!(buf[0], 0x0F0E0D0C0B0A0908); +} diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/lib.rs b/vendor/rand-8c5b0ac51d/rand_core/src/lib.rs new file mode 100644 index 0000000..74d4e59 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/rand_core/src/lib.rs @@ -0,0 +1,438 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Random number generation traits +//! +//! This crate is mainly of interest to crates publishing implementations of +//! [`RngCore`]. Other users are encouraged to use the [rand] crate instead +//! which re-exports the main traits and error types. +//! +//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number +//! generators and external random-number sources. +//! +//! [`SeedableRng`] is an extension trait for construction from fixed seeds and +//! other random number generators. +//! +//! [`Error`] is provided for error-handling. It is safe to use in `no_std` +//! environments. +//! +//! The [`impls`] and [`le`] sub-modules include a few small functions to assist +//! implementation of [`RngCore`]. +//! +//! [rand]: https://crates.io/crates/rand +//! [`RngCore`]: trait.RngCore.html +//! [`SeedableRng`]: trait.SeedableRng.html +//! [`Error`]: struct.Error.html +//! [`impls`]: impls/index.html +//! [`le`]: le/index.html + +#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", + html_favicon_url = "https://www.rust-lang.org/favicon.ico", + html_root_url = "https://docs.rs/rand_core/0.1.0")] + +#![deny(missing_debug_implementations)] + +#![cfg_attr(not(feature="std"), no_std)] +#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] + +#[cfg(feature="std")] extern crate core; +#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc; +#[cfg(feature="serde1")] extern crate serde; +#[cfg(feature="serde1")] #[macro_use] extern crate serde_derive; + + +use core::default::Default; +use core::convert::AsMut; + +#[cfg(all(feature="alloc", not(feature="std")))] use alloc::boxed::Box; + +pub use error::{ErrorKind, Error}; + + +mod error; +pub mod impls; +pub mod le; + + +/// The core of a random number generator. +/// +/// This trait encapsulates the low-level functionality common to all +/// generators, and is the "back end", to be implemented by generators. +/// End users should normally use [`Rng`] from the [rand] crate, which is +/// automatically implemented for every type implementing `RngCore`. +/// +/// Three different methods for generating random data are provided since the +/// optimal implementation of each is dependent on the type of generator. There +/// is no required relationship between the output of each; e.g. many +/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64` +/// values and drop any remaining unused bytes. +/// +/// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error +/// handling; it is not deemed sufficiently useful to add equivalents for +/// [`next_u32`] or [`next_u64`] since the latter methods are almost always used +/// with algorithmic generators (PRNGs), which are normally infallible. +/// +/// Algorithmic generators implementing [`SeedableRng`] should normally have +/// *portable, reproducible* output, i.e. fix Endianness when converting values +/// to avoid platform differences, and avoid making any changes which affect +/// output (except by communicating that the release has breaking changes). +/// +/// Typically implementators will implement only one of the methods available +/// in this trait directly, then use the helper functions from the +/// [`rand_core::impls`] module to implement the other methods. +/// +/// It is recommended that implementations also implement: +/// +/// - `Debug` with a custom implementation which *does not* print any internal +/// state (at least, [`CryptoRng`]s should not risk leaking state through +/// `Debug`). +/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde +/// support optional at the crate level in PRNG libs. +/// - `Clone`, if possible. +/// - *never* implement `Copy` (accidental copies may cause repeated values). +/// - *do not* implement `Default` for pseudorandom generators, but instead +/// implement [`SeedableRng`], to guide users towards proper seeding. +/// External / hardware RNGs can choose to implement `Default`. +/// - `Eq` and `PartialEq` could be implemented, but are probably not useful. +/// +/// # Example +/// +/// A simple example, obviously not generating very *random* output: +/// +/// ```rust +/// use rand_core::{RngCore, Error, impls}; +/// +/// struct CountingRng(u64); +/// +/// impl RngCore for CountingRng { +/// fn next_u32(&mut self) -> u32 { +/// self.next_u64() as u32 +/// } +/// +/// fn next_u64(&mut self) -> u64 { +/// self.0 += 1; +/// self.0 +/// } +/// +/// fn fill_bytes(&mut self, dest: &mut [u8]) { +/// impls::fill_bytes_via_next(self, dest) +/// } +/// +/// fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { +/// Ok(self.fill_bytes(dest)) +/// } +/// } +/// ``` +/// +/// [rand]: https://crates.io/crates/rand +/// [`Rng`]: ../rand/trait.Rng.html +/// [`SeedableRng`]: trait.SeedableRng.html +/// [`rand_core::impls`]: ../rand_core/impls/index.html +/// [`try_fill_bytes`]: trait.RngCore.html#tymethod.try_fill_bytes +/// [`fill_bytes`]: trait.RngCore.html#tymethod.fill_bytes +/// [`next_u32`]: trait.RngCore.html#tymethod.next_u32 +/// [`next_u64`]: trait.RngCore.html#tymethod.next_u64 +/// [`CryptoRng`]: trait.CryptoRng.html +pub trait RngCore { + /// Return the next random `u32`. + /// + /// RNGs must implement at least one method from this trait directly. In + /// the case this method is not implemented directly, it can be implemented + /// using `self.next_u64() as u32` or + /// [via `fill_bytes`](../rand_core/impls/fn.next_u32_via_fill.html). + fn next_u32(&mut self) -> u32; + + /// Return the next random `u64`. + /// + /// RNGs must implement at least one method from this trait directly. In + /// the case this method is not implemented directly, it can be implemented + /// [via `next_u32`](../rand_core/impls/fn.next_u64_via_u32.html) or + /// [via `fill_bytes`](../rand_core/impls/fn.next_u64_via_fill.html). + fn next_u64(&mut self) -> u64; + + /// Fill `dest` with random data. + /// + /// RNGs must implement at least one method from this trait directly. In + /// the case this method is not implemented directly, it can be implemented + /// [via `next_u*`](../rand_core/impls/fn.fill_bytes_via_next.html) or + /// via `try_fill_bytes`; if this generator can fail the implementation + /// must choose how best to handle errors here (e.g. panic with a + /// descriptive message or log a warning and retry a few times). + /// + /// This method should guarantee that `dest` is entirely filled + /// with new data, and may panic if this is impossible + /// (e.g. reading past the end of a file that is being used as the + /// source of randomness). + fn fill_bytes(&mut self, dest: &mut [u8]); + + /// Fill `dest` entirely with random data. + /// + /// This is the only method which allows an RNG to report errors while + /// generating random data thus making this the primary method implemented + /// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used + /// directly to generate keys and to seed (infallible) PRNGs. + /// + /// Other than error handling, this method is identical to [`fill_bytes`]; + /// thus this may be implemented using `Ok(self.fill_bytes(dest))` or + /// `fill_bytes` may be implemented with + /// `self.try_fill_bytes(dest).unwrap()` or more specific error handling. + /// + /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>; +} + +/// A trait for RNGs which do not generate random numbers individually, but in +/// blocks (typically `[u32; N]`). This technique is commonly used by +/// cryptographic RNGs to improve performance. +/// +/// Usage of this trait is optional, but provides two advantages: +/// implementations only need to concern themselves with generation of the +/// block, not the various [`RngCore`] methods (especially [`fill_bytes`], where the +/// optimal implementations are not trivial), and this allows `ReseedingRng` to +/// perform periodic reseeding with very low overhead. +/// +/// # Example +/// +/// ```norun +/// use rand_core::BlockRngCore; +/// use rand_core::impls::BlockRng; +/// +/// struct MyRngCore; +/// +/// impl BlockRngCore for MyRngCore { +/// type Results = [u32; 16]; +/// +/// fn generate(&mut self, results: &mut Self::Results) { +/// unimplemented!() +/// } +/// } +/// +/// impl SeedableRng for MyRngCore { +/// type Seed = unimplemented!(); +/// fn from_seed(seed: Self::Seed) -> Self { +/// unimplemented!() +/// } +/// } +/// +/// // optionally, also implement CryptoRng for MyRngCore +/// +/// // Final RNG. +/// type MyRng = BlockRng<u32, MyRngCore>; +/// ``` +/// +/// [`RngCore`]: trait.RngCore.html +/// [`fill_bytes`]: trait.RngCore.html#tymethod.fill_bytes +pub trait BlockRngCore { + /// Results element type, e.g. `u32`. + type Item; + + /// Results type. This is the 'block' an RNG implementing `BlockRngCore` + /// generates, which will usually be an array like `[u32; 16]`. + type Results: AsRef<[Self::Item]> + Default; + + /// Generate a new block of results. + fn generate(&mut self, results: &mut Self::Results); +} + +/// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`] +/// implementation is supposed to be cryptographically secure. +/// +/// *Cryptographically secure generators*, also known as *CSPRNGs*, should +/// satisfy an additional properties over other generators: given the first +/// *k* bits of an algorithm's output +/// sequence, it should not be possible using polynomial-time algorithms to +/// predict the next bit with probability significantly greater than 50%. +/// +/// Some generators may satisfy an additional property, however this is not +/// required by this trait: if the CSPRNG's state is revealed, it should not be +/// computationally-feasible to reconstruct output prior to this. Some other +/// generators allow backwards-computation and are consided *reversible*. +/// +/// Note that this trait is provided for guidance only and cannot guarantee +/// suitability for cryptographic applications. In general it should only be +/// implemented for well-reviewed code implementing well-regarded algorithms. +/// +/// Note also that use of a `CryptoRng` does not protect against other +/// weaknesses such as seeding from a weak entropy source or leaking state. +/// +/// [`RngCore`]: trait.RngCore.html +/// [`BlockRngCore`]: trait.BlockRngCore.html +pub trait CryptoRng {} + +/// A random number generator that can be explicitly seeded. +/// +/// This trait encapsulates the low-level functionality common to all +/// pseudo-random number generators (PRNGs, or algorithmic generators). +/// +/// The [`rand::FromEntropy`] trait is automatically implemented for every type +/// implementing `SeedableRng`, providing a convenient `from_entropy()` +/// constructor. +/// +/// [`rand::FromEntropy`]: ../rand/trait.FromEntropy.html +pub trait SeedableRng: Sized { + /// Seed type, which is restricted to types mutably-dereferencable as `u8` + /// arrays (we recommend `[u8; N]` for some `N`). + /// + /// It is recommended to seed PRNGs with a seed of at least circa 100 bits, + /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with + /// partially overlapping periods. + /// + /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`. + /// + /// + /// # Implementing `SeedableRng` for RNGs with large seeds + /// + /// Note that the required traits `core::default::Default` and + /// `core::convert::AsMut<u8>` are not implemented for large arrays + /// `[u8; N]` with `N` > 32. To be able to implement the traits required by + /// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be + /// used: + /// + /// ``` + /// use rand_core::SeedableRng; + /// + /// const N: usize = 64; + /// pub struct MyRngSeed(pub [u8; N]); + /// pub struct MyRng(MyRngSeed); + /// + /// impl Default for MyRngSeed { + /// fn default() -> MyRngSeed { + /// MyRngSeed([0; N]) + /// } + /// } + /// + /// impl AsMut<[u8]> for MyRngSeed { + /// fn as_mut(&mut self) -> &mut [u8] { + /// &mut self.0 + /// } + /// } + /// + /// impl SeedableRng for MyRng { + /// type Seed = MyRngSeed; + /// + /// fn from_seed(seed: MyRngSeed) -> MyRng { + /// MyRng(seed) + /// } + /// } + /// ``` + type Seed: Sized + Default + AsMut<[u8]>; + + /// Create a new PRNG using the given seed. + /// + /// PRNG implementations are allowed to assume that bits in the seed are + /// well distributed. That means usually that the number of one and zero + /// bits are about equal, and values like 0, 1 and (size - 1) are unlikely. + /// + /// PRNG implementations are recommended to be reproducible. A PRNG seeded + /// using this function with a fixed seed should produce the same sequence + /// of output in the future and on different architectures (with for example + /// different endianness). + /// + /// It is however not required that this function yield the same state as a + /// reference implementation of the PRNG given equivalent seed; if necessary + /// another constructor replicating behaviour from a reference + /// implementation can be added. + /// + /// PRNG implementations should make sure `from_seed` never panics. In the + /// case that some special values (like an all zero seed) are not viable + /// seeds it is preferable to map these to alternative constant value(s), + /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad + /// seed"). This is assuming only a small number of values must be rejected. + fn from_seed(seed: Self::Seed) -> Self; + + /// Create a new PRNG seeded from another `Rng`. + /// + /// This is the recommended way to initialize PRNGs with fresh entropy. The + /// [`FromEntropy`] trait provides a convenient `from_entropy` method + /// based on `from_rng`. + /// + /// Usage of this method is not recommended when reproducibility is required + /// since implementing PRNGs are not required to fix Endianness and are + /// allowed to modify implementations in new releases. + /// + /// It is important to use a good source of randomness to initialize the + /// PRNG. Cryptographic PRNG may be rendered insecure when seeded from a + /// non-cryptographic PRNG or with insufficient entropy. + /// Many non-cryptographic PRNGs will show statistical bias in their first + /// results if their seed numbers are small or if there is a simple pattern + /// between them. + /// + /// Prefer to seed from a strong external entropy source like [`OsRng`] or + /// from a cryptographic PRNG; if creating a new generator for cryptographic + /// uses you *must* seed from a strong source. + /// + /// Seeding a small PRNG from another small PRNG is possible, but + /// something to be careful with. An extreme example of how this can go + /// wrong is seeding an Xorshift RNG from another Xorshift RNG, which + /// will effectively clone the generator. In general seeding from a + /// generator which is hard to predict is probably okay. + /// + /// PRNG implementations are allowed to assume that a good RNG is provided + /// for seeding, and that it is cryptographically secure when appropriate. + /// + /// [`FromEntropy`]: ../rand/trait.FromEntropy.html + /// [`OsRng`]: ../rand/os/struct.OsRng.html + fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { + let mut seed = Self::Seed::default(); + rng.try_fill_bytes(seed.as_mut())?; + Ok(Self::from_seed(seed)) + } +} + +// Implement `RngCore` for references to an `RngCore`. +// Force inlining all functions, so that it is up to the `RngCore` +// implementation and the optimizer to decide on inlining. +impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + (**self).next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + (**self).next_u64() + } + + #[inline(always)] + fn fill_bytes(&mut self, dest: &mut [u8]) { + (**self).fill_bytes(dest) + } + + #[inline(always)] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + (**self).try_fill_bytes(dest) + } +} + +// Implement `RngCore` for boxed references to an `RngCore`. +// Force inlining all functions, so that it is up to the `RngCore` +// implementation and the optimizer to decide on inlining. +#[cfg(feature="alloc")] +impl<R: RngCore + ?Sized> RngCore for Box<R> { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + (**self).next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + (**self).next_u64() + } + + #[inline(always)] + fn fill_bytes(&mut self, dest: &mut [u8]) { + (**self).fill_bytes(dest) + } + + #[inline(always)] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + (**self).try_fill_bytes(dest) + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/binomial.rs b/vendor/rand-8c5b0ac51d/src/distributions/binomial.rs new file mode 100644 index 0000000..8a03e1d --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/binomial.rs @@ -0,0 +1,172 @@ +// Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The binomial distribution. + +use Rng; +use distributions::Distribution; +use distributions::log_gamma::log_gamma; +use std::f64::consts::PI; + +/// The binomial distribution `Binomial(n, p)`. +/// +/// This distribution has density function: +/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Binomial, Distribution}; +/// +/// let bin = Binomial::new(20, 0.3); +/// let v = bin.sample(&mut rand::thread_rng()); +/// println!("{} is from a binomial distribution", v); +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct Binomial { + n: u64, // number of trials + p: f64, // probability of success +} + +impl Binomial { + /// Construct a new `Binomial` with the given shape parameters + /// `n`, `p`. Panics if `p <= 0` or `p >= 1`. + pub fn new(n: u64, p: f64) -> Binomial { + assert!(p > 0.0, "Binomial::new called with p <= 0"); + assert!(p < 1.0, "Binomial::new called with p >= 1"); + Binomial { n, p } + } +} + +impl Distribution<u64> for Binomial { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { + // binomial distribution is symmetrical with respect to p -> 1-p, k -> n-k + // switch p so that it is less than 0.5 - this allows for lower expected values + // we will just invert the result at the end + let p = if self.p <= 0.5 { + self.p + } else { + 1.0 - self.p + }; + + // expected value of the sample + let expected = self.n as f64 * p; + + let result = + // for low expected values we just simulate n drawings + if expected < 25.0 { + let mut lresult = 0.0; + for _ in 0 .. self.n { + if rng.gen_bool(p) { + lresult += 1.0; + } + } + lresult + } + // high expected value - do the rejection method + else { + // prepare some cached values + let float_n = self.n as f64; + let ln_fact_n = log_gamma(float_n + 1.0); + let pc = 1.0 - p; + let log_p = p.ln(); + let log_pc = pc.ln(); + let sq = (expected * (2.0 * pc)).sqrt(); + + let mut lresult; + + loop { + let mut comp_dev: f64; + // we use the lorentzian distribution as the comparison distribution + // f(x) ~ 1/(1+x/^2) + loop { + // draw from the lorentzian distribution + comp_dev = (PI*rng.gen::<f64>()).tan(); + // shift the peak of the comparison ditribution + lresult = expected + sq * comp_dev; + // repeat the drawing until we are in the range of possible values + if lresult >= 0.0 && lresult < float_n + 1.0 { + break; + } + } + + // the result should be discrete + lresult = lresult.floor(); + + let log_binomial_dist = ln_fact_n - log_gamma(lresult+1.0) - + log_gamma(float_n - lresult + 1.0) + lresult*log_p + (float_n - lresult)*log_pc; + // this is the binomial probability divided by the comparison probability + // we will generate a uniform random value and if it is larger than this, + // we interpret it as a value falling out of the distribution and repeat + let comparison_coeff = (log_binomial_dist.exp() * sq) * (1.2 * (1.0 + comp_dev*comp_dev)); + + if comparison_coeff >= rng.gen() { + break; + } + } + + lresult + }; + + // invert the result for p < 0.5 + if p != self.p { + self.n - result as u64 + } else { + result as u64 + } + } +} + +#[cfg(test)] +mod test { + use Rng; + use distributions::Distribution; + use super::Binomial; + + fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) { + let binomial = Binomial::new(n, p); + + let expected_mean = n as f64 * p; + let expected_variance = n as f64 * p * (1.0 - p); + + let mut results = [0.0; 1000]; + for i in results.iter_mut() { *i = binomial.sample(rng) as f64; } + + let mean = results.iter().sum::<f64>() / results.len() as f64; + assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0); + + let variance = + results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() + / results.len() as f64; + assert!((variance - expected_variance).abs() < expected_variance / 10.0); + } + + #[test] + fn test_binomial() { + let mut rng = ::test::rng(123); + test_binomial_mean_and_variance(150, 0.1, &mut rng); + test_binomial_mean_and_variance(70, 0.6, &mut rng); + test_binomial_mean_and_variance(40, 0.5, &mut rng); + test_binomial_mean_and_variance(20, 0.7, &mut rng); + test_binomial_mean_and_variance(20, 0.5, &mut rng); + } + + #[test] + #[should_panic] + fn test_binomial_invalid_lambda_zero() { + Binomial::new(20, 0.0); + } + + #[test] + #[should_panic] + fn test_binomial_invalid_lambda_neg() { + Binomial::new(20, -10.0); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/exponential.rs b/vendor/rand-8c5b0ac51d/src/distributions/exponential.rs new file mode 100644 index 0000000..915e02a --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/exponential.rs @@ -0,0 +1,122 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The exponential distribution. + +use {Rng}; +use distributions::{ziggurat, ziggurat_tables, Distribution}; + +/// Samples floating-point numbers according to the exponential distribution, +/// with rate parameter `λ = 1`. This is equivalent to `Exp::new(1.0)` or +/// sampling with `-rng.gen::<f64>().ln()`, but faster. +/// +/// See `Exp` for the general exponential distribution. +/// +/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. The +/// exact description in the paper was adjusted to use tables for the +/// exponential distribution rather than normal. +/// +/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to +/// Generate Normal Random +/// Samples*](https://www.doornik.com/research/ziggurat.pdf). Nuffield +/// College, Oxford +/// +/// # Example +/// ```rust +/// use rand::{FromEntropy, SmallRng, Rng}; +/// use rand::distributions::Exp1; +/// +/// let val: f64 = SmallRng::from_entropy().sample(Exp1); +/// println!("{}", val); +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct Exp1; + +// This could be done via `-rng.gen::<f64>().ln()` but that is slower. +impl Distribution<f64> for Exp1 { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + #[inline] + fn pdf(x: f64) -> f64 { + (-x).exp() + } + #[inline] + fn zero_case<R: Rng + ?Sized>(rng: &mut R, _u: f64) -> f64 { + ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln() + } + + ziggurat(rng, false, + &ziggurat_tables::ZIG_EXP_X, + &ziggurat_tables::ZIG_EXP_F, + pdf, zero_case) + } +} + +/// The exponential distribution `Exp(lambda)`. +/// +/// This distribution has density function: `f(x) = lambda * +/// exp(-lambda * x)` for `x > 0`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Exp, Distribution}; +/// +/// let exp = Exp::new(2.0); +/// let v = exp.sample(&mut rand::thread_rng()); +/// println!("{} is from a Exp(2) distribution", v); +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct Exp { + /// `lambda` stored as `1/lambda`, since this is what we scale by. + lambda_inverse: f64 +} + +impl Exp { + /// Construct a new `Exp` with the given shape parameter + /// `lambda`. Panics if `lambda <= 0`. + #[inline] + pub fn new(lambda: f64) -> Exp { + assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0"); + Exp { lambda_inverse: 1.0 / lambda } + } +} + +impl Distribution<f64> for Exp { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let n: f64 = rng.sample(Exp1); + n * self.lambda_inverse + } +} + +#[cfg(test)] +mod test { + use distributions::Distribution; + use super::Exp; + + #[test] + fn test_exp() { + let exp = Exp::new(10.0); + let mut rng = ::test::rng(221); + for _ in 0..1000 { + assert!(exp.sample(&mut rng) >= 0.0); + } + } + #[test] + #[should_panic] + fn test_exp_invalid_lambda_zero() { + Exp::new(0.0); + } + #[test] + #[should_panic] + fn test_exp_invalid_lambda_neg() { + Exp::new(-10.0); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/float.rs b/vendor/rand-8c5b0ac51d/src/distributions/float.rs new file mode 100644 index 0000000..b1b7685 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/float.rs @@ -0,0 +1,89 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Basic floating-point number distributions + +use core::mem; +use Rng; +use distributions::{Distribution, Standard}; + +pub(crate) trait IntoFloat { + type F; + + /// Helper method to combine the fraction and a contant exponent into a + /// float. + /// + /// Only the least significant bits of `self` may be set, 23 for `f32` and + /// 52 for `f64`. + /// The resulting value will fall in a range that depends on the exponent. + /// As an example the range with exponent 0 will be + /// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2). + fn into_float_with_exponent(self, exponent: i32) -> Self::F; +} + +macro_rules! float_impls { + ($ty:ty, $uty:ty, $fraction_bits:expr, $exponent_bias:expr, + $next_u:ident) => { + impl IntoFloat for $uty { + type F = $ty; + #[inline(always)] + fn into_float_with_exponent(self, exponent: i32) -> $ty { + // The exponent is encoded using an offset-binary representation + let exponent_bits = + (($exponent_bias + exponent) as $uty) << $fraction_bits; + unsafe { mem::transmute(self | exponent_bits) } + } + } + + impl Distribution<$ty> for Standard { + /// Generate a floating point number in the open interval `(0, 1)` + /// (not including either endpoint) with a uniform distribution. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { + const EPSILON: $ty = 1.0 / (1u64 << $fraction_bits) as $ty; + let float_size = mem::size_of::<$ty>() * 8; + + let value = rng.$next_u(); + let fraction = value >> (float_size - $fraction_bits); + fraction.into_float_with_exponent(0) - (1.0 - EPSILON / 2.0) + } + } + } +} +float_impls! { f32, u32, 23, 127, next_u32 } +float_impls! { f64, u64, 52, 1023, next_u64 } + + +#[cfg(test)] +mod tests { + use Rng; + use mock::StepRng; + + const EPSILON32: f32 = ::core::f32::EPSILON; + const EPSILON64: f64 = ::core::f64::EPSILON; + + #[test] + fn floating_point_edge_cases() { + let mut zeros = StepRng::new(0, 0); + assert_eq!(zeros.gen::<f32>(), 0.0 + EPSILON32 / 2.0); + assert_eq!(zeros.gen::<f64>(), 0.0 + EPSILON64 / 2.0); + + let mut one = StepRng::new(1 << 9, 0); + let one32 = one.gen::<f32>(); + assert!(EPSILON32 < one32 && one32 < EPSILON32 * 2.0); + + let mut one = StepRng::new(1 << 12, 0); + let one64 = one.gen::<f64>(); + assert!(EPSILON64 < one64 && one64 < EPSILON64 * 2.0); + + let mut max = StepRng::new(!0, 0); + assert_eq!(max.gen::<f32>(), 1.0 - EPSILON32 / 2.0); + assert_eq!(max.gen::<f64>(), 1.0 - EPSILON64 / 2.0); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/gamma.rs b/vendor/rand-8c5b0ac51d/src/distributions/gamma.rs new file mode 100644 index 0000000..4d68e57 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/gamma.rs @@ -0,0 +1,360 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Gamma and derived distributions. + +use self::GammaRepr::*; +use self::ChiSquaredRepr::*; + +use Rng; +use distributions::normal::StandardNormal; +use distributions::{Distribution, Exp}; + +/// The Gamma distribution `Gamma(shape, scale)` distribution. +/// +/// The density function of this distribution is +/// +/// ```text +/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k) +/// ``` +/// +/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the +/// scale and both `k` and `θ` are strictly positive. +/// +/// The algorithm used is that described by Marsaglia & Tsang 2000[1], +/// falling back to directly sampling from an Exponential for `shape +/// == 1`, and using the boosting technique described in [1] for +/// `shape < 1`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Distribution, Gamma}; +/// +/// let gamma = Gamma::new(2.0, 5.0); +/// let v = gamma.sample(&mut rand::thread_rng()); +/// println!("{} is from a Gamma(2, 5) distribution", v); +/// ``` +/// +/// [1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method +/// for Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3 +/// (September 2000), +/// 363-372. DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414) +#[derive(Clone, Copy, Debug)] +pub struct Gamma { + repr: GammaRepr, +} + +#[derive(Clone, Copy, Debug)] +enum GammaRepr { + Large(GammaLargeShape), + One(Exp), + Small(GammaSmallShape) +} + +// These two helpers could be made public, but saving the +// match-on-Gamma-enum branch from using them directly (e.g. if one +// knows that the shape is always > 1) doesn't appear to be much +// faster. + +/// Gamma distribution where the shape parameter is less than 1. +/// +/// Note, samples from this require a compulsory floating-point `pow` +/// call, which makes it significantly slower than sampling from a +/// gamma distribution where the shape parameter is greater than or +/// equal to 1. +/// +/// See `Gamma` for sampling from a Gamma distribution with general +/// shape parameters. +#[derive(Clone, Copy, Debug)] +struct GammaSmallShape { + inv_shape: f64, + large_shape: GammaLargeShape +} + +/// Gamma distribution where the shape parameter is larger than 1. +/// +/// See `Gamma` for sampling from a Gamma distribution with general +/// shape parameters. +#[derive(Clone, Copy, Debug)] +struct GammaLargeShape { + scale: f64, + c: f64, + d: f64 +} + +impl Gamma { + /// Construct an object representing the `Gamma(shape, scale)` + /// distribution. + /// + /// Panics if `shape <= 0` or `scale <= 0`. + #[inline] + pub fn new(shape: f64, scale: f64) -> Gamma { + assert!(shape > 0.0, "Gamma::new called with shape <= 0"); + assert!(scale > 0.0, "Gamma::new called with scale <= 0"); + + let repr = if shape == 1.0 { + One(Exp::new(1.0 / scale)) + } else if shape < 1.0 { + Small(GammaSmallShape::new_raw(shape, scale)) + } else { + Large(GammaLargeShape::new_raw(shape, scale)) + }; + Gamma { repr } + } +} + +impl GammaSmallShape { + fn new_raw(shape: f64, scale: f64) -> GammaSmallShape { + GammaSmallShape { + inv_shape: 1. / shape, + large_shape: GammaLargeShape::new_raw(shape + 1.0, scale) + } + } +} + +impl GammaLargeShape { + fn new_raw(shape: f64, scale: f64) -> GammaLargeShape { + let d = shape - 1. / 3.; + GammaLargeShape { + scale, + c: 1. / (9. * d).sqrt(), + d + } + } +} + +impl Distribution<f64> for Gamma { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + match self.repr { + Small(ref g) => g.sample(rng), + One(ref g) => g.sample(rng), + Large(ref g) => g.sample(rng), + } + } +} +impl Distribution<f64> for GammaSmallShape { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let u: f64 = rng.gen(); + + self.large_shape.sample(rng) * u.powf(self.inv_shape) + } +} +impl Distribution<f64> for GammaLargeShape { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + loop { + let x = rng.sample(StandardNormal); + let v_cbrt = 1.0 + self.c * x; + if v_cbrt <= 0.0 { // a^3 <= 0 iff a <= 0 + continue + } + + let v = v_cbrt * v_cbrt * v_cbrt; + let u: f64 = rng.gen(); + + let x_sqr = x * x; + if u < 1.0 - 0.0331 * x_sqr * x_sqr || + u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) { + return self.d * v * self.scale + } + } + } +} + +/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of +/// freedom. +/// +/// For `k > 0` integral, this distribution is the sum of the squares +/// of `k` independent standard normal random variables. For other +/// `k`, this uses the equivalent characterisation +/// `χ²(k) = Gamma(k/2, 2)`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{ChiSquared, Distribution}; +/// +/// let chi = ChiSquared::new(11.0); +/// let v = chi.sample(&mut rand::thread_rng()); +/// println!("{} is from a χ²(11) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct ChiSquared { + repr: ChiSquaredRepr, +} + +#[derive(Clone, Copy, Debug)] +enum ChiSquaredRepr { + // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1, + // e.g. when alpha = 1/2 as it would be for this case, so special- + // casing and using the definition of N(0,1)^2 is faster. + DoFExactlyOne, + DoFAnythingElse(Gamma), +} + +impl ChiSquared { + /// Create a new chi-squared distribution with degrees-of-freedom + /// `k`. Panics if `k < 0`. + pub fn new(k: f64) -> ChiSquared { + let repr = if k == 1.0 { + DoFExactlyOne + } else { + assert!(k > 0.0, "ChiSquared::new called with `k` < 0"); + DoFAnythingElse(Gamma::new(0.5 * k, 2.0)) + }; + ChiSquared { repr } + } +} +impl Distribution<f64> for ChiSquared { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + match self.repr { + DoFExactlyOne => { + // k == 1 => N(0,1)^2 + let norm = rng.sample(StandardNormal); + norm * norm + } + DoFAnythingElse(ref g) => g.sample(rng) + } + } +} + +/// The Fisher F distribution `F(m, n)`. +/// +/// This distribution is equivalent to the ratio of two normalised +/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) / +/// (χ²(n)/n)`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{FisherF, Distribution}; +/// +/// let f = FisherF::new(2.0, 32.0); +/// let v = f.sample(&mut rand::thread_rng()); +/// println!("{} is from an F(2, 32) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct FisherF { + numer: ChiSquared, + denom: ChiSquared, + // denom_dof / numer_dof so that this can just be a straight + // multiplication, rather than a division. + dof_ratio: f64, +} + +impl FisherF { + /// Create a new `FisherF` distribution, with the given + /// parameter. Panics if either `m` or `n` are not positive. + pub fn new(m: f64, n: f64) -> FisherF { + assert!(m > 0.0, "FisherF::new called with `m < 0`"); + assert!(n > 0.0, "FisherF::new called with `n < 0`"); + + FisherF { + numer: ChiSquared::new(m), + denom: ChiSquared::new(n), + dof_ratio: n / m + } + } +} +impl Distribution<f64> for FisherF { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio + } +} + +/// The Student t distribution, `t(nu)`, where `nu` is the degrees of +/// freedom. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{StudentT, Distribution}; +/// +/// let t = StudentT::new(11.0); +/// let v = t.sample(&mut rand::thread_rng()); +/// println!("{} is from a t(11) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct StudentT { + chi: ChiSquared, + dof: f64 +} + +impl StudentT { + /// Create a new Student t distribution with `n` degrees of + /// freedom. Panics if `n <= 0`. + pub fn new(n: f64) -> StudentT { + assert!(n > 0.0, "StudentT::new called with `n <= 0`"); + StudentT { + chi: ChiSquared::new(n), + dof: n + } + } +} +impl Distribution<f64> for StudentT { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let norm = rng.sample(StandardNormal); + norm * (self.dof / self.chi.sample(rng)).sqrt() + } +} + +#[cfg(test)] +mod test { + use distributions::Distribution; + use super::{ChiSquared, StudentT, FisherF}; + + #[test] + fn test_chi_squared_one() { + let chi = ChiSquared::new(1.0); + let mut rng = ::test::rng(201); + for _ in 0..1000 { + chi.sample(&mut rng); + } + } + #[test] + fn test_chi_squared_small() { + let chi = ChiSquared::new(0.5); + let mut rng = ::test::rng(202); + for _ in 0..1000 { + chi.sample(&mut rng); + } + } + #[test] + fn test_chi_squared_large() { + let chi = ChiSquared::new(30.0); + let mut rng = ::test::rng(203); + for _ in 0..1000 { + chi.sample(&mut rng); + } + } + #[test] + #[should_panic] + fn test_chi_squared_invalid_dof() { + ChiSquared::new(-1.0); + } + + #[test] + fn test_f() { + let f = FisherF::new(2.0, 32.0); + let mut rng = ::test::rng(204); + for _ in 0..1000 { + f.sample(&mut rng); + } + } + + #[test] + fn test_t() { + let t = StudentT::new(11.0); + let mut rng = ::test::rng(205); + for _ in 0..1000 { + t.sample(&mut rng); + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/integer.rs b/vendor/rand-8c5b0ac51d/src/distributions/integer.rs new file mode 100644 index 0000000..04bf166 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/integer.rs @@ -0,0 +1,138 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The implementations of the `Standard` distribution for integer types. + +use {Rng}; +use distributions::{Distribution, Standard}; + +impl Distribution<isize> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> isize { + rng.gen::<usize>() as isize + } +} + +impl Distribution<i8> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i8 { + rng.next_u32() as i8 + } +} + +impl Distribution<i16> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i16 { + rng.next_u32() as i16 + } +} + +impl Distribution<i32> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i32 { + rng.next_u32() as i32 + } +} + +impl Distribution<i64> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i64 { + rng.next_u64() as i64 + } +} + +#[cfg(feature = "i128_support")] +impl Distribution<i128> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i128 { + rng.gen::<u128>() as i128 + } +} + +impl Distribution<usize> for Standard { + #[inline] + #[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { + rng.next_u32() as usize + } + + #[inline] + #[cfg(target_pointer_width = "64")] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { + rng.next_u64() as usize + } +} + +impl Distribution<u8> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 { + rng.next_u32() as u8 + } +} + +impl Distribution<u16> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u16 { + rng.next_u32() as u16 + } +} + +impl Distribution<u32> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u32 { + rng.next_u32() + } +} + +impl Distribution<u64> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { + rng.next_u64() + } +} + +#[cfg(feature = "i128_support")] +impl Distribution<u128> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u128 { + // Use LE; we explicitly generate one value before the next. + let x = rng.next_u64() as u128; + let y = rng.next_u64() as u128; + (y << 64) | x + } +} + + +#[cfg(test)] +mod tests { + use Rng; + use distributions::{Standard}; + + #[test] + fn test_integers() { + let mut rng = ::test::rng(806); + + rng.sample::<isize, _>(Standard); + rng.sample::<i8, _>(Standard); + rng.sample::<i16, _>(Standard); + rng.sample::<i32, _>(Standard); + rng.sample::<i64, _>(Standard); + #[cfg(feature = "i128_support")] + rng.sample::<i128, _>(Standard); + + rng.sample::<usize, _>(Standard); + rng.sample::<u8, _>(Standard); + rng.sample::<u16, _>(Standard); + rng.sample::<u32, _>(Standard); + rng.sample::<u64, _>(Standard); + #[cfg(feature = "i128_support")] + rng.sample::<u128, _>(Standard); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/log_gamma.rs b/vendor/rand-8c5b0ac51d/src/distributions/log_gamma.rs new file mode 100644 index 0000000..f1fa383 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/log_gamma.rs @@ -0,0 +1,51 @@ +// Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +/// Calculates ln(gamma(x)) (natural logarithm of the gamma +/// function) using the Lanczos approximation. +/// +/// The approximation expresses the gamma function as: +/// `gamma(z+1) = sqrt(2*pi)*(z+g+0.5)^(z+0.5)*exp(-z-g-0.5)*Ag(z)` +/// `g` is an arbitrary constant; we use the approximation with `g=5`. +/// +/// Noting that `gamma(z+1) = z*gamma(z)` and applying `ln` to both sides: +/// `ln(gamma(z)) = (z+0.5)*ln(z+g+0.5)-(z+g+0.5) + ln(sqrt(2*pi)*Ag(z)/z)` +/// +/// `Ag(z)` is an infinite series with coefficients that can be calculated +/// ahead of time - we use just the first 6 terms, which is good enough +/// for most purposes. +pub fn log_gamma(x: f64) -> f64 { + // precalculated 6 coefficients for the first 6 terms of the series + let coefficients: [f64; 6] = [ + 76.18009172947146, + -86.50532032941677, + 24.01409824083091, + -1.231739572450155, + 0.1208650973866179e-2, + -0.5395239384953e-5, + ]; + + // (x+0.5)*ln(x+g+0.5)-(x+g+0.5) + let tmp = x + 5.5; + let log = (x + 0.5) * tmp.ln() - tmp; + + // the first few terms of the series for Ag(x) + let mut a = 1.000000000190015; + let mut denom = x; + for coeff in &coefficients { + denom += 1.0; + a += coeff / denom; + } + + // get everything together + // a is Ag(x) + // 2.5066... is sqrt(2pi) + log + (2.5066282746310005 * a / x).ln() +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/mod.rs b/vendor/rand-8c5b0ac51d/src/distributions/mod.rs new file mode 100644 index 0000000..e036229 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/mod.rs @@ -0,0 +1,643 @@ +// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Sampling from random distributions. +//! +//! Distributions are stateless (i.e. immutable) objects controlling the +//! production of values of some type `T` from a presumed uniform randomness +//! source. These objects may have internal parameters set at contruction time +//! (e.g. [`Uniform`], which has configurable bounds) or may have no internal +//! parameters (e.g. [`Standard`]). +//! +//! All distributions support the [`Distribution`] trait, and support usage +//! via `distr.sample(&mut rng)` as well as via `rng.sample(distr)`. +//! +//! [`Distribution`]: trait.Distribution.html +//! [`Uniform`]: uniform/struct.Uniform.html +//! [`Standard`]: struct.Standard.html + +use Rng; + +pub use self::other::Alphanumeric; +pub use self::uniform::Uniform; +#[deprecated(since="0.5.0", note="use Uniform instead")] +pub use self::uniform::Uniform as Range; +#[cfg(feature="std")] +pub use self::gamma::{Gamma, ChiSquared, FisherF, StudentT}; +#[cfg(feature="std")] +pub use self::normal::{Normal, LogNormal, StandardNormal}; +#[cfg(feature="std")] +pub use self::exponential::{Exp, Exp1}; +#[cfg(feature = "std")] +pub use self::poisson::Poisson; +#[cfg(feature = "std")] +pub use self::binomial::Binomial; + +pub mod uniform; +#[cfg(feature="std")] +pub mod gamma; +#[cfg(feature="std")] +pub mod normal; +#[cfg(feature="std")] +pub mod exponential; +#[cfg(feature = "std")] +pub mod poisson; +#[cfg(feature = "std")] +pub mod binomial; + +mod float; +mod integer; +#[cfg(feature="std")] +mod log_gamma; +mod other; +#[cfg(feature="std")] +mod ziggurat_tables; +#[cfg(feature="std")] +use distributions::float::IntoFloat; + +/// Types that can be used to create a random instance of `Support`. +#[deprecated(since="0.5.0", note="use Distribution instead")] +pub trait Sample<Support> { + /// Generate a random value of `Support`, using `rng` as the + /// source of randomness. + fn sample<R: Rng>(&mut self, rng: &mut R) -> Support; +} + +/// `Sample`s that do not require keeping track of state. +/// +/// Since no state is recorded, each sample is (statistically) +/// independent of all others, assuming the `Rng` used has this +/// property. +#[allow(deprecated)] +#[deprecated(since="0.5.0", note="use Distribution instead")] +pub trait IndependentSample<Support>: Sample<Support> { + /// Generate a random value. + fn ind_sample<R: Rng>(&self, &mut R) -> Support; +} + +/// DEPRECATED: Use `distributions::uniform` instead. +#[deprecated(since="0.5.0", note="use uniform instead")] +pub mod range { + pub use distributions::uniform::Uniform as Range; + pub use distributions::uniform::SampleUniform as SampleRange; +} + +#[allow(deprecated)] +mod impls { + use Rng; + use distributions::{Distribution, Sample, IndependentSample, + WeightedChoice}; + #[cfg(feature="std")] + use distributions::exponential::Exp; + #[cfg(feature="std")] + use distributions::gamma::{Gamma, ChiSquared, FisherF, StudentT}; + #[cfg(feature="std")] + use distributions::normal::{Normal, LogNormal}; + use distributions::range::{Range, SampleRange}; + + impl<'a, T: Clone> Sample<T> for WeightedChoice<'a, T> { + fn sample<R: Rng>(&mut self, rng: &mut R) -> T { + Distribution::sample(self, rng) + } + } + impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { + Distribution::sample(self, rng) + } + } + + impl<T: SampleRange> Sample<T> for Range<T> { + fn sample<R: Rng>(&mut self, rng: &mut R) -> T { + Distribution::sample(self, rng) + } + } + impl<T: SampleRange> IndependentSample<T> for Range<T> { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { + Distribution::sample(self, rng) + } + } + + #[cfg(feature="std")] + macro_rules! impl_f64 { + ($($name: ident), *) => { + $( + impl Sample<f64> for $name { + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { + Distribution::sample(self, rng) + } + } + impl IndependentSample<f64> for $name { + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { + Distribution::sample(self, rng) + } + } + )* + } + } + #[cfg(feature="std")] + impl_f64!(Exp, Gamma, ChiSquared, FisherF, StudentT, Normal, LogNormal); +} + +/// Types (distributions) that can be used to create a random instance of `T`. +/// +/// All implementations are expected to be immutable; this has the significant +/// advantage of not needing to consider thread safety, and for most +/// distributions efficient state-less sampling algorithms are available. +pub trait Distribution<T> { + /// Generate a random value of `T`, using `rng` as the source of randomness. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; + + /// Create an iterator that generates random values of `T`, using `rng` as + /// the source of randomness. + /// + /// # Example + /// + /// ```rust + /// use rand::thread_rng; + /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; + /// + /// let mut rng = thread_rng(); + /// + /// // Vec of 16 x f32: + /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect(); + /// + /// // String: + /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect(); + /// + /// // Dice-rolling: + /// let die_range = Uniform::new_inclusive(1, 6); + /// let mut roll_die = die_range.sample_iter(&mut rng); + /// while roll_die.next().unwrap() != 6 { + /// println!("Not a 6; rolling again!"); + /// } + /// ``` + fn sample_iter<'a, R: Rng>(&'a self, rng: &'a mut R) + -> DistIter<'a, Self, R, T> where Self: Sized + { + DistIter { + distr: self, + rng: rng, + phantom: ::core::marker::PhantomData, + } + } +} + +/// An iterator that generates random values of `T` with distribution `D`, +/// using `R` as the source of randomness. +/// +/// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. +/// See its documentation for more. +/// +/// [`Distribution`]: trait.Distribution.html +/// [`sample_iter`]: trait.Distribution.html#method.sample_iter +#[derive(Debug)] +pub struct DistIter<'a, D, R, T> where D: Distribution<T> + 'a, R: Rng + 'a { + distr: &'a D, + rng: &'a mut R, + phantom: ::core::marker::PhantomData<T>, +} + +impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T> + where D: Distribution<T>, R: Rng + 'a +{ + type Item = T; + + #[inline(always)] + fn next(&mut self) -> Option<T> { + Some(self.distr.sample(self.rng)) + } +} + +impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { + (*self).sample(rng) + } +} + +/// A generic random value distribution. Generates values for various types +/// with numerically uniform distribution. +/// +/// For floating-point numbers, this generates values from the open range +/// `(0, 1)` (i.e. excluding 0.0 and 1.0). +/// +/// ## Built-in Implementations +/// +/// This crate implements the distribution `Standard` for various primitive +/// types. Assuming the provided `Rng` is well-behaved, these implementations +/// generate values with the following ranges and distributions: +/// +/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed +/// over all values of the type. +/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all +/// code points in the range `0...0x10_FFFF`, except for the range +/// `0xD800...0xDFFF` (the surrogate code points). This includes +/// unassigned/reserved code points. +/// * `bool`: Generates `false` or `true`, each with probability 0.5. +/// * Floating point types (`f32` and `f64`): Uniformly distributed in the +/// open range `(0, 1)`. +/// +/// The following aggregate types also implement the distribution `Standard` as +/// long as their component types implement it: +/// +/// * Tuples and arrays: Each element of the tuple or array is generated +/// independently, using the `Standard` distribution recursively. +/// * `Option<T>`: Returns `None` with probability 0.5; otherwise generates a +/// random `T` and returns `Some(T)`. +/// +/// # Example +/// ```rust +/// use rand::{FromEntropy, SmallRng, Rng}; +/// use rand::distributions::Standard; +/// +/// let val: f32 = SmallRng::from_entropy().sample(Standard); +/// println!("f32 from (0,1): {}", val); +/// ``` +/// +/// With dynamic dispatch (type erasure of `Rng`): +/// +/// ```rust +/// use rand::{thread_rng, Rng, RngCore}; +/// use rand::distributions::Standard; +/// +/// let mut rng = thread_rng(); +/// let erased_rng: &mut RngCore = &mut rng; +/// let val: f32 = erased_rng.sample(Standard); +/// println!("f32 from (0, 1): {}", val); +/// ``` +/// +/// # Open interval for floats +/// In theory it is possible to choose between an open interval `(0, 1)`, and +/// the half-open intervals `[0, 1)` and `(0, 1]`. All can give a distribution +/// with perfectly uniform intervals. Many libraries in other programming +/// languages default to the closed-open interval `[0, 1)`. We choose here to go +/// with *open*, with the arguments: +/// +/// - The chance to generate a specific value, like exactly 0.0, is *tiny*. No +/// (or almost no) sensible code relies on an exact floating-point value to be +/// generated with a very small chance (1 in 2<sup>23</sup> (approx. 8 +/// million) for `f32`, and 1 in 2<sup>52</sup> for `f64`). What is relied on +/// is having a uniform distribution and a mean of `0.5`. +/// - Several common algorithms rely on never seeing the value `0.0` generated, +/// i.e. they rely on an open interval. For example when the logarithm of the +/// value is taken, or used as a devisor. +/// +/// In other words, the guarantee some value *could* be generated is less useful +/// than the guarantee some value (`0.0`) is never generated. That makes an open +/// interval a nicer choice. +/// +/// Consider using `Rng::gen_range` if you really need a half-open interval (as +/// the ranges use a half-open interval). It has the same performance. Example: +/// +/// ``` +/// use rand::{thread_rng, Rng}; +/// +/// let mut rng = thread_rng(); +/// let val = rng.gen_range(0.0f32, 1.0); +/// println!("f32 from [0, 1): {}", val); +/// ``` +/// +/// [`Exp1`]: struct.Exp1.html +/// [`StandardNormal`]: struct.StandardNormal.html +#[derive(Debug)] +pub struct Standard; + +#[allow(deprecated)] +impl<T> ::Rand for T where Standard: Distribution<T> { + fn rand<R: Rng>(rng: &mut R) -> Self { + Standard.sample(rng) + } +} + + +/// A value with a particular weight for use with `WeightedChoice`. +#[derive(Copy, Clone, Debug)] +pub struct Weighted<T> { + /// The numerical weight of this item + pub weight: u32, + /// The actual item which is being weighted + pub item: T, +} + +/// A distribution that selects from a finite collection of weighted items. +/// +/// Each item has an associated weight that influences how likely it +/// is to be chosen: higher weight is more likely. +/// +/// The `Clone` restriction is a limitation of the `Distribution` trait. +/// Note that `&T` is (cheaply) `Clone` for all `T`, as is `u32`, so one can +/// store references or indices into another vector. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Weighted, WeightedChoice, Distribution}; +/// +/// let mut items = vec!(Weighted { weight: 2, item: 'a' }, +/// Weighted { weight: 4, item: 'b' }, +/// Weighted { weight: 1, item: 'c' }); +/// let wc = WeightedChoice::new(&mut items); +/// let mut rng = rand::thread_rng(); +/// for _ in 0..16 { +/// // on average prints 'a' 4 times, 'b' 8 and 'c' twice. +/// println!("{}", wc.sample(&mut rng)); +/// } +/// ``` +#[derive(Debug)] +pub struct WeightedChoice<'a, T:'a> { + items: &'a mut [Weighted<T>], + weight_range: Uniform<u32>, +} + +impl<'a, T: Clone> WeightedChoice<'a, T> { + /// Create a new `WeightedChoice`. + /// + /// Panics if: + /// + /// - `items` is empty + /// - the total weight is 0 + /// - the total weight is larger than a `u32` can contain. + pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> { + // strictly speaking, this is subsumed by the total weight == 0 case + assert!(!items.is_empty(), "WeightedChoice::new called with no items"); + + let mut running_total: u32 = 0; + + // we convert the list from individual weights to cumulative + // weights so we can binary search. This *could* drop elements + // with weight == 0 as an optimisation. + for item in items.iter_mut() { + running_total = match running_total.checked_add(item.weight) { + Some(n) => n, + None => panic!("WeightedChoice::new called with a total weight \ + larger than a u32 can contain") + }; + + item.weight = running_total; + } + assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0"); + + WeightedChoice { + items, + // we're likely to be generating numbers in this range + // relatively often, so might as well cache it + weight_range: Uniform::new(0, running_total) + } + } +} + +impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { + // we want to find the first element that has cumulative + // weight > sample_weight, which we do by binary since the + // cumulative weights of self.items are sorted. + + // choose a weight in [0, total_weight) + let sample_weight = self.weight_range.sample(rng); + + // short circuit when it's the first item + if sample_weight < self.items[0].weight { + return self.items[0].item.clone(); + } + + let mut idx = 0; + let mut modifier = self.items.len(); + + // now we know that every possibility has an element to the + // left, so we can just search for the last element that has + // cumulative weight <= sample_weight, then the next one will + // be "it". (Note that this greatest element will never be the + // last element of the vector, since sample_weight is chosen + // in [0, total_weight) and the cumulative weight of the last + // one is exactly the total weight.) + while modifier > 1 { + let i = idx + modifier / 2; + if self.items[i].weight <= sample_weight { + // we're small, so look to the right, but allow this + // exact element still. + idx = i; + // we need the `/ 2` to round up otherwise we'll drop + // the trailing elements when `modifier` is odd. + modifier += 1; + } else { + // otherwise we're too big, so go left. (i.e. do + // nothing) + } + modifier /= 2; + } + self.items[idx + 1].item.clone() + } +} + +/// Sample a random number using the Ziggurat method (specifically the +/// ZIGNOR variant from Doornik 2005). Most of the arguments are +/// directly from the paper: +/// +/// * `rng`: source of randomness +/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0. +/// * `X`: the $x_i$ abscissae. +/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$) +/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$ +/// * `pdf`: the probability density function +/// * `zero_case`: manual sampling from the tail when we chose the +/// bottom box (i.e. i == 0) + +// the perf improvement (25-50%) is definitely worth the extra code +// size from force-inlining. +#[cfg(feature="std")] +#[inline(always)] +fn ziggurat<R: Rng + ?Sized, P, Z>( + rng: &mut R, + symmetric: bool, + x_tab: ziggurat_tables::ZigTable, + f_tab: ziggurat_tables::ZigTable, + mut pdf: P, + mut zero_case: Z) + -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 { + loop { + // As an optimisation we re-implement the conversion to a f64. + // From the remaining 12 most significant bits we use 8 to construct `i`. + // This saves us generating a whole extra random number, while the added + // precision of using 64 bits for f64 does not buy us much. + let bits = rng.next_u64(); + let i = bits as usize & 0xff; + + let u = if symmetric { + // Convert to a value in the range [2,4) and substract to get [-1,1) + // We can't convert to an open range directly, that would require + // substracting `3.0 - EPSILON`, which is not representable. + // It is possible with an extra step, but an open range does not + // seem neccesary for the ziggurat algorithm anyway. + (bits >> 12).into_float_with_exponent(1) - 3.0 + } else { + // Convert to a value in the range [1,2) and substract to get (0,1) + (bits >> 12).into_float_with_exponent(0) + - (1.0 - ::core::f64::EPSILON / 2.0) + }; + let x = u * x_tab[i]; + + let test_x = if symmetric { x.abs() } else {x}; + + // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i]) + if test_x < x_tab[i + 1] { + return x; + } + if i == 0 { + return zero_case(rng, u); + } + // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1 + if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) { + return x; + } + } +} + +#[cfg(test)] +mod tests { + use Rng; + use mock::StepRng; + use super::{WeightedChoice, Weighted, Distribution}; + + #[test] + fn test_weighted_choice() { + // this makes assumptions about the internal implementation of + // WeightedChoice. It may fail when the implementation in + // `distributions::uniform::UniformInt` changes. + + macro_rules! t { + ($items:expr, $expected:expr) => {{ + let mut items = $items; + let mut total_weight = 0; + for item in &items { total_weight += item.weight; } + + let wc = WeightedChoice::new(&mut items); + let expected = $expected; + + // Use extremely large steps between the random numbers, because + // we test with small ranges and `UniformInt` is designed to prefer + // the most significant bits. + let mut rng = StepRng::new(0, !0 / (total_weight as u64)); + + for &val in expected.iter() { + assert_eq!(wc.sample(&mut rng), val) + } + }} + } + + t!([Weighted { weight: 1, item: 10}], [10]); + + // skip some + t!([Weighted { weight: 0, item: 20}, + Weighted { weight: 2, item: 21}, + Weighted { weight: 0, item: 22}, + Weighted { weight: 1, item: 23}], + [21, 21, 23]); + + // different weights + t!([Weighted { weight: 4, item: 30}, + Weighted { weight: 3, item: 31}], + [30, 31, 30, 31, 30, 31, 30]); + + // check that we're binary searching + // correctly with some vectors of odd + // length. + t!([Weighted { weight: 1, item: 40}, + Weighted { weight: 1, item: 41}, + Weighted { weight: 1, item: 42}, + Weighted { weight: 1, item: 43}, + Weighted { weight: 1, item: 44}], + [40, 41, 42, 43, 44]); + t!([Weighted { weight: 1, item: 50}, + Weighted { weight: 1, item: 51}, + Weighted { weight: 1, item: 52}, + Weighted { weight: 1, item: 53}, + Weighted { weight: 1, item: 54}, + Weighted { weight: 1, item: 55}, + Weighted { weight: 1, item: 56}], + [50, 54, 51, 55, 52, 56, 53]); + } + + #[test] + fn test_weighted_clone_initialization() { + let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; + let clone = initial.clone(); + assert_eq!(initial.weight, clone.weight); + assert_eq!(initial.item, clone.item); + } + + #[test] #[should_panic] + fn test_weighted_clone_change_weight() { + let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; + let mut clone = initial.clone(); + clone.weight = 5; + assert_eq!(initial.weight, clone.weight); + } + + #[test] #[should_panic] + fn test_weighted_clone_change_item() { + let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; + let mut clone = initial.clone(); + clone.item = 5; + assert_eq!(initial.item, clone.item); + + } + + #[test] #[should_panic] + fn test_weighted_choice_no_items() { + WeightedChoice::<isize>::new(&mut []); + } + #[test] #[should_panic] + fn test_weighted_choice_zero_weight() { + WeightedChoice::new(&mut [Weighted { weight: 0, item: 0}, + Weighted { weight: 0, item: 1}]); + } + #[test] #[should_panic] + fn test_weighted_choice_weight_overflows() { + let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow + WeightedChoice::new(&mut [Weighted { weight: x, item: 0 }, + Weighted { weight: 1, item: 1 }, + Weighted { weight: x, item: 2 }, + Weighted { weight: 1, item: 3 }]); + } + + #[test] #[allow(deprecated)] + fn test_backwards_compat_sample() { + use distributions::{Sample, IndependentSample}; + + struct Constant<T> { val: T } + impl<T: Copy> Sample<T> for Constant<T> { + fn sample<R: Rng>(&mut self, _: &mut R) -> T { self.val } + } + impl<T: Copy> IndependentSample<T> for Constant<T> { + fn ind_sample<R: Rng>(&self, _: &mut R) -> T { self.val } + } + + let mut sampler = Constant{ val: 293 }; + assert_eq!(sampler.sample(&mut ::test::rng(233)), 293); + assert_eq!(sampler.ind_sample(&mut ::test::rng(234)), 293); + } + + #[cfg(feature="std")] + #[test] #[allow(deprecated)] + fn test_backwards_compat_exp() { + use distributions::{IndependentSample, Exp}; + let sampler = Exp::new(1.0); + sampler.ind_sample(&mut ::test::rng(235)); + } + + #[cfg(feature="std")] + #[test] + fn test_distributions_iter() { + use distributions::Normal; + let mut rng = ::test::rng(210); + let distr = Normal::new(10.0, 10.0); + let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect(); + println!("{:?}", results); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/normal.rs b/vendor/rand-8c5b0ac51d/src/distributions/normal.rs new file mode 100644 index 0000000..a1adafb --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/normal.rs @@ -0,0 +1,192 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The normal and derived distributions. + +use Rng; +use distributions::{ziggurat, ziggurat_tables, Distribution}; + +/// Samples floating-point numbers according to the normal distribution +/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to +/// `Normal::new(0.0, 1.0)` but faster. +/// +/// See `Normal` for the general normal distribution. +/// +/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. +/// +/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to +/// Generate Normal Random +/// Samples*](https://www.doornik.com/research/ziggurat.pdf). Nuffield +/// College, Oxford +/// +/// # Example +/// ```rust +/// use rand::{FromEntropy, SmallRng, Rng}; +/// use rand::distributions::StandardNormal; +/// +/// let val: f64 = SmallRng::from_entropy().sample(StandardNormal); +/// println!("{}", val); +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct StandardNormal; + +impl Distribution<f64> for StandardNormal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + #[inline] + fn pdf(x: f64) -> f64 { + (-x*x/2.0).exp() + } + #[inline] + fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 { + // compute a random number in the tail by hand + + // strange initial conditions, because the loop is not + // do-while, so the condition should be true on the first + // run, they get overwritten anyway (0 < 1, so these are + // good). + let mut x = 1.0f64; + let mut y = 0.0f64; + + while -2.0 * y < x * x { + let x_: f64 = rng.gen(); + let y_: f64 = rng.gen(); + + x = x_.ln() / ziggurat_tables::ZIG_NORM_R; + y = y_.ln(); + } + + if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x } + } + + ziggurat(rng, true, // this is symmetric + &ziggurat_tables::ZIG_NORM_X, + &ziggurat_tables::ZIG_NORM_F, + pdf, zero_case) + } +} + +/// The normal distribution `N(mean, std_dev**2)`. +/// +/// This uses the ZIGNOR variant of the Ziggurat method, see +/// `StandardNormal` for more details. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Normal, Distribution}; +/// +/// // mean 2, standard deviation 3 +/// let normal = Normal::new(2.0, 3.0); +/// let v = normal.sample(&mut rand::thread_rng()); +/// println!("{} is from a N(2, 9) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct Normal { + mean: f64, + std_dev: f64, +} + +impl Normal { + /// Construct a new `Normal` distribution with the given mean and + /// standard deviation. + /// + /// # Panics + /// + /// Panics if `std_dev < 0`. + #[inline] + pub fn new(mean: f64, std_dev: f64) -> Normal { + assert!(std_dev >= 0.0, "Normal::new called with `std_dev` < 0"); + Normal { + mean, + std_dev + } + } +} +impl Distribution<f64> for Normal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let n = rng.sample(StandardNormal); + self.mean + self.std_dev * n + } +} + + +/// The log-normal distribution `ln N(mean, std_dev**2)`. +/// +/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, +/// std_dev**2)` distributed. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{LogNormal, Distribution}; +/// +/// // mean 2, standard deviation 3 +/// let log_normal = LogNormal::new(2.0, 3.0); +/// let v = log_normal.sample(&mut rand::thread_rng()); +/// println!("{} is from an ln N(2, 9) distribution", v) +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct LogNormal { + norm: Normal +} + +impl LogNormal { + /// Construct a new `LogNormal` distribution with the given mean + /// and standard deviation. + /// + /// # Panics + /// + /// Panics if `std_dev < 0`. + #[inline] + pub fn new(mean: f64, std_dev: f64) -> LogNormal { + assert!(std_dev >= 0.0, "LogNormal::new called with `std_dev` < 0"); + LogNormal { norm: Normal::new(mean, std_dev) } + } +} +impl Distribution<f64> for LogNormal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + self.norm.sample(rng).exp() + } +} + +#[cfg(test)] +mod tests { + use distributions::Distribution; + use super::{Normal, LogNormal}; + + #[test] + fn test_normal() { + let norm = Normal::new(10.0, 10.0); + let mut rng = ::test::rng(210); + for _ in 0..1000 { + norm.sample(&mut rng); + } + } + #[test] + #[should_panic] + fn test_normal_invalid_sd() { + Normal::new(10.0, -1.0); + } + + + #[test] + fn test_log_normal() { + let lnorm = LogNormal::new(10.0, 10.0); + let mut rng = ::test::rng(211); + for _ in 0..1000 { + lnorm.sample(&mut rng); + } + } + #[test] + #[should_panic] + fn test_log_normal_invalid_sd() { + LogNormal::new(10.0, -1.0); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/other.rs b/vendor/rand-8c5b0ac51d/src/distributions/other.rs new file mode 100644 index 0000000..1f74341 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/other.rs @@ -0,0 +1,207 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The implementations of the `Standard` distribution for other built-in types. + +use core::char; + +use {Rng}; +use distributions::{Distribution, Standard, Uniform}; + +// ----- Sampling distributions ----- + +/// Sample a `char`, uniformly distributed over ASCII letters and numbers: +/// a-z, A-Z and 0-9. +/// +/// # Example +/// +/// ```rust +/// use std::iter; +/// use rand::{Rng, thread_rng}; +/// use rand::distributions::Alphanumeric; +/// +/// let mut rng = thread_rng(); +/// let chars: String = iter::repeat(()) +/// .map(|()| rng.sample(Alphanumeric)) +/// .take(7) +/// .collect(); +/// println!("Random chars: {}", chars); +/// ``` +#[derive(Debug)] +pub struct Alphanumeric; + + +// ----- Implementations of distributions ----- + +impl Distribution<char> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char { + let range = Uniform::new(0u32, 0x11_0000); + loop { + match char::from_u32(range.sample(rng)) { + Some(c) => return c, + // About 0.2% of numbers in the range 0..0x110000 are invalid + // codepoints (surrogates). + None => {} + } + } + } +} + +impl Distribution<char> for Alphanumeric { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char { + const RANGE: u32 = 26 + 26 + 10; + const GEN_ASCII_STR_CHARSET: &[u8] = + b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ + abcdefghijklmnopqrstuvwxyz\ + 0123456789"; + // We can pick from 62 characters. This is so close to a power of 2, 64, + // that we can do better than `Uniform`. Use a simple bitshift and + // rejection sampling. We do not use a bitmask, because for small RNGs + // the most significant bits are usually of higher quality. + loop { + let var = rng.next_u32() >> (32 - 6); + if var < RANGE { + return GEN_ASCII_STR_CHARSET[var as usize] as char + } + } + } +} + +impl Distribution<bool> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { + // We can compare against an arbitrary bit of an u32 to get a bool. + // Because the least significant bits of a lower quality RNG can have + // simple patterns, we compare against the most significant bit. This is + // easiest done using a sign test. + (rng.next_u32() as i32) < 0 + } +} + +macro_rules! tuple_impl { + // use variables to indicate the arity of the tuple + ($($tyvar:ident),* ) => { + // the trailing commas are for the 1 tuple + impl< $( $tyvar ),* > + Distribution<( $( $tyvar ),* , )> + for Standard + where $( Standard: Distribution<$tyvar> ),* + { + #[inline] + fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) { + ( + // use the $tyvar's to get the appropriate number of + // repeats (they're not actually needed) + $( + _rng.gen::<$tyvar>() + ),* + , + ) + } + } + } +} + +impl Distribution<()> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () { () } +} +tuple_impl!{A} +tuple_impl!{A, B} +tuple_impl!{A, B, C} +tuple_impl!{A, B, C, D} +tuple_impl!{A, B, C, D, E} +tuple_impl!{A, B, C, D, E, F} +tuple_impl!{A, B, C, D, E, F, G} +tuple_impl!{A, B, C, D, E, F, G, H} +tuple_impl!{A, B, C, D, E, F, G, H, I} +tuple_impl!{A, B, C, D, E, F, G, H, I, J} +tuple_impl!{A, B, C, D, E, F, G, H, I, J, K} +tuple_impl!{A, B, C, D, E, F, G, H, I, J, K, L} + +macro_rules! array_impl { + // recursive, given at least one type parameter: + {$n:expr, $t:ident, $($ts:ident,)*} => { + array_impl!{($n - 1), $($ts,)*} + + impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> { + #[inline] + fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { + [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*] + } + } + }; + // empty case: + {$n:expr,} => { + impl<T> Distribution<[T; $n]> for Standard { + fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] } + } + }; +} + +array_impl!{32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,} + +impl<T> Distribution<Option<T>> for Standard where Standard: Distribution<T> { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> { + // UFCS is needed here: https://github.com/rust-lang/rust/issues/24066 + if rng.gen::<bool>() { + Some(rng.gen()) + } else { + None + } + } +} + + +#[cfg(test)] +mod tests { + use {Rng, RngCore, Standard}; + use distributions::Alphanumeric; + #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::String; + + #[test] + fn test_misc() { + let rng: &mut RngCore = &mut ::test::rng(820); + + rng.sample::<char, _>(Standard); + rng.sample::<bool, _>(Standard); + } + + #[cfg(feature="alloc")] + #[test] + fn test_chars() { + use core::iter; + let mut rng = ::test::rng(805); + + // Test by generating a relatively large number of chars, so we also + // take the rejection sampling path. + let word: String = iter::repeat(()) + .map(|()| rng.gen::<char>()).take(1000).collect(); + assert!(word.len() != 0); + } + + #[test] + fn test_alphanumeric() { + let mut rng = ::test::rng(806); + + // Test by generating a relatively large number of chars, so we also + // take the rejection sampling path. + let mut incorrect = false; + for _ in 0..100 { + let c = rng.sample(Alphanumeric); + incorrect |= !((c >= '0' && c <= '9') || + (c >= 'A' && c <= 'Z') || + (c >= 'a' && c <= 'z') ); + } + assert!(incorrect == false); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/poisson.rs b/vendor/rand-8c5b0ac51d/src/distributions/poisson.rs new file mode 100644 index 0000000..d1fa901 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/poisson.rs @@ -0,0 +1,157 @@ +// Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Poisson distribution. + +use Rng; +use distributions::Distribution; +use distributions::log_gamma::log_gamma; +use std::f64::consts::PI; + +/// The Poisson distribution `Poisson(lambda)`. +/// +/// This distribution has a density function: +/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Poisson, Distribution}; +/// +/// let poi = Poisson::new(2.0); +/// let v = poi.sample(&mut rand::thread_rng()); +/// println!("{} is from a Poisson(2) distribution", v); +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct Poisson { + lambda: f64, + // precalculated values + exp_lambda: f64, + log_lambda: f64, + sqrt_2lambda: f64, + magic_val: f64, +} + +impl Poisson { + /// Construct a new `Poisson` with the given shape parameter + /// `lambda`. Panics if `lambda <= 0`. + pub fn new(lambda: f64) -> Poisson { + assert!(lambda > 0.0, "Poisson::new called with lambda <= 0"); + let log_lambda = lambda.ln(); + Poisson { + lambda, + exp_lambda: (-lambda).exp(), + log_lambda, + sqrt_2lambda: (2.0 * lambda).sqrt(), + magic_val: lambda * log_lambda - log_gamma(1.0 + lambda), + } + } +} + +impl Distribution<u64> for Poisson { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { + // using the algorithm from Numerical Recipes in C + + // for low expected values use the Knuth method + if self.lambda < 12.0 { + let mut result = 0; + let mut p = 1.0; + while p > self.exp_lambda { + p *= rng.gen::<f64>(); + result += 1; + } + result - 1 + } + // high expected values - rejection method + else { + let mut int_result: u64; + + loop { + let mut result; + let mut comp_dev; + + // we use the lorentzian distribution as the comparison distribution + // f(x) ~ 1/(1+x/^2) + loop { + // draw from the lorentzian distribution + comp_dev = (PI * rng.gen::<f64>()).tan(); + // shift the peak of the comparison ditribution + result = self.sqrt_2lambda * comp_dev + self.lambda; + // repeat the drawing until we are in the range of possible values + if result >= 0.0 { + break; + } + } + // now the result is a random variable greater than 0 with Lorentzian distribution + // the result should be an integer value + result = result.floor(); + int_result = result as u64; + + // this is the ratio of the Poisson distribution to the comparison distribution + // the magic value scales the distribution function to a range of approximately 0-1 + // since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1 + // this doesn't change the resulting distribution, only increases the rate of failed drawings + let check = 0.9 * (1.0 + comp_dev * comp_dev) + * (result * self.log_lambda - log_gamma(1.0 + result) - self.magic_val).exp(); + + // check with uniform random value - if below the threshold, we are within the target distribution + if rng.gen::<f64>() <= check { + break; + } + } + int_result + } + } +} + +#[cfg(test)] +mod test { + use distributions::Distribution; + use super::Poisson; + + #[test] + fn test_poisson_10() { + let poisson = Poisson::new(10.0); + let mut rng = ::test::rng(123); + let mut sum = 0; + for _ in 0..1000 { + sum += poisson.sample(&mut rng); + } + let avg = (sum as f64) / 1000.0; + println!("Poisson average: {}", avg); + assert!((avg - 10.0).abs() < 0.5); // not 100% certain, but probable enough + } + + #[test] + fn test_poisson_15() { + // Take the 'high expected values' path + let poisson = Poisson::new(15.0); + let mut rng = ::test::rng(123); + let mut sum = 0; + for _ in 0..1000 { + sum += poisson.sample(&mut rng); + } + let avg = (sum as f64) / 1000.0; + println!("Poisson average: {}", avg); + assert!((avg - 15.0).abs() < 0.5); // not 100% certain, but probable enough + } + + #[test] + #[should_panic] + fn test_poisson_invalid_lambda_zero() { + Poisson::new(0.0); + } + + #[test] + #[should_panic] + fn test_poisson_invalid_lambda_neg() { + Poisson::new(-10.0); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/uniform.rs b/vendor/rand-8c5b0ac51d/src/distributions/uniform.rs new file mode 100644 index 0000000..50e7bfe --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/uniform.rs @@ -0,0 +1,650 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A distribution uniformly generating numbers within a given range. + +use Rng; +use distributions::Distribution; +use distributions::float::IntoFloat; + +/// Sample values uniformly between two bounds. +/// +/// `Uniform::new` and `Uniform::new_inclusive` construct a `Uniform` +/// distribution sampling from the closed-open and the closed (inclusive) range. +/// Some preparations are performed up front to make sampling values faster. +/// `Uniform::sample_single` is optimized for sampling values once or only a +/// limited number of times from a range. +/// +/// If you need to sample many values from a range, consider using `new` or +/// `new_inclusive`. This is also the best choice if the range is constant, +/// because then the preparations can be evaluated at compile-time. +/// Otherwise `sample_single` may be the best choice. +/// +/// Sampling uniformly from a range can be surprisingly complicated to be both +/// generic and correct. Consider for example edge cases like `low = 0u8`, +/// `high = 170u8`, for which a naive modulo operation would return numbers less +/// than 85 with double the probability to those greater than 85. +/// +/// Types should attempt to sample in `[low, high)` for `Uniform::new(low, high)`, +/// i.e., excluding `high`, but this may be very difficult. All the primitive +/// integer types satisfy this property, and the float types normally satisfy +/// it, but rounding may mean `high` can occur. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Distribution, Uniform}; +/// +/// fn main() { +/// let between = Uniform::from(10..10000); +/// let mut rng = rand::thread_rng(); +/// let mut sum = 0; +/// for _ in 0..1000 { +/// sum += between.sample(&mut rng); +/// } +/// println!("{}", sum); +/// } +/// ``` +#[derive(Clone, Copy, Debug)] +pub struct Uniform<X: SampleUniform> { + inner: X::Impl, +} + +impl<X: SampleUniform> Uniform<X> { + /// Create a new `Uniform` instance which samples uniformly from the half + /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. + pub fn new(low: X, high: X) -> Uniform<X> { + assert!(low < high, "Uniform::new called with `low >= high`"); + Uniform { inner: X::Impl::new(low, high) } + } + + /// Create a new `Uniform` instance which samples uniformly from the closed + /// range `[low, high]` (inclusive). Panics if `low > high`. + pub fn new_inclusive(low: X, high: X) -> Uniform<X> { + assert!(low <= high, "Uniform::new_inclusive called with `low > high`"); + Uniform { inner: X::Impl::new_inclusive(low, high) } + } + + /// Sample a single value uniformly from `[low, high)`. + /// Panics if `low >= high`. + pub fn sample_single<R: Rng + ?Sized>(low: X, high: X, rng: &mut R) -> X { + assert!(low < high, "Uniform::sample_single called with low >= high"); + X::Impl::sample_single(low, high, rng) + } +} + +impl<X: SampleUniform> Distribution<X> for Uniform<X> { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { + self.inner.sample(rng) + } +} + +/// Helper trait for creating objects using the correct implementation of +/// `UniformImpl` for the sampling type; this enables `Uniform::new(a, b)` to work. +pub trait SampleUniform: PartialOrd+Sized { + /// The `UniformImpl` implementation supporting type `X`. + type Impl: UniformImpl<X = Self>; +} + +/// Helper trait handling actual uniform sampling. +/// +/// If you want to implement `Uniform` sampling for your own type, then +/// implement both this trait and `SampleUniform`: +/// +/// ```rust +/// use rand::{Rng, thread_rng}; +/// use rand::distributions::Distribution; +/// use rand::distributions::uniform::{Uniform, SampleUniform, UniformImpl, UniformFloat}; +/// +/// #[derive(Clone, Copy, PartialEq, PartialOrd)] +/// struct MyF32(f32); +/// +/// #[derive(Clone, Copy, Debug)] +/// struct UniformMyF32 { +/// inner: UniformFloat<f32>, +/// } +/// impl UniformImpl for UniformMyF32 { +/// type X = MyF32; +/// fn new(low: Self::X, high: Self::X) -> Self { +/// UniformMyF32 { +/// inner: UniformFloat::<f32>::new(low.0, high.0), +/// } +/// } +/// fn new_inclusive(low: Self::X, high: Self::X) -> Self { +/// UniformImpl::new(low, high) +/// } +/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { +/// MyF32(self.inner.sample(rng)) +/// } +/// } +/// +/// impl SampleUniform for MyF32 { +/// type Impl = UniformMyF32; +/// } +/// +/// let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); +/// let uniform = Uniform::new(low, high); +/// let x = uniform.sample(&mut thread_rng()); +/// ``` +pub trait UniformImpl: Sized { + /// The type sampled by this implementation. + type X: PartialOrd; + + /// Construct self, with inclusive lower bound and exclusive upper bound + /// `[low, high)`. + /// + /// Usually users should not call this directly but instead use + /// `Uniform::new`, which asserts that `low < high` before calling this. + fn new(low: Self::X, high: Self::X) -> Self; + + /// Construct self, with inclusive bounds `[low, high]`. + /// + /// Usually users should not call this directly but instead use + /// `Uniform::new_inclusive`, which asserts that `low < high` before calling + /// this. + fn new_inclusive(low: Self::X, high: Self::X) -> Self; + + /// Sample a value. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; + + /// Sample a single value uniformly from a range with inclusive lower bound + /// and exclusive upper bound `[low, high)`. + /// + /// Usually users should not call this directly but instead use + /// `Uniform::sample_single`, which asserts that `low < high` before calling + /// this. + /// + /// Via this method, implementations can provide a method optimized for + /// sampling only a single value from the specified range. The default + /// implementation simply calls `UniformImpl::new` then `sample` on the + /// result. + fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) + -> Self::X + { + let uniform: Self = UniformImpl::new(low, high); + uniform.sample(rng) + } +} + +/// Implementation of `UniformImpl` for integer types. +/// +/// Unless you are implementing `UniformImpl` for your own type, this type should +/// not be used directly, use `Uniform` instead. +#[derive(Clone, Copy, Debug)] +pub struct UniformInt<X> { + low: X, + range: X, + zone: X, +} + +macro_rules! uniform_int_impl { + ($ty:ty, $signed:ty, $unsigned:ident, + $i_large:ident, $u_large:ident) => { + impl SampleUniform for $ty { + type Impl = UniformInt<$ty>; + } + + impl UniformImpl for UniformInt<$ty> { + // We play free and fast with unsigned vs signed here + // (when $ty is signed), but that's fine, since the + // contract of this macro is for $ty and $unsigned to be + // "bit-equal", so casting between them is a no-op. + + type X = $ty; + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new(low: Self::X, high: Self::X) -> Self { + UniformImpl::new_inclusive(low, high - 1) + } + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new_inclusive(low: Self::X, high: Self::X) -> Self { + // For a closed range, the number of possible numbers we should + // generate is `range = (high - low + 1)`. It is not possible to + // end up with a uniform distribution if we map _all_ the random + // integers that can be generated to this range. We have to map + // integers from a `zone` that is a multiple of the range. The + // rest of the integers, that cause a bias, are rejected. + // + // The problem with `range` is that to cover the full range of + // the type, it has to store `unsigned_max + 1`, which can't be + // represented. But if the range covers the full range of the + // type, no modulus is needed. A range of size 0 can't exist, so + // we use that to represent this special case. Wrapping + // arithmetic even makes representing `unsigned_max + 1` as 0 + // simple. + // + // We don't calculate `zone` directly, but first calculate the + // number of integers to reject. To handle `unsigned_max + 1` + // not fitting in the type, we use: + // ints_to_reject = (unsigned_max + 1) % range; + // ints_to_reject = (unsigned_max - range + 1) % range; + // + // The smallest integer prngs generate is u32. That is why for + // small integer sizes (i8/u8 and i16/u16) there is an + // optimisation: don't pick the largest zone that can fit in the + // small type, but pick the largest zone that can fit in an u32. + // This improves the chance to get a random integer that fits in + // the zone to 998 in 1000 in the worst case. + // + // There is a problem however: we can't store such a large range + // in `UniformInt`, that can only hold values of the size of $ty. + // `ints_to_reject` is always less than half the size of the + // small integer. For an u8 it only ever uses 7 bits. This means + // that all but the last 7 bits of `zone` are always 1's (or 15 + // in the case of u16). So nothing is lost by trucating `zone`. + // + // An alternative to using a modulus is widening multiply: + // After a widening multiply by `range`, the result is in the + // high word. Then comparing the low word against `zone` makes + // sure our distribution is uniform. + let unsigned_max: $u_large = ::core::$u_large::MAX; + + let range = (high as $u_large) + .wrapping_sub(low as $u_large) + .wrapping_add(1); + let ints_to_reject = + if range > 0 { + (unsigned_max - range + 1) % range + } else { + 0 + }; + let zone = unsigned_max - ints_to_reject; + + UniformInt { + low: low, + // These are really $unsigned values, but store as $ty: + range: range as $ty, + zone: zone as $ty + } + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + let range = self.range as $unsigned as $u_large; + if range > 0 { + // Some casting to recover the trucated bits of `zone`: + // First bit-cast to a signed int. Next sign-extend to the + // larger type. Then bit-cast to unsigned. + // For types that already have the right size, all the + // casting is a no-op. + let zone = self.zone as $signed as $i_large as $u_large; + loop { + let v: $u_large = rng.gen(); + let (hi, lo) = v.wmul(range); + if lo <= zone { + return self.low.wrapping_add(hi as $ty); + } + } + } else { + // Sample from the entire integer range. + rng.gen() + } + } + + fn sample_single<R: Rng + ?Sized>(low: Self::X, + high: Self::X, + rng: &mut R) -> Self::X + { + let range = (high as $u_large) + .wrapping_sub(low as $u_large); + let zone = + if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { + // Using a modulus is faster than the approximation for + // i8 and i16. I suppose we trade the cost of one + // modulus for near-perfect branch prediction. + let unsigned_max: $u_large = ::core::$u_large::MAX; + let ints_to_reject = (unsigned_max - range + 1) % range; + unsigned_max - ints_to_reject + } else { + // conservative but fast approximation + range << range.leading_zeros() + }; + + loop { + let v: $u_large = rng.gen(); + let (hi, lo) = v.wmul(range); + if lo <= zone { + return low.wrapping_add(hi as $ty); + } + } + } + } + } +} + +impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> { + fn from(r: ::core::ops::Range<X>) -> Uniform<X> { + Uniform::new(r.start, r.end) + } +} + +uniform_int_impl! { i8, i8, u8, i32, u32 } +uniform_int_impl! { i16, i16, u16, i32, u32 } +uniform_int_impl! { i32, i32, u32, i32, u32 } +uniform_int_impl! { i64, i64, u64, i64, u64 } +#[cfg(feature = "i128_support")] +uniform_int_impl! { i128, i128, u128, u128, u128 } +uniform_int_impl! { isize, isize, usize, isize, usize } +uniform_int_impl! { u8, i8, u8, i32, u32 } +uniform_int_impl! { u16, i16, u16, i32, u32 } +uniform_int_impl! { u32, i32, u32, i32, u32 } +uniform_int_impl! { u64, i64, u64, i64, u64 } +uniform_int_impl! { usize, isize, usize, isize, usize } +#[cfg(feature = "i128_support")] +uniform_int_impl! { u128, u128, u128, i128, u128 } + + +trait WideningMultiply<RHS = Self> { + type Output; + + fn wmul(self, x: RHS) -> Self::Output; +} + +macro_rules! wmul_impl { + ($ty:ty, $wide:ty, $shift:expr) => { + impl WideningMultiply for $ty { + type Output = ($ty, $ty); + + #[inline(always)] + fn wmul(self, x: $ty) -> Self::Output { + let tmp = (self as $wide) * (x as $wide); + ((tmp >> $shift) as $ty, tmp as $ty) + } + } + } +} + +wmul_impl! { u8, u16, 8 } +wmul_impl! { u16, u32, 16 } +wmul_impl! { u32, u64, 32 } +#[cfg(feature = "i128_support")] +wmul_impl! { u64, u128, 64 } + +// This code is a translation of the __mulddi3 function in LLVM's +// compiler-rt. It is an optimised variant of the common method +// `(a + b) * (c + d) = ac + ad + bc + bd`. +// +// For some reason LLVM can optimise the C version very well, but +// keeps shuffeling registers in this Rust translation. +macro_rules! wmul_impl_large { + ($ty:ty, $half:expr) => { + impl WideningMultiply for $ty { + type Output = ($ty, $ty); + + #[inline(always)] + fn wmul(self, b: $ty) -> Self::Output { + const LOWER_MASK: $ty = !0 >> $half; + let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK); + let mut t = low >> $half; + low &= LOWER_MASK; + t += (self >> $half).wrapping_mul(b & LOWER_MASK); + low += (t & LOWER_MASK) << $half; + let mut high = t >> $half; + t = low >> $half; + low &= LOWER_MASK; + t += (b >> $half).wrapping_mul(self & LOWER_MASK); + low += (t & LOWER_MASK) << $half; + high += t >> $half; + high += (self >> $half).wrapping_mul(b >> $half); + + (high, low) + } + } + } +} + +#[cfg(not(feature = "i128_support"))] +wmul_impl_large! { u64, 32 } +#[cfg(feature = "i128_support")] +wmul_impl_large! { u128, 64 } + + +macro_rules! wmul_impl_usize { + ($ty:ty) => { + impl WideningMultiply for usize { + type Output = (usize, usize); + + #[inline(always)] + fn wmul(self, x: usize) -> Self::Output { + let (high, low) = (self as $ty).wmul(x as $ty); + (high as usize, low as usize) + } + } + } +} + +#[cfg(target_pointer_width = "32")] +wmul_impl_usize! { u32 } +#[cfg(target_pointer_width = "64")] +wmul_impl_usize! { u64 } + + + +/// Implementation of `UniformImpl` for float types. +/// +/// Unless you are implementing `UniformImpl` for your own type, this type should +/// not be used directly, use `Uniform` instead. +#[derive(Clone, Copy, Debug)] +pub struct UniformFloat<X> { + scale: X, + offset: X, +} + +macro_rules! uniform_float_impl { + ($ty:ty, $bits_to_discard:expr, $next_u:ident) => { + impl SampleUniform for $ty { + type Impl = UniformFloat<$ty>; + } + + impl UniformImpl for UniformFloat<$ty> { + type X = $ty; + + fn new(low: Self::X, high: Self::X) -> Self { + let scale = high - low; + let offset = low - scale; + UniformFloat { + scale: scale, + offset: offset, + } + } + + fn new_inclusive(low: Self::X, high: Self::X) -> Self { + // Same as `new`, because the boundaries of a floats range are + // (at least currently) not exact due to rounding errors. + UniformImpl::new(low, high) + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + // Generate a value in the range [1, 2) + let value1_2 = (rng.$next_u() >> $bits_to_discard) + .into_float_with_exponent(0); + // We don't use `f64::mul_add`, because it is not available with + // `no_std`. Furthermore, it is slower for some targets (but + // faster for others). However, the order of multiplication and + // addition is important, because on some platforms (e.g. ARM) + // it will be optimized to a single (non-FMA) instruction. + value1_2 * self.scale + self.offset + } + + fn sample_single<R: Rng + ?Sized>(low: Self::X, + high: Self::X, + rng: &mut R) -> Self::X { + let scale = high - low; + let offset = low - scale; + // Generate a value in the range [1, 2) + let value1_2 = (rng.$next_u() >> $bits_to_discard) + .into_float_with_exponent(0); + // Doing multiply before addition allows some architectures to + // use a single instruction. + value1_2 * scale + offset + } + } + } +} + +uniform_float_impl! { f32, 32 - 23, next_u32 } +uniform_float_impl! { f64, 64 - 52, next_u64 } + + +#[cfg(test)] +mod tests { + use Rng; + use distributions::uniform::{Uniform, UniformImpl, UniformFloat, SampleUniform}; + + #[should_panic] + #[test] + fn test_uniform_bad_limits_equal_int() { + Uniform::new(10, 10); + } + + #[should_panic] + #[test] + fn test_uniform_bad_limits_equal_float() { + Uniform::new(10., 10.); + } + + #[test] + fn test_uniform_good_limits_equal_int() { + let mut rng = ::test::rng(804); + let dist = Uniform::new_inclusive(10, 10); + for _ in 0..20 { + assert_eq!(rng.sample(dist), 10); + } + } + + #[test] + fn test_uniform_good_limits_equal_float() { + let mut rng = ::test::rng(805); + let dist = Uniform::new_inclusive(10., 10.); + for _ in 0..20 { + assert_eq!(rng.sample(dist), 10.); + } + } + + #[should_panic] + #[test] + fn test_uniform_bad_limits_flipped_int() { + Uniform::new(10, 5); + } + + #[should_panic] + #[test] + fn test_uniform_bad_limits_flipped_float() { + Uniform::new(10., 5.); + } + + #[test] + fn test_integers() { + let mut rng = ::test::rng(251); + macro_rules! t { + ($($ty:ident),*) => {{ + $( + let v: &[($ty, $ty)] = &[(0, 10), + (10, 127), + (::core::$ty::MIN, ::core::$ty::MAX)]; + for &(low, high) in v.iter() { + let my_uniform = Uniform::new(low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!(low <= v && v < high); + } + + let my_uniform = Uniform::new_inclusive(low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!(low <= v && v <= high); + } + + for _ in 0..1000 { + let v: $ty = Uniform::sample_single(low, high, &mut rng); + assert!(low <= v && v < high); + } + } + )* + }} + } + t!(i8, i16, i32, i64, isize, + u8, u16, u32, u64, usize); + #[cfg(feature = "i128_support")] + t!(i128, u128) + } + + #[test] + fn test_floats() { + let mut rng = ::test::rng(252); + macro_rules! t { + ($($ty:ty),*) => {{ + $( + let v: &[($ty, $ty)] = &[(0.0, 100.0), + (-1e35, -1e25), + (1e-35, 1e-25), + (-1e35, 1e35)]; + for &(low, high) in v.iter() { + let my_uniform = Uniform::new(low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!(low <= v && v < high); + } + } + )* + }} + } + + t!(f32, f64) + } + #[test] + fn test_custom_uniform() { + #[derive(Clone, Copy, PartialEq, PartialOrd)] + struct MyF32 { + x: f32, + } + #[derive(Clone, Copy, Debug)] + struct UniformMyF32 { + inner: UniformFloat<f32>, + } + impl UniformImpl for UniformMyF32 { + type X = MyF32; + fn new(low: Self::X, high: Self::X) -> Self { + UniformMyF32 { + inner: UniformFloat::<f32>::new(low.x, high.x), + } + } + fn new_inclusive(low: Self::X, high: Self::X) -> Self { + UniformImpl::new(low, high) + } + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + MyF32 { x: self.inner.sample(rng) } + } + } + impl SampleUniform for MyF32 { + type Impl = UniformMyF32; + } + + let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 }); + let uniform = Uniform::new(low, high); + let mut rng = ::test::rng(804); + for _ in 0..100 { + let x: MyF32 = rng.sample(uniform); + assert!(low <= x && x < high); + } + } + + #[test] + fn test_uniform_from_std_range() { + let r = Uniform::from(2u32..7); + assert_eq!(r.inner.low, 2); + assert_eq!(r.inner.range, 5); + let r = Uniform::from(2.0f64..7.0); + assert_eq!(r.inner.offset, -3.0); + assert_eq!(r.inner.scale, 5.0); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/ziggurat_tables.rs b/vendor/rand-8c5b0ac51d/src/distributions/ziggurat_tables.rs new file mode 100644 index 0000000..11a2172 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/distributions/ziggurat_tables.rs @@ -0,0 +1,280 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// Tables for distributions which are sampled using the ziggurat +// algorithm. Autogenerated by `ziggurat_tables.py`. + +pub type ZigTable = &'static [f64; 257]; +pub const ZIG_NORM_R: f64 = 3.654152885361008796; +pub static ZIG_NORM_X: [f64; 257] = + [3.910757959537090045, 3.654152885361008796, 3.449278298560964462, 3.320244733839166074, + 3.224575052047029100, 3.147889289517149969, 3.083526132001233044, 3.027837791768635434, + 2.978603279880844834, 2.934366867207854224, 2.894121053612348060, 2.857138730872132548, + 2.822877396825325125, 2.790921174000785765, 2.760944005278822555, 2.732685359042827056, + 2.705933656121858100, 2.680514643284522158, 2.656283037575502437, 2.633116393630324570, + 2.610910518487548515, 2.589575986706995181, 2.569035452680536569, 2.549221550323460761, + 2.530075232158516929, 2.511544441625342294, 2.493583041269680667, 2.476149939669143318, + 2.459208374333311298, 2.442725318198956774, 2.426670984935725972, 2.411018413899685520, + 2.395743119780480601, 2.380822795170626005, 2.366237056715818632, 2.351967227377659952, + 2.337996148795031370, 2.324308018869623016, 2.310888250599850036, 2.297723348901329565, + 2.284800802722946056, 2.272108990226823888, 2.259637095172217780, 2.247375032945807760, + 2.235313384928327984, 2.223443340090905718, 2.211756642882544366, 2.200245546609647995, + 2.188902771624720689, 2.177721467738641614, 2.166695180352645966, 2.155817819875063268, + 2.145083634046203613, 2.134487182844320152, 2.124023315687815661, 2.113687150684933957, + 2.103474055713146829, 2.093379631137050279, 2.083399693996551783, 2.073530263516978778, + 2.063767547809956415, 2.054107931648864849, 2.044547965215732788, 2.035084353727808715, + 2.025713947862032960, 2.016433734904371722, 2.007240830558684852, 1.998132471356564244, + 1.989106007615571325, 1.980158896898598364, 1.971288697931769640, 1.962493064942461896, + 1.953769742382734043, 1.945116560006753925, 1.936531428273758904, 1.928012334050718257, + 1.919557336591228847, 1.911164563769282232, 1.902832208548446369, 1.894558525668710081, + 1.886341828534776388, 1.878180486290977669, 1.870072921069236838, 1.862017605397632281, + 1.854013059758148119, 1.846057850283119750, 1.838150586580728607, 1.830289919680666566, + 1.822474540091783224, 1.814703175964167636, 1.806974591348693426, 1.799287584547580199, + 1.791640986550010028, 1.784033659547276329, 1.776464495522344977, 1.768932414909077933, + 1.761436365316706665, 1.753975320315455111, 1.746548278279492994, 1.739154261283669012, + 1.731792314050707216, 1.724461502945775715, 1.717160915015540690, 1.709889657069006086, + 1.702646854797613907, 1.695431651932238548, 1.688243209434858727, 1.681080704722823338, + 1.673943330923760353, 1.666830296159286684, 1.659740822855789499, 1.652674147080648526, + 1.645629517902360339, 1.638606196773111146, 1.631603456932422036, 1.624620582830568427, + 1.617656869570534228, 1.610711622367333673, 1.603784156023583041, 1.596873794420261339, + 1.589979870021648534, 1.583101723393471438, 1.576238702733332886, 1.569390163412534456, + 1.562555467528439657, 1.555733983466554893, 1.548925085471535512, 1.542128153226347553, + 1.535342571438843118, 1.528567729435024614, 1.521803020758293101, 1.515047842773992404, + 1.508301596278571965, 1.501563685112706548, 1.494833515777718391, 1.488110497054654369, + 1.481394039625375747, 1.474683555695025516, 1.467978458615230908, 1.461278162507407830, + 1.454582081885523293, 1.447889631277669675, 1.441200224845798017, 1.434513276002946425, + 1.427828197027290358, 1.421144398672323117, 1.414461289772464658, 1.407778276843371534, + 1.401094763676202559, 1.394410150925071257, 1.387723835686884621, 1.381035211072741964, + 1.374343665770030531, 1.367648583594317957, 1.360949343030101844, 1.354245316759430606, + 1.347535871177359290, 1.340820365893152122, 1.334098153216083604, 1.327368577624624679, + 1.320630975217730096, 1.313884673146868964, 1.307128989027353860, 1.300363230327433728, + 1.293586693733517645, 1.286798664489786415, 1.279998415710333237, 1.273185207661843732, + 1.266358287014688333, 1.259516886060144225, 1.252660221891297887, 1.245787495544997903, + 1.238897891102027415, 1.231990574742445110, 1.225064693752808020, 1.218119375481726552, + 1.211153726239911244, 1.204166830140560140, 1.197157747875585931, 1.190125515422801650, + 1.183069142678760732, 1.175987612011489825, 1.168879876726833800, 1.161744859441574240, + 1.154581450355851802, 1.147388505416733873, 1.140164844363995789, 1.132909248648336975, + 1.125620459211294389, 1.118297174115062909, 1.110938046009249502, 1.103541679420268151, + 1.096106627847603487, 1.088631390649514197, 1.081114409698889389, 1.073554065787871714, + 1.065948674757506653, 1.058296483326006454, 1.050595664586207123, 1.042844313139370538, + 1.035040439828605274, 1.027181966030751292, 1.019266717460529215, 1.011292417434978441, + 1.003256679539591412, 0.995156999629943084, 0.986990747093846266, 0.978755155288937750, + 0.970447311058864615, 0.962064143217605250, 0.953602409875572654, 0.945058684462571130, + 0.936429340280896860, 0.927710533396234771, 0.918898183643734989, 0.909987953490768997, + 0.900975224455174528, 0.891855070726792376, 0.882622229578910122, 0.873271068082494550, + 0.863795545546826915, 0.854189171001560554, 0.844444954902423661, 0.834555354079518752, + 0.824512208745288633, 0.814306670128064347, 0.803929116982664893, 0.793369058833152785, + 0.782615023299588763, 0.771654424216739354, 0.760473406422083165, 0.749056662009581653, + 0.737387211425838629, 0.725446140901303549, 0.713212285182022732, 0.700661841097584448, + 0.687767892786257717, 0.674499822827436479, 0.660822574234205984, 0.646695714884388928, + 0.632072236375024632, 0.616896989996235545, 0.601104617743940417, 0.584616766093722262, + 0.567338257040473026, 0.549151702313026790, 0.529909720646495108, 0.509423329585933393, + 0.487443966121754335, 0.463634336771763245, 0.437518402186662658, 0.408389134588000746, + 0.375121332850465727, 0.335737519180459465, 0.286174591747260509, 0.215241895913273806, + 0.000000000000000000]; +pub static ZIG_NORM_F: [f64; 257] = + [0.000477467764586655, 0.001260285930498598, 0.002609072746106363, 0.004037972593371872, + 0.005522403299264754, 0.007050875471392110, 0.008616582769422917, 0.010214971439731100, + 0.011842757857943104, 0.013497450601780807, 0.015177088307982072, 0.016880083152595839, + 0.018605121275783350, 0.020351096230109354, 0.022117062707379922, 0.023902203305873237, + 0.025705804008632656, 0.027527235669693315, 0.029365939758230111, 0.031221417192023690, + 0.033093219458688698, 0.034980941461833073, 0.036884215688691151, 0.038802707404656918, + 0.040736110656078753, 0.042684144916619378, 0.044646552251446536, 0.046623094902089664, + 0.048613553216035145, 0.050617723861121788, 0.052635418276973649, 0.054666461325077916, + 0.056710690106399467, 0.058767952921137984, 0.060838108349751806, 0.062921024437977854, + 0.065016577971470438, 0.067124653828023989, 0.069245144397250269, 0.071377949059141965, + 0.073522973714240991, 0.075680130359194964, 0.077849336702372207, 0.080030515814947509, + 0.082223595813495684, 0.084428509570654661, 0.086645194450867782, 0.088873592068594229, + 0.091113648066700734, 0.093365311913026619, 0.095628536713353335, 0.097903279039215627, + 0.100189498769172020, 0.102487158942306270, 0.104796225622867056, 0.107116667775072880, + 0.109448457147210021, 0.111791568164245583, 0.114145977828255210, 0.116511665626037014, + 0.118888613443345698, 0.121276805485235437, 0.123676228202051403, 0.126086870220650349, + 0.128508722280473636, 0.130941777174128166, 0.133386029692162844, 0.135841476571757352, + 0.138308116449064322, 0.140785949814968309, 0.143274978974047118, 0.145775208006537926, + 0.148286642733128721, 0.150809290682410169, 0.153343161060837674, 0.155888264725064563, + 0.158444614156520225, 0.161012223438117663, 0.163591108232982951, 0.166181285765110071, + 0.168782774801850333, 0.171395595638155623, 0.174019770082499359, 0.176655321444406654, + 0.179302274523530397, 0.181960655600216487, 0.184630492427504539, 0.187311814224516926, + 0.190004651671193070, 0.192709036904328807, 0.195425003514885592, 0.198152586546538112, + 0.200891822495431333, 0.203642749311121501, 0.206405406398679298, 0.209179834621935651, + 0.211966076307852941, 0.214764175252008499, 0.217574176725178370, 0.220396127481011589, + 0.223230075764789593, 0.226076071323264877, 0.228934165415577484, 0.231804410825248525, + 0.234686861873252689, 0.237581574432173676, 0.240488605941449107, 0.243408015423711988, + 0.246339863502238771, 0.249284212419516704, 0.252241126056943765, 0.255210669955677150, + 0.258192911338648023, 0.261187919133763713, 0.264195763998317568, 0.267216518344631837, + 0.270250256366959984, 0.273297054069675804, 0.276356989296781264, 0.279430141762765316, + 0.282516593084849388, 0.285616426816658109, 0.288729728483353931, 0.291856585618280984, + 0.294997087801162572, 0.298151326697901342, 0.301319396102034120, 0.304501391977896274, + 0.307697412505553769, 0.310907558127563710, 0.314131931597630143, 0.317370638031222396, + 0.320623784958230129, 0.323891482377732021, 0.327173842814958593, 0.330470981380537099, + 0.333783015832108509, 0.337110066638412809, 0.340452257045945450, 0.343809713148291340, + 0.347182563958251478, 0.350570941482881204, 0.353974980801569250, 0.357394820147290515, + 0.360830600991175754, 0.364282468130549597, 0.367750569780596226, 0.371235057669821344, + 0.374736087139491414, 0.378253817247238111, 0.381788410875031348, 0.385340034841733958, + 0.388908860020464597, 0.392495061461010764, 0.396098818517547080, 0.399720314981931668, + 0.403359739222868885, 0.407017284331247953, 0.410693148271983222, 0.414387534042706784, + 0.418100649839684591, 0.421832709231353298, 0.425583931339900579, 0.429354541031341519, + 0.433144769114574058, 0.436954852549929273, 0.440785034667769915, 0.444635565397727750, + 0.448506701509214067, 0.452398706863882505, 0.456311852680773566, 0.460246417814923481, + 0.464202689050278838, 0.468180961407822172, 0.472181538469883255, 0.476204732721683788, + 0.480250865911249714, 0.484320269428911598, 0.488413284707712059, 0.492530263646148658, + 0.496671569054796314, 0.500837575128482149, 0.505028667945828791, 0.509245245998136142, + 0.513487720749743026, 0.517756517232200619, 0.522052074674794864, 0.526374847174186700, + 0.530725304406193921, 0.535103932383019565, 0.539511234259544614, 0.543947731192649941, + 0.548413963257921133, 0.552910490428519918, 0.557437893621486324, 0.561996775817277916, + 0.566587763258951771, 0.571211506738074970, 0.575868682975210544, 0.580559996103683473, + 0.585286179266300333, 0.590047996335791969, 0.594846243770991268, 0.599681752622167719, + 0.604555390700549533, 0.609468064928895381, 0.614420723892076803, 0.619414360609039205, + 0.624450015550274240, 0.629528779928128279, 0.634651799290960050, 0.639820277456438991, + 0.645035480824251883, 0.650298743114294586, 0.655611470583224665, 0.660975147780241357, + 0.666391343912380640, 0.671861719900766374, 0.677388036222513090, 0.682972161648791376, + 0.688616083008527058, 0.694321916130032579, 0.700091918140490099, 0.705928501336797409, + 0.711834248882358467, 0.717811932634901395, 0.723864533472881599, 0.729995264565802437, + 0.736207598131266683, 0.742505296344636245, 0.748892447223726720, 0.755373506511754500, + 0.761953346841546475, 0.768637315803334831, 0.775431304986138326, 0.782341832659861902, + 0.789376143571198563, 0.796542330428254619, 0.803849483176389490, 0.811307874318219935, + 0.818929191609414797, 0.826726833952094231, 0.834716292992930375, 0.842915653118441077, + 0.851346258465123684, 0.860033621203008636, 0.869008688043793165, 0.878309655816146839, + 0.887984660763399880, 0.898095921906304051, 0.908726440060562912, 0.919991505048360247, + 0.932060075968990209, 0.945198953453078028, 0.959879091812415930, 0.977101701282731328, + 1.000000000000000000]; +pub const ZIG_EXP_R: f64 = 7.697117470131050077; +pub static ZIG_EXP_X: [f64; 257] = + [8.697117470131052741, 7.697117470131050077, 6.941033629377212577, 6.478378493832569696, + 6.144164665772472667, 5.882144315795399869, 5.666410167454033697, 5.482890627526062488, + 5.323090505754398016, 5.181487281301500047, 5.054288489981304089, 4.938777085901250530, + 4.832939741025112035, 4.735242996601741083, 4.644491885420085175, 4.559737061707351380, + 4.480211746528421912, 4.405287693473573185, 4.334443680317273007, 4.267242480277365857, + 4.203313713735184365, 4.142340865664051464, 4.084051310408297830, 4.028208544647936762, + 3.974606066673788796, 3.923062500135489739, 3.873417670399509127, 3.825529418522336744, + 3.779270992411667862, 3.734528894039797375, 3.691201090237418825, 3.649195515760853770, + 3.608428813128909507, 3.568825265648337020, 3.530315889129343354, 3.492837654774059608, + 3.456332821132760191, 3.420748357251119920, 3.386035442460300970, 3.352149030900109405, + 3.319047470970748037, 3.286692171599068679, 3.255047308570449882, 3.224079565286264160, + 3.193757903212240290, 3.164053358025972873, 3.134938858084440394, 3.106389062339824481, + 3.078380215254090224, 3.050890016615455114, 3.023897504455676621, 2.997382949516130601, + 2.971327759921089662, 2.945714394895045718, 2.920526286512740821, 2.895747768600141825, + 2.871364012015536371, 2.847360965635188812, 2.823725302450035279, 2.800444370250737780, + 2.777506146439756574, 2.754899196562344610, 2.732612636194700073, 2.710636095867928752, + 2.688959688741803689, 2.667573980773266573, 2.646469963151809157, 2.625639026797788489, + 2.605072938740835564, 2.584763820214140750, 2.564704126316905253, 2.544886627111869970, + 2.525304390037828028, 2.505950763528594027, 2.486819361740209455, 2.467904050297364815, + 2.449198932978249754, 2.430698339264419694, 2.412396812688870629, 2.394289099921457886, + 2.376370140536140596, 2.358635057409337321, 2.341079147703034380, 2.323697874390196372, + 2.306486858283579799, 2.289441870532269441, 2.272558825553154804, 2.255833774367219213, + 2.239262898312909034, 2.222842503111036816, 2.206569013257663858, 2.190438966723220027, + 2.174449009937774679, 2.158595893043885994, 2.142876465399842001, 2.127287671317368289, + 2.111826546019042183, 2.096490211801715020, 2.081275874393225145, 2.066180819490575526, + 2.051202409468584786, 2.036338080248769611, 2.021585338318926173, 2.006941757894518563, + 1.992404978213576650, 1.977972700957360441, 1.963642687789548313, 1.949412758007184943, + 1.935280786297051359, 1.921244700591528076, 1.907302480018387536, 1.893452152939308242, + 1.879691795072211180, 1.866019527692827973, 1.852433515911175554, 1.838931967018879954, + 1.825513128903519799, 1.812175288526390649, 1.798916770460290859, 1.785735935484126014, + 1.772631179231305643, 1.759600930889074766, 1.746643651946074405, 1.733757834985571566, + 1.720942002521935299, 1.708194705878057773, 1.695514524101537912, 1.682900062917553896, + 1.670349953716452118, 1.657862852574172763, 1.645437439303723659, 1.633072416535991334, + 1.620766508828257901, 1.608518461798858379, 1.596327041286483395, 1.584191032532688892, + 1.572109239386229707, 1.560080483527888084, 1.548103603714513499, 1.536177455041032092, + 1.524300908219226258, 1.512472848872117082, 1.500692176842816750, 1.488957805516746058, + 1.477268661156133867, 1.465623682245745352, 1.454021818848793446, 1.442462031972012504, + 1.430943292938879674, 1.419464582769983219, 1.408024891569535697, 1.396623217917042137, + 1.385258568263121992, 1.373929956328490576, 1.362636402505086775, 1.351376933258335189, + 1.340150580529504643, 1.328956381137116560, 1.317793376176324749, 1.306660610415174117, + 1.295557131686601027, 1.284481990275012642, 1.273434238296241139, 1.262412929069615330, + 1.251417116480852521, 1.240445854334406572, 1.229498195693849105, 1.218573192208790124, + 1.207669893426761121, 1.196787346088403092, 1.185924593404202199, 1.175080674310911677, + 1.164254622705678921, 1.153445466655774743, 1.142652227581672841, 1.131873919411078511, + 1.121109547701330200, 1.110358108727411031, 1.099618588532597308, 1.088889961938546813, + 1.078171191511372307, 1.067461226479967662, 1.056759001602551429, 1.046063435977044209, + 1.035373431790528542, 1.024687873002617211, 1.014005623957096480, 1.003325527915696735, + 0.992646405507275897, 0.981967053085062602, 0.971286240983903260, 0.960602711668666509, + 0.949915177764075969, 0.939222319955262286, 0.928522784747210395, 0.917815182070044311, + 0.907098082715690257, 0.896370015589889935, 0.885629464761751528, 0.874874866291025066, + 0.864104604811004484, 0.853317009842373353, 0.842510351810368485, 0.831682837734273206, + 0.820832606554411814, 0.809957724057418282, 0.799056177355487174, 0.788125868869492430, + 0.777164609759129710, 0.766170112735434672, 0.755139984181982249, 0.744071715500508102, + 0.732962673584365398, 0.721810090308756203, 0.710611050909655040, 0.699362481103231959, + 0.688061132773747808, 0.676703568029522584, 0.665286141392677943, 0.653804979847664947, + 0.642255960424536365, 0.630634684933490286, 0.618936451394876075, 0.607156221620300030, + 0.595288584291502887, 0.583327712748769489, 0.571267316532588332, 0.559100585511540626, + 0.546820125163310577, 0.534417881237165604, 0.521885051592135052, 0.509211982443654398, + 0.496388045518671162, 0.483401491653461857, 0.470239275082169006, 0.456886840931420235, + 0.443327866073552401, 0.429543940225410703, 0.415514169600356364, 0.401214678896277765, + 0.386617977941119573, 0.371692145329917234, 0.356399760258393816, 0.340696481064849122, + 0.324529117016909452, 0.307832954674932158, 0.290527955491230394, 0.272513185478464703, + 0.253658363385912022, 0.233790483059674731, 0.212671510630966620, 0.189958689622431842, + 0.165127622564187282, 0.137304980940012589, 0.104838507565818778, 0.063852163815001570, + 0.000000000000000000]; +pub static ZIG_EXP_F: [f64; 257] = + [0.000167066692307963, 0.000454134353841497, 0.000967269282327174, 0.001536299780301573, + 0.002145967743718907, 0.002788798793574076, 0.003460264777836904, 0.004157295120833797, + 0.004877655983542396, 0.005619642207205489, 0.006381905937319183, 0.007163353183634991, + 0.007963077438017043, 0.008780314985808977, 0.009614413642502212, 0.010464810181029981, + 0.011331013597834600, 0.012212592426255378, 0.013109164931254991, 0.014020391403181943, + 0.014945968011691148, 0.015885621839973156, 0.016839106826039941, 0.017806200410911355, + 0.018786700744696024, 0.019780424338009740, 0.020787204072578114, 0.021806887504283581, + 0.022839335406385240, 0.023884420511558174, 0.024942026419731787, 0.026012046645134221, + 0.027094383780955803, 0.028188948763978646, 0.029295660224637411, 0.030414443910466622, + 0.031545232172893622, 0.032687963508959555, 0.033842582150874358, 0.035009037697397431, + 0.036187284781931443, 0.037377282772959382, 0.038578995503074871, 0.039792391023374139, + 0.041017441380414840, 0.042254122413316254, 0.043502413568888197, 0.044762297732943289, + 0.046033761076175184, 0.047316792913181561, 0.048611385573379504, 0.049917534282706379, + 0.051235237055126281, 0.052564494593071685, 0.053905310196046080, 0.055257689676697030, + 0.056621641283742870, 0.057997175631200659, 0.059384305633420280, 0.060783046445479660, + 0.062193415408541036, 0.063615431999807376, 0.065049117786753805, 0.066494496385339816, + 0.067951593421936643, 0.069420436498728783, 0.070901055162371843, 0.072393480875708752, + 0.073897746992364746, 0.075413888734058410, 0.076941943170480517, 0.078481949201606435, + 0.080033947542319905, 0.081597980709237419, 0.083174093009632397, 0.084762330532368146, + 0.086362741140756927, 0.087975374467270231, 0.089600281910032886, 0.091237516631040197, + 0.092887133556043569, 0.094549189376055873, 0.096223742550432825, 0.097910853311492213, + 0.099610583670637132, 0.101322997425953631, 0.103048160171257702, 0.104786139306570145, + 0.106537004050001632, 0.108300825451033755, 0.110077676405185357, 0.111867631670056283, + 0.113670767882744286, 0.115487163578633506, 0.117316899211555525, 0.119160057175327641, + 0.121016721826674792, 0.122886979509545108, 0.124770918580830933, 0.126668629437510671, + 0.128580204545228199, 0.130505738468330773, 0.132445327901387494, 0.134399071702213602, + 0.136367070926428829, 0.138349428863580176, 0.140346251074862399, 0.142357645432472146, + 0.144383722160634720, 0.146424593878344889, 0.148480375643866735, 0.150551185001039839, + 0.152637142027442801, 0.154738369384468027, 0.156854992369365148, 0.158987138969314129, + 0.161134939917591952, 0.163298528751901734, 0.165478041874935922, 0.167673618617250081, + 0.169885401302527550, 0.172113535315319977, 0.174358169171353411, 0.176619454590494829, + 0.178897546572478278, 0.181192603475496261, 0.183504787097767436, 0.185834262762197083, + 0.188181199404254262, 0.190545769663195363, 0.192928149976771296, 0.195328520679563189, + 0.197747066105098818, 0.200183974691911210, 0.202639439093708962, 0.205113656293837654, + 0.207606827724221982, 0.210119159388988230, 0.212650861992978224, 0.215202151075378628, + 0.217773247148700472, 0.220364375843359439, 0.222975768058120111, 0.225607660116683956, + 0.228260293930716618, 0.230933917169627356, 0.233628783437433291, 0.236345152457059560, + 0.239083290262449094, 0.241843469398877131, 0.244625969131892024, 0.247431075665327543, + 0.250259082368862240, 0.253110290015629402, 0.255985007030415324, 0.258883549749016173, + 0.261806242689362922, 0.264753418835062149, 0.267725419932044739, 0.270722596799059967, + 0.273745309652802915, 0.276793928448517301, 0.279868833236972869, 0.282970414538780746, + 0.286099073737076826, 0.289255223489677693, 0.292439288161892630, 0.295651704281261252, + 0.298892921015581847, 0.302163400675693528, 0.305463619244590256, 0.308794066934560185, + 0.312155248774179606, 0.315547685227128949, 0.318971912844957239, 0.322428484956089223, + 0.325917972393556354, 0.329440964264136438, 0.332998068761809096, 0.336589914028677717, + 0.340217149066780189, 0.343880444704502575, 0.347580494621637148, 0.351318016437483449, + 0.355093752866787626, 0.358908472948750001, 0.362762973354817997, 0.366658079781514379, + 0.370594648435146223, 0.374573567615902381, 0.378595759409581067, 0.382662181496010056, + 0.386773829084137932, 0.390931736984797384, 0.395136981833290435, 0.399390684475231350, + 0.403694012530530555, 0.408048183152032673, 0.412454465997161457, 0.416914186433003209, + 0.421428728997616908, 0.425999541143034677, 0.430628137288459167, 0.435316103215636907, + 0.440065100842354173, 0.444876873414548846, 0.449753251162755330, 0.454696157474615836, + 0.459707615642138023, 0.464789756250426511, 0.469944825283960310, 0.475175193037377708, + 0.480483363930454543, 0.485871987341885248, 0.491343869594032867, 0.496901987241549881, + 0.502549501841348056, 0.508289776410643213, 0.514126393814748894, 0.520063177368233931, + 0.526104213983620062, 0.532253880263043655, 0.538516872002862246, 0.544898237672440056, + 0.551403416540641733, 0.558038282262587892, 0.564809192912400615, 0.571723048664826150, + 0.578787358602845359, 0.586010318477268366, 0.593400901691733762, 0.600968966365232560, + 0.608725382079622346, 0.616682180915207878, 0.624852738703666200, 0.633251994214366398, + 0.641896716427266423, 0.650805833414571433, 0.660000841079000145, 0.669506316731925177, + 0.679350572264765806, 0.689566496117078431, 0.700192655082788606, 0.711274760805076456, + 0.722867659593572465, 0.735038092431424039, 0.747868621985195658, 0.761463388849896838, + 0.775956852040116218, 0.791527636972496285, 0.808421651523009044, 0.826993296643051101, + 0.847785500623990496, 0.871704332381204705, 0.900469929925747703, 0.938143680862176477, + 1.000000000000000000]; diff --git a/vendor/rand-8c5b0ac51d/src/entropy_rng.rs b/vendor/rand-8c5b0ac51d/src/entropy_rng.rs new file mode 100644 index 0000000..6b31fc6 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/entropy_rng.rs @@ -0,0 +1,167 @@ +// Copyright 2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Entropy generator, or wrapper around external generators + +use rand_core::{RngCore, CryptoRng, Error, impls}; +use os::OsRng; +use jitter::JitterRng; + +/// An interface returning random data from external source(s), provided +/// specifically for securely seeding algorithmic generators (PRNGs). +/// +/// Where possible, `EntropyRng` retrieves random data from the operating +/// system's interface for random numbers ([`OsRng`]); if that fails it will +/// fall back to the [`JitterRng`] entropy collector. In the latter case it will +/// still try to use [`OsRng`] on the next usage. +/// +/// If no secure source of entropy is available `EntropyRng` will panic on use; +/// i.e. it should never output predictable data. +/// +/// This is either a little slow ([`OsRng`] requires a system call) or extremely +/// slow ([`JitterRng`] must use significant CPU time to generate sufficient +/// jitter); for better performance it is common to seed a local PRNG from +/// external entropy then primarily use the local PRNG ([`thread_rng`] is +/// provided as a convenient, local, automatically-seeded CSPRNG). +/// +/// [`OsRng`]: os/struct.OsRng.html +/// [`JitterRng`]: jitter/struct.JitterRng.html +/// [`thread_rng`]: fn.thread_rng.html +#[derive(Debug)] +pub struct EntropyRng { + rng: EntropySource, +} + +#[derive(Debug)] +enum EntropySource { + Os(OsRng), + Jitter(JitterRng), + None, +} + +impl EntropyRng { + /// Create a new `EntropyRng`. + /// + /// This method will do no system calls or other initialization routines, + /// those are done on first use. This is done to make `new` infallible, + /// and `try_fill_bytes` the only place to report errors. + pub fn new() -> Self { + EntropyRng { rng: EntropySource::None } + } +} + +impl Default for EntropyRng { + fn default() -> Self { + EntropyRng::new() + } +} + +impl RngCore for EntropyRng { + fn next_u32(&mut self) -> u32 { + impls::next_u32_via_fill(self) + } + + fn next_u64(&mut self) -> u64 { + impls::next_u64_via_fill(self) + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.try_fill_bytes(dest).unwrap_or_else(|err| + panic!("all entropy sources failed; first error: {}", err)) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + fn try_os_new(dest: &mut [u8]) -> Result<OsRng, Error> + { + let mut rng = OsRng::new()?; + rng.try_fill_bytes(dest)?; + Ok(rng) + } + + fn try_jitter_new(dest: &mut [u8]) -> Result<JitterRng, Error> + { + let mut rng = JitterRng::new()?; + rng.try_fill_bytes(dest)?; + Ok(rng) + } + + let mut switch_rng = None; + match self.rng { + EntropySource::None => { + let os_rng_result = try_os_new(dest); + match os_rng_result { + Ok(os_rng) => { + debug!("EntropyRng: using OsRng"); + switch_rng = Some(EntropySource::Os(os_rng)); + } + Err(os_rng_error) => { + warn!("EntropyRng: OsRng failed [falling back to JitterRng]: {}", + os_rng_error); + match try_jitter_new(dest) { + Ok(jitter_rng) => { + debug!("EntropyRng: using JitterRng"); + switch_rng = Some(EntropySource::Jitter(jitter_rng)); + } + Err(_jitter_error) => { + warn!("EntropyRng: JitterRng failed: {}", + _jitter_error); + return Err(os_rng_error); + } + } + } + } + } + EntropySource::Os(ref mut rng) => { + let os_rng_result = rng.try_fill_bytes(dest); + if let Err(os_rng_error) = os_rng_result { + warn!("EntropyRng: OsRng failed [falling back to JitterRng]: {}", + os_rng_error); + match try_jitter_new(dest) { + Ok(jitter_rng) => { + debug!("EntropyRng: using JitterRng"); + switch_rng = Some(EntropySource::Jitter(jitter_rng)); + } + Err(_jitter_error) => { + warn!("EntropyRng: JitterRng failed: {}", + _jitter_error); + return Err(os_rng_error); + } + } + } + } + EntropySource::Jitter(ref mut rng) => { + if let Ok(os_rng) = try_os_new(dest) { + debug!("EntropyRng: using OsRng"); + switch_rng = Some(EntropySource::Os(os_rng)); + } else { + return rng.try_fill_bytes(dest); // use JitterRng + } + } + } + if let Some(rng) = switch_rng { + self.rng = rng; + } + Ok(()) + } +} + +impl CryptoRng for EntropyRng {} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn test_entropy() { + let mut rng = EntropyRng::new(); + let n = (rng.next_u32() ^ rng.next_u32()).count_ones(); + assert!(n >= 2); // p(failure) approx 1e-7 + } +} diff --git a/vendor/rand-8c5b0ac51d/src/jitter.rs b/vendor/rand-8c5b0ac51d/src/jitter.rs new file mode 100644 index 0000000..e633800 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/jitter.rs @@ -0,0 +1,875 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. +// +// Based on jitterentropy-library, http://www.chronox.de/jent.html. +// Copyright Stephan Mueller smueller@chronox.de, 2014 - 2017. +// +// With permission from Stephan Mueller to relicense the Rust translation under +// the MIT license. + +//! Non-physical true random number generator based on timing jitter. + +// Note: the C implementation of `Jitterentropy` relies on being compiled +// without optimizations. This implementation goes through lengths to make the +// compiler not optimise out what is technically dead code, but that does +// influence timing jitter. + +use rand_core::{RngCore, CryptoRng, Error, ErrorKind, impls}; + +use core::{fmt, mem, ptr}; +#[cfg(feature="std")] +use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering}; + +const MEMORY_BLOCKS: usize = 64; +const MEMORY_BLOCKSIZE: usize = 32; +const MEMORY_SIZE: usize = MEMORY_BLOCKS * MEMORY_BLOCKSIZE; + +/// A true random number generator based on jitter in the CPU execution time, +/// and jitter in memory access time. +/// +/// This is a true random number generator, as opposed to pseudo-random +/// generators. Random numbers generated by `JitterRng` can be seen as fresh +/// entropy. A consequence is that is orders of magnitude slower than [`OsRng`] +/// and PRNGs (about 10<sup>3</sup>..10<sup>6</sup> slower). +/// +/// There are very few situations where using this RNG is appropriate. Only very +/// few applications require true entropy. A normal PRNG can be statistically +/// indistinguishable, and a cryptographic PRNG should also be as impossible to +/// predict. +/// +/// Use of `JitterRng` is recommended for initializing cryptographic PRNGs when +/// [`OsRng`] is not available. +/// +/// This implementation is based on +/// [Jitterentropy](http://www.chronox.de/jent.html) version 2.1.0. +/// +/// [`OsRng`]: ../os/struct.OsRng.html +pub struct JitterRng { + data: u64, // Actual random number + // Number of rounds to run the entropy collector per 64 bits + rounds: u8, + // Timer used by `measure_jitter` + timer: fn() -> u64, + // Memory for the Memory Access noise source + mem_prev_index: u16, + // Make `next_u32` not waste 32 bits + data_half_used: bool, +} + +// Note: `JitterRng` maintains a small 64-bit entropy pool. With every +// `generate` 64 new bits should be integrated in the pool. If a round of +// `generate` were to collect less than the expected 64 bit, then the returned +// value, and the new state of the entropy pool, would be in some way related to +// the initial state. It is therefore better if the initial state of the entropy +// pool is different on each call to `generate`. This has a few implications: +// - `generate` should be called once before using `JitterRng` to produce the +// first usable value (this is done by default in `new`); +// - We do not zero the entropy pool after generating a result. The reference +// implementation also does not support zeroing, but recommends generating a +// new value without using it if you want to protect a previously generated +// 'secret' value from someone inspecting the memory; +// - Implementing `Clone` seems acceptable, as it would not cause the systematic +// bias a constant might cause. Only instead of one value that could be +// potentially related to the same initial state, there are now two. + +// Entropy collector state. +// These values are not necessary to preserve across runs. +struct EcState { + // Previous time stamp to determine the timer delta + prev_time: u64, + // Deltas used for the stuck test + last_delta: i32, + last_delta2: i32, + // Memory for the Memory Access noise source + mem: [u8; MEMORY_SIZE], +} + +impl EcState { + // Stuck test by checking the: + // - 1st derivation of the jitter measurement (time delta) + // - 2nd derivation of the jitter measurement (delta of time deltas) + // - 3rd derivation of the jitter measurement (delta of delta of time + // deltas) + // + // All values must always be non-zero. + // This test is a heuristic to see whether the last measurement holds + // entropy. + fn stuck(&mut self, current_delta: i32) -> bool { + let delta2 = self.last_delta - current_delta; + let delta3 = delta2 - self.last_delta2; + + self.last_delta = current_delta; + self.last_delta2 = delta2; + + current_delta == 0 || delta2 == 0 || delta3 == 0 + } +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for JitterRng { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "JitterRng {{}}") + } +} + +impl Clone for JitterRng { + fn clone(&self) -> JitterRng { + JitterRng { + data: self.data, + rounds: self.rounds, + timer: self.timer, + mem_prev_index: self.mem_prev_index, + // The 32 bits that may still be unused from the previous round are + // for the original to use, not for the clone. + data_half_used: false, + } + } +} + +/// An error that can occur when [`JitterRng::test_timer`] fails. +/// +/// [`JitterRng::test_timer`]: struct.JitterRng.html#method.test_timer +#[derive(Debug, Clone, PartialEq, Eq)] +pub enum TimerError { + /// No timer available. + NoTimer, + /// Timer too coarse to use as an entropy source. + CoarseTimer, + /// Timer is not monotonically increasing. + NotMonotonic, + /// Variations of deltas of time too small. + TinyVariantions, + /// Too many stuck results (indicating no added entropy). + TooManyStuck, + #[doc(hidden)] + __Nonexhaustive, +} + +impl TimerError { + fn description(&self) -> &'static str { + match *self { + TimerError::NoTimer => "no timer available", + TimerError::CoarseTimer => "coarse timer", + TimerError::NotMonotonic => "timer not monotonic", + TimerError::TinyVariantions => "time delta variations too small", + TimerError::TooManyStuck => "too many stuck results", + TimerError::__Nonexhaustive => unreachable!(), + } + } +} + +impl fmt::Display for TimerError { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "{}", self.description()) + } +} + +#[cfg(feature="std")] +impl ::std::error::Error for TimerError { + fn description(&self) -> &str { + self.description() + } +} + +impl From<TimerError> for Error { + fn from(err: TimerError) -> Error { + // Timer check is already quite permissive of failures so we don't + // expect false-positive failures, i.e. any error is irrecoverable. + Error::with_cause(ErrorKind::Unavailable, + "timer jitter failed basic quality tests", err) + } +} + +// Initialise to zero; must be positive +#[cfg(feature="std")] +static JITTER_ROUNDS: AtomicUsize = ATOMIC_USIZE_INIT; + +impl JitterRng { + /// Create a new `JitterRng`. Makes use of `std::time` for a timer, or a + /// platform-specific function with higher accuracy if necessary and + /// available. + /// + /// During initialization CPU execution timing jitter is measured a few + /// hundred times. If this does not pass basic quality tests, an error is + /// returned. The test result is cached to make subsequent calls faster. + #[cfg(feature="std")] + pub fn new() -> Result<JitterRng, TimerError> { + let mut state = JitterRng::new_with_timer(platform::get_nstime); + let mut rounds = JITTER_ROUNDS.load(Ordering::Relaxed) as u8; + if rounds == 0 { + // No result yet: run test. + // This allows the timer test to run multiple times; we don't care. + rounds = state.test_timer()?; + JITTER_ROUNDS.store(rounds as usize, Ordering::Relaxed); + info!("JitterRng: using {} rounds per u64 output", rounds); + } + state.set_rounds(rounds); + + // Fill `data` with a non-zero value. + state.gen_entropy(); + Ok(state) + } + + /// Create a new `JitterRng`. + /// A custom timer can be supplied, making it possible to use `JitterRng` in + /// `no_std` environments. + /// + /// The timer must have nanosecond precision. + /// + /// This method is more low-level than `new()`. It is the responsibility of + /// the caller to run [`test_timer`] before using any numbers generated with + /// `JitterRng`, and optionally call [`set_rounds`]. Also it is important to + /// consume at least one `u64` before using the first result to initialize + /// the entropy collection pool. + /// + /// # Example + /// + /// ```rust + /// # use rand::{Rng, Error}; + /// use rand::jitter::JitterRng; + /// + /// # fn try_inner() -> Result<(), Error> { + /// fn get_nstime() -> u64 { + /// use std::time::{SystemTime, UNIX_EPOCH}; + /// + /// let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap(); + /// // The correct way to calculate the current time is + /// // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64` + /// // But this is faster, and the difference in terms of entropy is + /// // negligible (log2(10^9) == 29.9). + /// dur.as_secs() << 30 | dur.subsec_nanos() as u64 + /// } + /// + /// let mut rng = JitterRng::new_with_timer(get_nstime); + /// let rounds = rng.test_timer()?; + /// rng.set_rounds(rounds); // optional + /// let _ = rng.gen::<u64>(); + /// + /// // Ready for use + /// let v: u64 = rng.gen(); + /// # Ok(()) + /// # } + /// + /// # let _ = try_inner(); + /// ``` + /// + /// [`test_timer`]: struct.JitterRng.html#method.test_timer + /// [`set_rounds`]: struct.JitterRng.html#method.set_rounds + pub fn new_with_timer(timer: fn() -> u64) -> JitterRng { + JitterRng { + data: 0, + rounds: 64, + timer, + mem_prev_index: 0, + data_half_used: false, + } + } + + /// Configures how many rounds are used to generate each 64-bit value. + /// This must be greater than zero, and has a big impact on performance + /// and output quality. + /// + /// [`new_with_timer`] conservatively uses 64 rounds, but often less rounds + /// can be used. The `test_timer()` function returns the minimum number of + /// rounds required for full strength (platform dependent), so one may use + /// `rng.set_rounds(rng.test_timer()?);` or cache the value. + /// + /// [`new_with_timer`]: struct.JitterRng.html#method.new_with_timer + pub fn set_rounds(&mut self, rounds: u8) { + assert!(rounds > 0); + self.rounds = rounds; + } + + // Calculate a random loop count used for the next round of an entropy + // collection, based on bits from a fresh value from the timer. + // + // The timer is folded to produce a number that contains at most `n_bits` + // bits. + // + // Note: A constant should be added to the resulting random loop count to + // prevent loops that run 0 times. + #[inline(never)] + fn random_loop_cnt(&mut self, n_bits: u32) -> u32 { + let mut rounds = 0; + + let mut time = (self.timer)(); + // Mix with the current state of the random number balance the random + // loop counter a bit more. + time ^= self.data; + + // We fold the time value as much as possible to ensure that as many + // bits of the time stamp are included as possible. + let folds = (64 + n_bits - 1) / n_bits; + let mask = (1 << n_bits) - 1; + for _ in 0..folds { + rounds ^= time & mask; + time >>= n_bits; + } + + rounds as u32 + } + + // CPU jitter noise source + // Noise source based on the CPU execution time jitter + // + // This function injects the individual bits of the time value into the + // entropy pool using an LFSR. + // + // The code is deliberately inefficient with respect to the bit shifting. + // This function not only acts as folding operation, but this function's + // execution is used to measure the CPU execution time jitter. Any change to + // the loop in this function implies that careful retesting must be done. + #[inline(never)] + fn lfsr_time(&mut self, time: u64, var_rounds: bool) { + fn lfsr(mut data: u64, time: u64) -> u64{ + for i in 1..65 { + let mut tmp = time << (64 - i); + tmp >>= 64 - 1; + + // Fibonacci LSFR with polynomial of + // x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is + // primitive according to + // http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf + // (the shift values are the polynomial values minus one + // due to counting bits from 0 to 63). As the current + // position is always the LSB, the polynomial only needs + // to shift data in from the left without wrap. + data ^= tmp; + data ^= (data >> 63) & 1; + data ^= (data >> 60) & 1; + data ^= (data >> 55) & 1; + data ^= (data >> 30) & 1; + data ^= (data >> 27) & 1; + data ^= (data >> 22) & 1; + data = data.rotate_left(1); + } + data + } + + // Note: in the reference implementation only the last round effects + // `self.data`, all the other results are ignored. To make sure the + // other rounds are not optimised out, we first run all but the last + // round on a throw-away value instead of the real `self.data`. + let mut lfsr_loop_cnt = 0; + if var_rounds { lfsr_loop_cnt = self.random_loop_cnt(4) }; + + let mut throw_away: u64 = 0; + for _ in 0..lfsr_loop_cnt { + throw_away = lfsr(throw_away, time); + } + black_box(throw_away); + + self.data = lfsr(self.data, time); + } + + // Memory Access noise source + // This is a noise source based on variations in memory access times + // + // This function performs memory accesses which will add to the timing + // variations due to an unknown amount of CPU wait states that need to be + // added when accessing memory. The memory size should be larger than the L1 + // caches as outlined in the documentation and the associated testing. + // + // The L1 cache has a very high bandwidth, albeit its access rate is usually + // slower than accessing CPU registers. Therefore, L1 accesses only add + // minimal variations as the CPU has hardly to wait. Starting with L2, + // significant variations are added because L2 typically does not belong to + // the CPU any more and therefore a wider range of CPU wait states is + // necessary for accesses. L3 and real memory accesses have even a wider + // range of wait states. However, to reliably access either L3 or memory, + // the `self.mem` memory must be quite large which is usually not desirable. + #[inline(never)] + fn memaccess(&mut self, mem: &mut [u8; MEMORY_SIZE], var_rounds: bool) { + let mut acc_loop_cnt = 128; + if var_rounds { acc_loop_cnt += self.random_loop_cnt(4) }; + + let mut index = self.mem_prev_index as usize; + for _ in 0..acc_loop_cnt { + // Addition of memblocksize - 1 to index with wrap around logic to + // ensure that every memory location is hit evenly. + // The modulus also allows the compiler to remove the indexing + // bounds check. + index = (index + MEMORY_BLOCKSIZE - 1) % MEMORY_SIZE; + + // memory access: just add 1 to one byte + // memory access implies read from and write to memory location + mem[index] = mem[index].wrapping_add(1); + } + self.mem_prev_index = index as u16; + } + + // This is the heart of the entropy generation: calculate time deltas and + // use the CPU jitter in the time deltas. The jitter is injected into the + // entropy pool. + // + // Ensure that `ec.prev_time` is primed before using the output of this + // function. This can be done by calling this function and not using its + // result. + fn measure_jitter(&mut self, ec: &mut EcState) -> Option<()> { + // Invoke one noise source before time measurement to add variations + self.memaccess(&mut ec.mem, true); + + // Get time stamp and calculate time delta to previous + // invocation to measure the timing variations + let time = (self.timer)(); + // Note: wrapping_sub combined with a cast to `i64` generates a correct + // delta, even in the unlikely case this is a timer that is not strictly + // monotonic. + let current_delta = time.wrapping_sub(ec.prev_time) as i64 as i32; + ec.prev_time = time; + + // Call the next noise source which also injects the data + self.lfsr_time(current_delta as u64, true); + + // Check whether we have a stuck measurement (i.e. does the last + // measurement holds entropy?). + if ec.stuck(current_delta) { return None }; + + // Rotate the data buffer by a prime number (any odd number would + // do) to ensure that every bit position of the input time stamp + // has an even chance of being merged with a bit position in the + // entropy pool. We do not use one here as the adjacent bits in + // successive time deltas may have some form of dependency. The + // chosen value of 7 implies that the low 7 bits of the next + // time delta value is concatenated with the current time delta. + self.data = self.data.rotate_left(7); + + Some(()) + } + + // Shuffle the pool a bit by mixing some value with a bijective function + // (XOR) into the pool. + // + // The function generates a mixer value that depends on the bits set and + // the location of the set bits in the random number generated by the + // entropy source. Therefore, based on the generated random number, this + // mixer value can have 2^64 different values. That mixer value is + // initialized with the first two SHA-1 constants. After obtaining the + // mixer value, it is XORed into the random number. + // + // The mixer value is not assumed to contain any entropy. But due to the + // XOR operation, it can also not destroy any entropy present in the + // entropy pool. + #[inline(never)] + fn stir_pool(&mut self) { + // This constant is derived from the first two 32 bit initialization + // vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1 + // The order does not really matter as we do not rely on the specific + // numbers. We just pick the SHA-1 constants as they have a good mix of + // bit set and unset. + const CONSTANT: u64 = 0x67452301efcdab89; + + // The start value of the mixer variable is derived from the third + // and fourth 32 bit initialization vector of SHA-1 as defined in + // FIPS 180-4 section 5.3.1 + let mut mixer = 0x98badcfe10325476; + + // This is a constant time function to prevent leaking timing + // information about the random number. + // The normal code is: + // ``` + // for i in 0..64 { + // if ((self.data >> i) & 1) == 1 { mixer ^= CONSTANT; } + // } + // ``` + // This is a bit fragile, as LLVM really wants to use branches here, and + // we rely on it to not recognise the opportunity. + for i in 0..64 { + let apply = (self.data >> i) & 1; + let mask = !apply.wrapping_sub(1); + mixer ^= CONSTANT & mask; + mixer = mixer.rotate_left(1); + } + + self.data ^= mixer; + } + + fn gen_entropy(&mut self) -> u64 { + trace!("JitterRng: collecting entropy"); + + // Prime `ec.prev_time`, and run the noice sources to make sure the + // first loop round collects the expected entropy. + let mut ec = EcState { + prev_time: (self.timer)(), + last_delta: 0, + last_delta2: 0, + mem: [0; MEMORY_SIZE], + }; + let _ = self.measure_jitter(&mut ec); + + for _ in 0..self.rounds { + // If a stuck measurement is received, repeat measurement + // Note: we do not guard against an infinite loop, that would mean + // the timer suddenly became broken. + while self.measure_jitter(&mut ec).is_none() {} + } + + // Do a single read from `self.mem` to make sure the Memory Access noise + // source is not optimised out. + black_box(ec.mem[0]); + + self.stir_pool(); + self.data + } + + /// Basic quality tests on the timer, by measuring CPU timing jitter a few + /// hundred times. + /// + /// If succesful, this will return the estimated number of rounds necessary + /// to collect 64 bits of entropy. Otherwise a [`TimerError`] with the cause + /// of the failure will be returned. + /// + /// [`TimerError`]: enum.TimerError.html + #[cfg(not(all(target_arch = "wasm32", not(target_os = "emscripten"))))] + pub fn test_timer(&mut self) -> Result<u8, TimerError> { + debug!("JitterRng: testing timer ..."); + // We could add a check for system capabilities such as `clock_getres` + // or check for `CONFIG_X86_TSC`, but it does not make much sense as the + // following sanity checks verify that we have a high-resolution timer. + + let mut delta_sum = 0; + let mut old_delta = 0; + + let mut time_backwards = 0; + let mut count_mod = 0; + let mut count_stuck = 0; + + let mut ec = EcState { + prev_time: (self.timer)(), + last_delta: 0, + last_delta2: 0, + mem: [0; MEMORY_SIZE], + }; + + // TESTLOOPCOUNT needs some loops to identify edge systems. + // 100 is definitely too little. + const TESTLOOPCOUNT: u64 = 300; + const CLEARCACHE: u64 = 100; + + for i in 0..(CLEARCACHE + TESTLOOPCOUNT) { + // Measure time delta of core entropy collection logic + let time = (self.timer)(); + self.memaccess(&mut ec.mem, true); + self.lfsr_time(time, true); + let time2 = (self.timer)(); + + // Test whether timer works + if time == 0 || time2 == 0 { + return Err(TimerError::NoTimer); + } + let delta = time2.wrapping_sub(time) as i64 as i32; + + // Test whether timer is fine grained enough to provide delta even + // when called shortly after each other -- this implies that we also + // have a high resolution timer + if delta == 0 { + return Err(TimerError::CoarseTimer); + } + + // Up to here we did not modify any variable that will be + // evaluated later, but we already performed some work. Thus we + // already have had an impact on the caches, branch prediction, + // etc. with the goal to clear it to get the worst case + // measurements. + if i < CLEARCACHE { continue; } + + if ec.stuck(delta) { count_stuck += 1; } + + // Test whether we have an increasing timer. + if !(time2 > time) { time_backwards += 1; } + + // Count the number of times the counter increases in steps of 100ns + // or greater. + if (delta % 100) == 0 { count_mod += 1; } + + // Ensure that we have a varying delta timer which is necessary for + // the calculation of entropy -- perform this check only after the + // first loop is executed as we need to prime the old_delta value + delta_sum += (delta - old_delta).abs() as u64; + old_delta = delta; + } + + // Do a single read from `self.mem` to make sure the Memory Access noise + // source is not optimised out. + black_box(ec.mem[0]); + + // We allow the time to run backwards for up to three times. + // This can happen if the clock is being adjusted by NTP operations. + // If such an operation just happens to interfere with our test, it + // should not fail. The value of 3 should cover the NTP case being + // performed during our test run. + if time_backwards > 3 { + return Err(TimerError::NotMonotonic); + } + + // Test that the available amount of entropy per round does not get to + // low. We expect 1 bit of entropy per round as a reasonable minimum + // (although less is possible, it means the collector loop has to run + // much more often). + // `assert!(delta_average >= log2(1))` + // `assert!(delta_sum / TESTLOOPCOUNT >= 1)` + // `assert!(delta_sum >= TESTLOOPCOUNT)` + if delta_sum < TESTLOOPCOUNT { + return Err(TimerError::TinyVariantions); + } + + // Ensure that we have variations in the time stamp below 100 for at + // least 10% of all checks -- on some platforms, the counter increments + // in multiples of 100, but not always + if count_mod > (TESTLOOPCOUNT * 9 / 10) { + return Err(TimerError::CoarseTimer); + } + + // If we have more than 90% stuck results, then this Jitter RNG is + // likely to not work well. + if count_stuck > (TESTLOOPCOUNT * 9 / 10) { + return Err(TimerError::TooManyStuck); + } + + // Estimate the number of `measure_jitter` rounds necessary for 64 bits + // of entropy. + // + // We don't try very hard to come up with a good estimate of the + // available bits of entropy per round here for two reasons: + // 1. Simple estimates of the available bits (like Shannon entropy) are + // too optimistic. + // 2. Unless we want to waste a lot of time during intialization, there + // only a small number of samples are available. + // + // Therefore we use a very simple and conservative estimate: + // `let bits_of_entropy = log2(delta_average) / 2`. + // + // The number of rounds `measure_jitter` should run to collect 64 bits + // of entropy is `64 / bits_of_entropy`. + let delta_average = delta_sum / TESTLOOPCOUNT; + + if delta_average >= 16 { + let log2 = 64 - delta_average.leading_zeros(); + // Do something similar to roundup(64/(log2/2)): + Ok( ((64u32 * 2 + log2 - 1) / log2) as u8) + } else { + // For values < 16 the rounding error becomes too large, use a + // lookup table. + // Values 0 and 1 are invalid, and filtered out by the + // `delta_sum < TESTLOOPCOUNT` test above. + let log2_lookup = [0, 0, 128, 81, 64, 56, 50, 46, + 43, 41, 39, 38, 36, 35, 34, 33]; + Ok(log2_lookup[delta_average as usize]) + } + } + #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] + pub fn test_timer(&mut self) -> Result<u8, TimerError> { + return Err(TimerError::NoTimer); + } + + /// Statistical test: return the timer delta of one normal run of the + /// `JitterEntropy` entropy collector. + /// + /// Setting `var_rounds` to `true` will execute the memory access and the + /// CPU jitter noice sources a variable amount of times (just like a real + /// `JitterEntropy` round). + /// + /// Setting `var_rounds` to `false` will execute the noice sources the + /// minimal number of times. This can be used to measure the minimum amount + /// of entropy one round of entropy collector can collect in the worst case. + /// + /// # Example + /// + /// Use `timer_stats` to run the [NIST SP 800-90B Entropy Estimation Suite]( + /// https://github.com/usnistgov/SP800-90B_EntropyAssessment). + /// + /// This is the recommended way to test the quality of `JitterRng`. It + /// should be run before using the RNG on untested hardware, after changes + /// that could effect how the code is optimised, and after major compiler + /// compiler changes, like a new LLVM version. + /// + /// First generate two files `jitter_rng_var.bin` and `jitter_rng_var.min`. + /// + /// Execute `python noniid_main.py -v jitter_rng_var.bin 8`, and validate it + /// with `restart.py -v jitter_rng_var.bin 8 <min-entropy>`. + /// This number is the expected amount of entropy that is at least available + /// for each round of the entropy collector. This number should be greater + /// than the amount estimated with `64 / test_timer()`. + /// + /// Execute `python noniid_main.py -v -u 4 jitter_rng_var.bin 4`, and + /// validate it with `restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>`. + /// This number is the expected amount of entropy that is available in the + /// last 4 bits of the timer delta after running noice sources. Note that + /// a value of 3.70 is the minimum estimated entropy for true randomness. + /// + /// Execute `python noniid_main.py -v -u 4 jitter_rng_var.bin 4`, and + /// validate it with `restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>`. + /// This number is the expected amount of entropy that is available to the + /// entropy collecter if both noice sources only run their minimal number of + /// times. This measures the absolute worst-case, and gives a lower bound + /// for the available entropy. + /// + /// ```rust,no_run + /// use rand::jitter::JitterRng; + /// # + /// # use std::error::Error; + /// # use std::fs::File; + /// # use std::io::Write; + /// # + /// # fn try_main() -> Result<(), Box<Error>> { + /// let mut rng = JitterRng::new()?; + /// + /// // 1_000_000 results are required for the NIST SP 800-90B Entropy + /// // Estimation Suite + /// const ROUNDS: usize = 1_000_000; + /// let mut deltas_variable: Vec<u8> = Vec::with_capacity(ROUNDS); + /// let mut deltas_minimal: Vec<u8> = Vec::with_capacity(ROUNDS); + /// + /// for _ in 0..ROUNDS { + /// deltas_variable.push(rng.timer_stats(true) as u8); + /// deltas_minimal.push(rng.timer_stats(false) as u8); + /// } + /// + /// // Write out after the statistics collection loop, to not disturb the + /// // test results. + /// File::create("jitter_rng_var.bin")?.write(&deltas_variable)?; + /// File::create("jitter_rng_min.bin")?.write(&deltas_minimal)?; + /// # + /// # Ok(()) + /// # } + /// # + /// # fn main() { + /// # try_main().unwrap(); + /// # } + /// ``` + /// + #[cfg(feature="std")] + pub fn timer_stats(&mut self, var_rounds: bool) -> i64 { + let mut mem = [0; MEMORY_SIZE]; + + let time = platform::get_nstime(); + self.memaccess(&mut mem, var_rounds); + self.lfsr_time(time, var_rounds); + let time2 = platform::get_nstime(); + time2.wrapping_sub(time) as i64 + } +} + +#[cfg(feature="std")] +mod platform { + #[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "windows", + all(target_arch = "wasm32", not(target_os = "emscripten")))))] + pub fn get_nstime() -> u64 { + use std::time::{SystemTime, UNIX_EPOCH}; + + let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap(); + // The correct way to calculate the current time is + // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64` + // But this is faster, and the difference in terms of entropy is + // negligible (log2(10^9) == 29.9). + dur.as_secs() << 30 | dur.subsec_nanos() as u64 + } + + #[cfg(any(target_os = "macos", target_os = "ios"))] + pub fn get_nstime() -> u64 { + extern crate libc; + // On Mac OS and iOS std::time::SystemTime only has 1000ns resolution. + // We use `mach_absolute_time` instead. This provides a CPU dependent + // unit, to get real nanoseconds the result should by multiplied by + // numer/denom from `mach_timebase_info`. + // But we are not interested in the exact nanoseconds, just entropy. So + // we use the raw result. + unsafe { libc::mach_absolute_time() } + } + + #[cfg(target_os = "windows")] + pub fn get_nstime() -> u64 { + extern crate winapi; + unsafe { + let mut t = super::mem::zeroed(); + winapi::um::profileapi::QueryPerformanceCounter(&mut t); + *t.QuadPart() as u64 + } + } + + #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] + pub fn get_nstime() -> u64 { + unreachable!() + } +} + +// A function that is opaque to the optimizer to assist in avoiding dead-code +// elimination. Taken from `bencher`. +fn black_box<T>(dummy: T) -> T { + unsafe { + let ret = ptr::read_volatile(&dummy); + mem::forget(dummy); + ret + } +} + +impl RngCore for JitterRng { + fn next_u32(&mut self) -> u32 { + // We want to use both parts of the generated entropy + if self.data_half_used { + self.data_half_used = false; + (self.data >> 32) as u32 + } else { + self.data = self.next_u64(); + self.data_half_used = true; + self.data as u32 + } + } + + fn next_u64(&mut self) -> u64 { + self.data_half_used = false; + self.gen_entropy() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + // Fill using `next_u32`. This is faster for filling small slices (four + // bytes or less), while the overhead is negligible. + // + // This is done especially for wrappers that implement `next_u32` + // themselves via `fill_bytes`. + impls::fill_bytes_via_next(self, dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + Ok(self.fill_bytes(dest)) + } +} + +impl CryptoRng for JitterRng {} + +#[cfg(test)] +mod test_jitter_init { + use jitter::JitterRng; + + #[cfg(feature="std")] + #[test] + fn test_jitter_init() { + use RngCore; + // Because this is a debug build, measurements here are not representive + // of the final release build. + // Don't fail this test if initializing `JitterRng` fails because of a + // bad timer (the timer from the standard library may not have enough + // accuracy on all platforms). + match JitterRng::new() { + Ok(ref mut rng) => { + // false positives are possible, but extremely unlikely + assert!(rng.next_u32() | rng.next_u32() != 0); + }, + Err(_) => {}, + } + } + + #[test] + fn test_jitter_bad_timer() { + fn bad_timer() -> u64 { 0 } + let mut rng = JitterRng::new_with_timer(bad_timer); + assert!(rng.test_timer().is_err()); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/lib.rs b/vendor/rand-8c5b0ac51d/src/lib.rs new file mode 100644 index 0000000..5f6fae2 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/lib.rs @@ -0,0 +1,1206 @@ +// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Utilities for random number generation +//! +//! ## Example +//! +//! ```rust +//! // Rng is the main trait and needs to be imported: +//! use rand::{Rng, thread_rng}; +//! +//! // thread_rng is often the most convenient source of randomness: +//! let mut rng = thread_rng(); +//! if rng.gen() { // random bool +//! let x: f64 = rng.gen(); // random number in range (0, 1) +//! println!("x is: {}", x); +//! println!("Number from 0 to 9: {}", rng.gen_range(0, 10)); +//! } +//! ``` +//! +//! The key function is [`Rng::gen()`]. It is polymorphic and so can be used to +//! generate many types; the [`Standard`] distribution carries the +//! implementations. In some cases type annotation is required, e.g. +//! `rng.gen::<f64>()`. +//! +//! # Getting random values +//! +//! The most convenient source of randomness is likely [`thread_rng`], which +//! automatically initialises a fast algorithmic generator on first use per +//! thread with thread-local storage. +//! +//! If one wants to obtain random data directly from an external source it is +//! recommended to use [`EntropyRng`] which manages multiple available sources +//! or [`OsRng`] which retrieves random data directly from the OS. It should be +//! noted that this is significantly slower than using a local generator like +//! [`thread_rng`] and potentially much slower if [`EntropyRng`] must fall back to +//! [`JitterRng`] as a source. +//! +//! It is also common to use an algorithmic generator in local memory; this may +//! be faster than `thread_rng` and provides more control. In this case +//! [`StdRng`] — the generator behind [`thread_rng`] — and [`SmallRng`] — a +//! small, fast, weak generator — are good choices; more options can be found in +//! the [`prng`] module as well as in other crates. +//! +//! Local generators need to be seeded. It is recommended to use [`FromEntropy`] or +//! to seed from a strong parent generator with [`from_rng`]: +//! +//! ``` +//! # use rand::{Rng, Error}; +//! // seed with fresh entropy: +//! use rand::{StdRng, FromEntropy}; +//! let mut rng = StdRng::from_entropy(); +//! # let v: u32 = rng.gen(); +//! +//! // seed from thread_rng: +//! use rand::{SmallRng, SeedableRng, thread_rng}; +//! +//! # fn try_inner() -> Result<(), Error> { +//! let mut rng = SmallRng::from_rng(thread_rng())?; +//! # let v: u32 = rng.gen(); +//! # Ok(()) +//! # } +//! # try_inner().unwrap() +//! ``` +//! +//! In case you specifically want to have a reproducible stream of "random" +//! data (e.g. to procedurally generate a game world), select a named algorithm +//! (i.e. not [`StdRng`]/[`SmallRng`] which may be adjusted in the future), and +//! use [`SeedableRng::from_seed`] or a constructor specific to the generator +//! (e.g. [`IsaacRng::new_from_u64`]). +//! +//! ## Applying / converting random data +//! +//! The [`RngCore`] trait allows generators to implement a common interface for +//! retrieving random data, but how should you use this? Typically users should +//! use the [`Rng`] trait not [`RngCore`]; this provides more flexible ways to +//! access the same data (e.g. `gen()` can output many more types than +//! `next_u32()` and `next_u64()`; Rust's optimiser should eliminate any +//! overhead). It also provides several useful algorithms, +//! e.g. `gen_bool(p)` to generate events with weighted probability and +//! `shuffle(&mut v[..])` to randomly-order a vector. +//! +//! The [`distributions`] module provides several more ways to convert random +//! data to useful values, e.g. time of decay is often modelled with an +//! exponential distribution, and the log-normal distribution provides a good +//! model of many natural phenomona. +//! +//! The [`seq`] module has a few tools applicable to sliceable or iterable data. +//! +//! ## Cryptographic security +//! +//! First, lets recap some terminology: +//! +//! - **PRNG:** *Pseudo-Random-Number-Generator* is another name for an +//! *algorithmic generator* +//! - **CSPRNG:** a *Cryptographically Secure* PRNG +//! +//! Security analysis requires a threat model and expert review; we can provide +//! neither, but we can provide a few hints. We assume that the goal is to +//! produce secret apparently-random data. Therefore, we need: +//! +//! - A good source of entropy. A known algorithm given known input data is +//! trivial to predict, and likewise if there's a non-negligable chance that +//! the input to a PRNG is guessable then there's a chance its output is too. +//! We recommend seeding CSPRNGs with [`EntropyRng`] or [`OsRng`] which +//! provide fresh "random" values from an external source. +//! One can also seed from another CSPRNG, e.g. `thread_rng`, which is faster, +//! but adds another component which must be trusted. +//! - A strong algorithmic generator. It is possible to use a good entropy +//! source like `OsRng` directly, and in some cases this is the best option, +//! but for better performance (or if requiring reproducible values generated +//! from a fixed seed) it is common to use a local CSPRNG. The basic security +//! that CSPRNGs must provide is making it infeasible to predict future output +//! given a sample of past output. A further security that *some* CSPRNGs +//! provide is *forward secrecy*; this ensures that in the event that the +//! algorithm's state is revealed, it is infeasible to reconstruct past +//! output. See the [`CryptoRng`] trait and notes on individual algorithms. +//! - To be careful not to leak secrets like keys and CSPRNG's internal state +//! and robust against "side channel attacks". This goes well beyond the scope +//! of random number generation, but this crate takes some precautions: +//! - to avoid printing CSPRNG state in log files, implementations have a +//! custom `Debug` implementation which omits all internal state +//! - `thread_rng` uses [`ReseedingRng`] to periodically refresh its state +//! - in the future we plan to add some protection against fork attacks +//! (where the process is forked and each clone generates the same "random" +//! numbers); this is not yet implemented (see issues #314, #370) +//! +//! # Examples +//! +//! For some inspiration, see the examples: +//! +//! * [Monte Carlo estimation of π]( +//! https://github.com/rust-lang-nursery/rand/blob/master/examples/monte-carlo.r...) +//! * [Monty Hall Problem]( +//! https://github.com/rust-lang-nursery/rand/blob/master/examples/monty-hall.rs) +//! +//! [`Rng`]: trait.Rng.html +//! [`Rng::gen()`]: trait.Rng.html#method.gen +//! [`RngCore`]: trait.RngCore.html +//! [`FromEntropy`]: trait.FromEntropy.html +//! [`SeedableRng::from_seed`]: trait.SeedableRng.html#tymethod.from_seed +//! [`from_rng`]: trait.SeedableRng.html#method.from_rng +//! [`CryptoRng`]: trait.CryptoRng.html +//! [`thread_rng`]: fn.thread_rng.html +//! [`EntropyRng`]: struct.EntropyRng.html +//! [`OsRng`]: os/struct.OsRng.html +//! [`JitterRng`]: jitter/struct.JitterRng.html +//! [`StdRng`]: struct.StdRng.html +//! [`SmallRng`]: struct.SmallRng.html +//! [`ReseedingRng`]: reseeding/struct.ReseedingRng.html +//! [`prng`]: prng/index.html +//! [`IsaacRng::new_from_u64`]: prng/isaac/struct.IsaacRng.html#method.new_from_u64 +//! [`Hc128Rng`]: prng/hc128/struct.Hc128Rng.html +//! [`ChaChaRng`]: prng/chacha/struct.ChaChaRng.html +//! [`IsaacRng`]: prng/isaac/struct.IsaacRng.html +//! [`Isaac64Rng`]: prng/isaac64/struct.Isaac64Rng.html +//! [`seq`]: seq/index.html +//! [`distributions`]: distributions/index.html +//! [`Standard`]: distributions/struct.Standard.html + +#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", + html_favicon_url = "https://www.rust-lang.org/favicon.ico", + html_root_url = "https://docs.rs/rand/0.5")] + +#![deny(missing_docs)] +#![deny(missing_debug_implementations)] +#![doc(test(attr(allow(unused_variables), deny(warnings))))] + +#![cfg_attr(not(feature="std"), no_std)] +#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] +#![cfg_attr(all(feature="i128_support", feature="nightly"), allow(stable_features))] // stable since 2018-03-27 +#![cfg_attr(all(feature="i128_support", feature="nightly"), feature(i128_type, i128))] +#![cfg_attr(feature = "stdweb", recursion_limit="128")] + +#[cfg(feature="std")] extern crate std as core; +#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc; + +#[cfg(test)] #[cfg(feature="serde1")] extern crate bincode; +#[cfg(feature="serde1")] extern crate serde; +#[cfg(feature="serde1")] #[macro_use] extern crate serde_derive; + +#[cfg(all(target_arch = "wasm32", feature = "stdweb"))] +#[macro_use] +extern crate stdweb; + +extern crate rand_core; + +#[cfg(feature = "log")] #[macro_use] extern crate log; +#[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () } +#[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () } +#[cfg(all(feature="std", not(feature = "log")))] macro_rules! info { ($($x:tt)*) => () } +#[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () } +#[cfg(all(feature="std", not(feature = "log")))] macro_rules! error { ($($x:tt)*) => () } + + +// Re-exports from rand_core +pub use rand_core::{RngCore, BlockRngCore, CryptoRng, SeedableRng}; +pub use rand_core::{ErrorKind, Error}; + +// Public exports +#[cfg(feature="std")] pub use entropy_rng::EntropyRng; +#[cfg(feature="std")] pub use os::OsRng; +pub use reseeding::ReseedingRng; +#[cfg(feature="std")] pub use thread_rng::{ThreadRng, thread_rng}; +#[cfg(feature="std")] #[allow(deprecated)] pub use thread_rng::random; + +// Public modules +pub mod distributions; +pub mod jitter; // Public because of the error type. +pub mod mock; // Public so we don't export `StepRng` directly, making it a bit + // more clear it is intended for testing. +pub mod prng; +#[cfg(feature="std")] pub mod read; +#[cfg(feature = "alloc")] pub mod seq; + +// These modules are public to avoid API breakage, probably only temporarily. +// Hidden in the documentation. +#[cfg(feature="std")] #[doc(hidden)] pub mod os; +#[doc(hidden)] pub use prng::{ChaChaRng, IsaacRng, Isaac64Rng, XorShiftRng}; +#[doc(hidden)] +pub mod chacha { + //! The ChaCha random number generator. + pub use prng::ChaChaRng; +} +#[doc(hidden)] +pub mod isaac { + //! The ISAAC random number generator. + pub use prng::{IsaacRng, Isaac64Rng}; +} + +// private modules +#[cfg(feature="std")] mod entropy_rng; +mod reseeding; +#[cfg(feature="std")] mod thread_rng; + + +// Normal imports just for this file +use core::{marker, mem, slice}; +use distributions::{Distribution, Standard, Uniform}; +use distributions::uniform::SampleUniform; +use prng::hc128::Hc128Rng; + + +/// A type that can be randomly generated using an [`Rng`]. +/// +/// This is merely an adaptor around the [`Standard`] distribution for +/// convenience and backwards-compatibility. +/// +/// [`Rng`]: trait.Rng.html +/// [`Standard`]: distributions/struct.Standard.html +#[deprecated(since="0.5.0", note="replaced by distributions::Standard")] +pub trait Rand : Sized { + /// Generates a random instance of this type using the specified source of + /// randomness. + fn rand<R: Rng>(rng: &mut R) -> Self; +} + +/// An automatically-implemented extension trait on [`RngCore`] providing high-level +/// generic methods for sampling values and other convenience methods. +/// +/// This is the primary trait to use when generating random values. +/// +/// # Generic usage +/// +/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some +/// things are worth noting here: +/// +/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no +/// difference whether we use `R: Rng` or `R: RngCore`. +/// - The `+ ?Sized` un-bounding allows functions to be called directly on +/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without +/// this it would be necessary to write `foo(&mut r)`. +/// +/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some +/// trade-offs. It allows the argument to be consumed directly without a `&mut` +/// (which is how `from_rng(thread_rng())` works); also it still works directly +/// on references (including type-erased references). Unfortunately within the +/// function `foo` it is not known whether `rng` is a reference type or not, +/// hence many uses of `rng` require an extra reference, either explicitly +/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the +/// optimiser can remove redundant references later. +/// +/// Example: +/// +/// ```rust +/// # use rand::thread_rng; +/// use rand::Rng; +/// +/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { +/// rng.gen() +/// } +/// +/// # let v = foo(&mut thread_rng()); +/// ``` +/// +/// [`RngCore`]: trait.RngCore.html +pub trait Rng: RngCore { + /// Return a random value supporting the [`Standard`] distribution. + /// + /// [`Standard`]: distributions/struct.Standard.html + /// + /// # Example + /// + /// ```rust + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// let x: u32 = rng.gen(); + /// println!("{}", x); + /// println!("{:?}", rng.gen::<(f64, bool)>()); + /// ``` + #[inline(always)] + fn gen<T>(&mut self) -> T where Standard: Distribution<T> { + Standard.sample(self) + } + + /// Generate a random value in the range [`low`, `high`), i.e. inclusive of + /// `low` and exclusive of `high`. + /// + /// This is a convenience wrapper around + /// `distributions::Uniform::sample_single`. If this function will be called + /// repeatedly with the same arguments, it will likely be faster to + /// construct a `Uniform` distribution object and sample from that; this + /// allows amortization of the computations that allow for perfect + /// uniformity within the `Uniform::new` constructor. + /// + /// # Panics + /// + /// Panics if `low >= high`. + /// + /// # Example + /// + /// ```rust + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// let n: u32 = rng.gen_range(0, 10); + /// println!("{}", n); + /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); + /// println!("{}", m); + /// ``` + fn gen_range<T: PartialOrd + SampleUniform>(&mut self, low: T, high: T) -> T { + Uniform::sample_single(low, high, self) + } + + /// Sample a new value, using the given distribution. + /// + /// ### Example + /// + /// ```rust + /// use rand::{thread_rng, Rng}; + /// use rand::distributions::Uniform; + /// + /// let mut rng = thread_rng(); + /// let x: i32 = rng.sample(Uniform::new(10, 15)); + /// ``` + fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { + distr.sample(self) + } + + /// Create an iterator that generates values using the given distribution. + /// + /// # Example + /// + /// ```rust + /// use rand::{thread_rng, Rng}; + /// use rand::distributions::{Alphanumeric, Uniform, Standard}; + /// + /// let mut rng = thread_rng(); + /// + /// // Vec of 16 x f32: + /// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect(); + /// + /// // String: + /// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect(); + /// + /// // Combined values + /// println!("{:?}", thread_rng().sample_iter(&Standard).take(5) + /// .collect::<Vec<(f64, bool)>>()); + /// + /// // Dice-rolling: + /// let die_range = Uniform::new_inclusive(1, 6); + /// let mut roll_die = rng.sample_iter(&die_range); + /// while roll_die.next().unwrap() != 6 { + /// println!("Not a 6; rolling again!"); + /// } + /// ``` + fn sample_iter<'a, T, D: Distribution<T>>(&'a mut self, distr: &'a D) + -> distributions::DistIter<'a, D, Self, T> where Self: Sized + { + distr.sample_iter(self) + } + + /// Fill `dest` entirely with random bytes (uniform value distribution), + /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices + /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). + /// + /// On big-endian platforms this performs byte-swapping to ensure + /// portability of results from reproducible generators. + /// + /// This uses [`fill_bytes`] internally which may handle some RNG errors + /// implicitly (e.g. waiting if the OS generator is not ready), but panics + /// on other errors. See also [`try_fill`] which returns errors. + /// + /// # Example + /// + /// ```rust + /// use rand::{thread_rng, Rng}; + /// + /// let mut arr = [0i8; 20]; + /// thread_rng().fill(&mut arr[..]); + /// ``` + /// + /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes + /// [`try_fill`]: trait.Rng.html#method.try_fill + /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html + fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) { + self.fill_bytes(dest.as_byte_slice_mut()); + dest.to_le(); + } + + /// Fill `dest` entirely with random bytes (uniform value distribution), + /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices + /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). + /// + /// On big-endian platforms this performs byte-swapping to ensure + /// portability of results from reproducible generators. + /// + /// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In + /// some cases errors may be resolvable; see [`ErrorKind`] and + /// documentation for the RNG in use. If you do not plan to handle these + /// errors you may prefer to use [`fill`]. + /// + /// # Example + /// + /// ```rust + /// # use rand::Error; + /// use rand::{thread_rng, Rng}; + /// + /// # fn try_inner() -> Result<(), Error> { + /// let mut arr = [0u64; 4]; + /// thread_rng().try_fill(&mut arr[..])?; + /// # Ok(()) + /// # } + /// + /// # try_inner().unwrap() + /// ``` + /// + /// [`ErrorKind`]: enum.ErrorKind.html + /// [`try_fill_bytes`]: trait.RngCore.html#method.try_fill_bytes + /// [`fill`]: trait.Rng.html#method.fill + /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html + fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { + self.try_fill_bytes(dest.as_byte_slice_mut())?; + dest.to_le(); + Ok(()) + } + + /// Return a bool with a probability `p` of being true. + /// + /// # Example + /// + /// ```rust + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// println!("{}", rng.gen_bool(1.0 / 3.0)); + /// ``` + /// + /// # Accuracy note + /// + /// `gen_bool` uses 32 bits of the RNG, so if you use it to generate close + /// to or more than `2^32` results, a tiny bias may become noticable. + /// A notable consequence of the method used here is that the worst case is + /// `rng.gen_bool(0.0)`: it has a chance of 1 in `2^32` of being true, while + /// it should always be false. But using `gen_bool` to consume *many* values + /// from an RNG just to consistently generate `false` does not match with + /// the intent of this method. + fn gen_bool(&mut self, p: f64) -> bool { + assert!(p >= 0.0 && p <= 1.0); + // If `p` is constant, this will be evaluated at compile-time. + let p_int = (p * f64::from(core::u32::MAX)) as u32; + self.gen::<u32>() <= p_int + } + + /// Return a random element from `values`. + /// + /// Return `None` if `values` is empty. + /// + /// # Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// + /// let choices = [1, 2, 4, 8, 16, 32]; + /// let mut rng = thread_rng(); + /// println!("{:?}", rng.choose(&choices)); + /// assert_eq!(rng.choose(&choices[..0]), None); + /// ``` + fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> { + if values.is_empty() { + None + } else { + Some(&values[self.gen_range(0, values.len())]) + } + } + + /// Return a mutable pointer to a random element from `values`. + /// + /// Return `None` if `values` is empty. + fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> { + if values.is_empty() { + None + } else { + let len = values.len(); + Some(&mut values[self.gen_range(0, len)]) + } + } + + /// Shuffle a mutable slice in place. + /// + /// This applies Durstenfeld's algorithm for the [Fisher–Yates shuffle]( + /// https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algori...) + /// which produces an unbiased permutation. + /// + /// # Example + /// + /// ```rust + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// let mut y = [1, 2, 3]; + /// rng.shuffle(&mut y); + /// println!("{:?}", y); + /// rng.shuffle(&mut y); + /// println!("{:?}", y); + /// ``` + fn shuffle<T>(&mut self, values: &mut [T]) { + let mut i = values.len(); + while i >= 2 { + // invariant: elements with index >= i have been locked in place. + i -= 1; + // lock element i in place. + values.swap(i, self.gen_range(0, i + 1)); + } + } + + /// Return an iterator that will yield an infinite number of randomly + /// generated items. + /// + /// # Example + /// + /// ``` + /// # #![allow(deprecated)] + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>(); + /// println!("{:?}", x); + /// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5) + /// .collect::<Vec<(f64, bool)>>()); + /// ``` + #[allow(deprecated)] + #[deprecated(since="0.5.0", note="use Rng::sample_iter(&Standard) instead")] + fn gen_iter<T>(&mut self) -> Generator<T, &mut Self> where Standard: Distribution<T> { + Generator { rng: self, _marker: marker::PhantomData } + } + + /// Return a bool with a 1 in n chance of true + /// + /// # Example + /// + /// ```rust + /// # #![allow(deprecated)] + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// assert_eq!(rng.gen_weighted_bool(0), true); + /// assert_eq!(rng.gen_weighted_bool(1), true); + /// // Just like `rng.gen::<bool>()` a 50-50% chance, but using a slower + /// // method with different results. + /// println!("{}", rng.gen_weighted_bool(2)); + /// // First meaningful use of `gen_weighted_bool`. + /// println!("{}", rng.gen_weighted_bool(3)); + /// ``` + #[deprecated(since="0.5.0", note="use gen_bool instead")] + fn gen_weighted_bool(&mut self, n: u32) -> bool { + // Short-circuit after `n <= 1` to avoid panic in `gen_range` + n <= 1 || self.gen_range(0, n) == 0 + } + + /// Return an iterator of random characters from the set A-Z,a-z,0-9. + /// + /// # Example + /// + /// ```rust + /// # #![allow(deprecated)] + /// use rand::{thread_rng, Rng}; + /// + /// let s: String = thread_rng().gen_ascii_chars().take(10).collect(); + /// println!("{}", s); + /// ``` + #[allow(deprecated)] + #[deprecated(since="0.5.0", note="use sample_iter(&Alphanumeric) instead")] + fn gen_ascii_chars(&mut self) -> AsciiGenerator<&mut Self> { + AsciiGenerator { rng: self } + } +} + +impl<R: RngCore + ?Sized> Rng for R {} + +/// Trait for casting types to byte slices +/// +/// This is used by the [`fill`] and [`try_fill`] methods. +/// +/// [`fill`]: trait.Rng.html#method.fill +/// [`try_fill`]: trait.Rng.html#method.try_fill +pub trait AsByteSliceMut { + /// Return a mutable reference to self as a byte slice + fn as_byte_slice_mut(&mut self) -> &mut [u8]; + + /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms). + fn to_le(&mut self); +} + +impl AsByteSliceMut for [u8] { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + self + } + + fn to_le(&mut self) {} +} + +macro_rules! impl_as_byte_slice { + ($t:ty) => { + impl AsByteSliceMut for [$t] { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + unsafe { + slice::from_raw_parts_mut(&mut self[0] + as *mut $t + as *mut u8, + self.len() * mem::size_of::<$t>() + ) + } + } + + fn to_le(&mut self) { + for x in self { + *x = x.to_le(); + } + } + } + } +} + +impl_as_byte_slice!(u16); +impl_as_byte_slice!(u32); +impl_as_byte_slice!(u64); +#[cfg(feature="i128_support")] impl_as_byte_slice!(u128); +impl_as_byte_slice!(usize); +impl_as_byte_slice!(i8); +impl_as_byte_slice!(i16); +impl_as_byte_slice!(i32); +impl_as_byte_slice!(i64); +#[cfg(feature="i128_support")] impl_as_byte_slice!(i128); +impl_as_byte_slice!(isize); + +macro_rules! impl_as_byte_slice_arrays { + ($n:expr,) => {}; + ($n:expr, $N:ident, $($NN:ident,)*) => { + impl_as_byte_slice_arrays!($n - 1, $($NN,)*); + + impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + self[..].as_byte_slice_mut() + } + + fn to_le(&mut self) { + self[..].to_le() + } + } + }; + (!div $n:expr,) => {}; + (!div $n:expr, $N:ident, $($NN:ident,)*) => { + impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*); + + impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + self[..].as_byte_slice_mut() + } + + fn to_le(&mut self) { + self[..].to_le() + } + } + }; +} +impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); +impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,); + +/// Iterator which will generate a stream of random items. +/// +/// This iterator is created via the [`gen_iter`] method on [`Rng`]. +/// +/// [`gen_iter`]: trait.Rng.html#method.gen_iter +/// [`Rng`]: trait.Rng.html +#[derive(Debug)] +#[allow(deprecated)] +#[deprecated(since="0.5.0", note="use Rng::sample_iter instead")] +pub struct Generator<T, R: RngCore> { + rng: R, + _marker: marker::PhantomData<fn() -> T>, +} + +#[allow(deprecated)] +impl<T, R: RngCore> Iterator for Generator<T, R> where Standard: Distribution<T> { + type Item = T; + + fn next(&mut self) -> Option<T> { + Some(self.rng.gen()) + } +} + +/// Iterator which will continuously generate random ascii characters. +/// +/// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`]. +/// +/// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars +/// [`Rng`]: trait.Rng.html +#[derive(Debug)] +#[allow(deprecated)] +#[deprecated(since="0.5.0", note="use distributions::Alphanumeric instead")] +pub struct AsciiGenerator<R: RngCore> { + rng: R, +} + +#[allow(deprecated)] +impl<R: RngCore> Iterator for AsciiGenerator<R> { + type Item = char; + + fn next(&mut self) -> Option<char> { + const GEN_ASCII_STR_CHARSET: &[u8] = + b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ + abcdefghijklmnopqrstuvwxyz\ + 0123456789"; + Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char) + } +} + + +/// A convenience extension to [`SeedableRng`] allowing construction from fresh +/// entropy. This trait is automatically implemented for any PRNG implementing +/// [`SeedableRng`] and is not intended to be implemented by users. +/// +/// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then +/// unwrapping the result. +/// +/// Since this is convenient and secure, it is the recommended way to create +/// PRNGs, though two alternatives may be considered: +/// +/// * Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed +/// * Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`; +/// this will usually be faster and should also be secure, but requires +/// trusting one extra component. +/// +/// ## Example +/// +/// ``` +/// use rand::{StdRng, Rng, FromEntropy}; +/// +/// let mut rng = StdRng::from_entropy(); +/// println!("Random die roll: {}", rng.gen_range(1, 7)); +/// ``` +/// +/// [`EntropyRng`]: struct.EntropyRng.html +/// [`SeedableRng`]: trait.SeedableRng.html +/// [`SeedableRng::from_seed`]: trait.SeedableRng.html#tymethod.from_seed +#[cfg(feature="std")] +pub trait FromEntropy: SeedableRng { + /// Creates a new instance, automatically seeded with fresh entropy. + /// + /// Normally this will use `OsRng`, but if that fails `JitterRng` will be + /// used instead. Both should be suitable for cryptography. It is possible + /// that both entropy sources will fail though unlikely; failures would + /// almost certainly be platform limitations or build issues, i.e. most + /// applications targetting PC/mobile platforms should not need to worry + /// about this failing. + /// + /// If all entropy sources fail this will panic. If you need to handle + /// errors, use the following code, equivalent aside from error handling: + /// + /// ```rust + /// # use rand::Error; + /// use rand::{Rng, StdRng, EntropyRng, SeedableRng}; + /// + /// # fn try_inner() -> Result<(), Error> { + /// // This uses StdRng, but is valid for any R: SeedableRng + /// let mut rng = StdRng::from_rng(EntropyRng::new())?; + /// + /// println!("random number: {}", rng.gen_range(1, 10)); + /// # Ok(()) + /// # } + /// + /// # try_inner().unwrap() + /// ``` + fn from_entropy() -> Self; +} + +#[cfg(feature="std")] +impl<R: SeedableRng> FromEntropy for R { + fn from_entropy() -> R { + R::from_rng(EntropyRng::new()).unwrap_or_else(|err| + panic!("FromEntropy::from_entropy() failed: {}", err)) + } +} + +/// The standard RNG. The PRNG algorithm in `StdRng` is chosen to be efficient +/// on the current platform, to be statistically strong and unpredictable +/// (meaning a cryptographically secure PRNG). +/// +/// The current algorithm used on all platforms is [HC-128]. +/// +/// Reproducibility of output from this generator is however not required, thus +/// future library versions may use a different internal generator with +/// different output. Further, this generator may not be portable and can +/// produce different output depending on the architecture. If you require +/// reproducible output, use a named RNG, for example [`ChaChaRng`]. +/// +/// [HC-128]: prng/hc128/struct.Hc128Rng.html +/// [`ChaChaRng`]: prng/chacha/struct.ChaChaRng.html +#[derive(Clone, Debug)] +pub struct StdRng(Hc128Rng); + +impl RngCore for StdRng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest); + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for StdRng { + type Seed = <Hc128Rng as SeedableRng>::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + StdRng(Hc128Rng::from_seed(seed)) + } + + fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { + Hc128Rng::from_rng(rng).map(StdRng) + } +} + +impl CryptoRng for StdRng {} + +/// An RNG recommended when small state, cheap initialization and good +/// performance are required. The PRNG algorithm in `SmallRng` is chosen to be +/// efficient on the current platform, **without consideration for cryptography +/// or security**. The size of its state is much smaller than for [`StdRng`]. +/// +/// Reproducibility of output from this generator is however not required, thus +/// future library versions may use a different internal generator with +/// different output. Further, this generator may not be portable and can +/// produce different output depending on the architecture. If you require +/// reproducible output, use a named RNG, for example [`XorShiftRng`]. +/// +/// The current algorithm used on all platforms is [Xorshift]. +/// +/// # Examples +/// +/// Initializing `SmallRng` with a random seed can be done using [`FromEntropy`]: +/// +/// ``` +/// # use rand::Rng; +/// use rand::{FromEntropy, SmallRng}; +/// +/// // Create small, cheap to initialize and fast RNG with a random seed. +/// // The randomness is supplied by the operating system. +/// let mut small_rng = SmallRng::from_entropy(); +/// # let v: u32 = small_rng.gen(); +/// ``` +/// +/// When initializing a lot of `SmallRng`'s, using [`thread_rng`] can be more +/// efficient: +/// +/// ``` +/// use std::iter; +/// use rand::{SeedableRng, SmallRng, thread_rng}; +/// +/// // Create a big, expensive to initialize and slower, but unpredictable RNG. +/// // This is cached and done only once per thread. +/// let mut thread_rng = thread_rng(); +/// // Create small, cheap to initialize and fast RNGs with random seeds. +/// // One can generally assume this won't fail. +/// let rngs: Vec<SmallRng> = iter::repeat(()) +/// .map(|()| SmallRng::from_rng(&mut thread_rng).unwrap()) +/// .take(10) +/// .collect(); +/// ``` +/// +/// [`FromEntropy`]: trait.FromEntropy.html +/// [`StdRng`]: struct.StdRng.html +/// [`thread_rng`]: fn.thread_rng.html +/// [Xorshift]: prng/struct.XorShiftRng.html +/// [`XorShiftRng`]: prng/struct.XorShiftRng.html +#[derive(Clone, Debug)] +pub struct SmallRng(XorShiftRng); + +impl RngCore for SmallRng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest); + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for SmallRng { + type Seed = <XorShiftRng as SeedableRng>::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + SmallRng(XorShiftRng::from_seed(seed)) + } + + fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { + XorShiftRng::from_rng(rng).map(SmallRng) + } +} + +/// DEPRECATED: use [`SmallRng`] instead. +/// +/// Create a weak random number generator with a default algorithm and seed. +/// +/// It returns the fastest `Rng` algorithm currently available in Rust without +/// consideration for cryptography or security. If you require a specifically +/// seeded `Rng` for consistency over time you should pick one algorithm and +/// create the `Rng` yourself. +/// +/// This will seed the generator with randomness from `thread_rng`. +/// +/// [`SmallRng`]: struct.SmallRng.html +#[deprecated(since="0.5.0", note="removed in favor of SmallRng")] +#[cfg(feature="std")] +pub fn weak_rng() -> XorShiftRng { + XorShiftRng::from_rng(thread_rng()).unwrap_or_else(|err| + panic!("weak_rng failed: {:?}", err)) +} + +/// DEPRECATED: use `seq::sample_iter` instead. +/// +/// Randomly sample up to `amount` elements from a finite iterator. +/// The order of elements in the sample is not random. +/// +/// # Example +/// +/// ```rust +/// # #![allow(deprecated)] +/// use rand::{thread_rng, sample}; +/// +/// let mut rng = thread_rng(); +/// let sample = sample(&mut rng, 1..100, 5); +/// println!("{:?}", sample); +/// ``` +#[cfg(feature="std")] +#[inline(always)] +#[deprecated(since="0.4.0", note="renamed to seq::sample_iter")] +pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T> + where I: IntoIterator<Item=T>, + R: Rng, +{ + // the legacy sample didn't care whether amount was met + seq::sample_iter(rng, iterable, amount) + .unwrap_or_else(|e| e) +} + +#[cfg(test)] +mod test { + use mock::StepRng; + use super::*; + #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box; + + pub struct TestRng<R> { inner: R } + + impl<R: RngCore> RngCore for TestRng<R> { + fn next_u32(&mut self) -> u32 { + self.inner.next_u32() + } + fn next_u64(&mut self) -> u64 { + self.inner.next_u64() + } + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.inner.fill_bytes(dest) + } + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.inner.try_fill_bytes(dest) + } + } + + pub fn rng(seed: u64) -> TestRng<StdRng> { + // TODO: use from_hashable + let mut state = seed; + let mut seed = <StdRng as SeedableRng>::Seed::default(); + for x in seed.iter_mut() { + // PCG algorithm + const MUL: u64 = 6364136223846793005; + const INC: u64 = 11634580027462260723; + let oldstate = state; + state = oldstate.wrapping_mul(MUL).wrapping_add(INC); + + let xorshifted = (((oldstate >> 18) ^ oldstate) >> 27) as u32; + let rot = (oldstate >> 59) as u32; + *x = xorshifted.rotate_right(rot) as u8; + } + TestRng { inner: StdRng::from_seed(seed) } + } + + #[test] + fn test_fill_bytes_default() { + let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); + + // check every remainder mod 8, both in small and big vectors. + let lengths = [0, 1, 2, 3, 4, 5, 6, 7, + 80, 81, 82, 83, 84, 85, 86, 87]; + for &n in lengths.iter() { + let mut buffer = [0u8; 87]; + let v = &mut buffer[0..n]; + r.fill_bytes(v); + + // use this to get nicer error messages. + for (i, &byte) in v.iter().enumerate() { + if byte == 0 { + panic!("byte {} of {} is zero", i, n) + } + } + } + } + + #[test] + fn test_fill() { + let x = 9041086907909331047; // a random u64 + let mut rng = StepRng::new(x, 0); + + // Convert to byte sequence and back to u64; byte-swap twice if BE. + let mut array = [0u64; 2]; + rng.fill(&mut array[..]); + assert_eq!(array, [x, x]); + assert_eq!(rng.next_u64(), x); + + // Convert to bytes then u32 in LE order + let mut array = [0u32; 2]; + rng.fill(&mut array[..]); + assert_eq!(array, [x as u32, (x >> 32) as u32]); + assert_eq!(rng.next_u32(), x as u32); + } + + #[test] + fn test_gen_range() { + let mut r = rng(101); + for _ in 0..1000 { + let a = r.gen_range(-3, 42); + assert!(a >= -3 && a < 42); + assert_eq!(r.gen_range(0, 1), 0); + assert_eq!(r.gen_range(-12, -11), -12); + } + + for _ in 0..1000 { + let a = r.gen_range(10, 42); + assert!(a >= 10 && a < 42); + assert_eq!(r.gen_range(0, 1), 0); + assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000); + } + + } + + #[test] + #[should_panic] + fn test_gen_range_panic_int() { + let mut r = rng(102); + r.gen_range(5, -2); + } + + #[test] + #[should_panic] + fn test_gen_range_panic_usize() { + let mut r = rng(103); + r.gen_range(5, 2); + } + + #[test] + #[allow(deprecated)] + fn test_gen_weighted_bool() { + let mut r = rng(104); + assert_eq!(r.gen_weighted_bool(0), true); + assert_eq!(r.gen_weighted_bool(1), true); + } + + #[test] + fn test_gen_bool() { + let mut r = rng(105); + for _ in 0..5 { + assert_eq!(r.gen_bool(0.0), false); + assert_eq!(r.gen_bool(1.0), true); + } + } + + #[test] + fn test_choose() { + let mut r = rng(107); + assert_eq!(r.choose(&[1, 1, 1]).map(|&x|x), Some(1)); + + let v: &[isize] = &[]; + assert_eq!(r.choose(v), None); + } + + #[test] + fn test_shuffle() { + let mut r = rng(108); + let empty: &mut [isize] = &mut []; + r.shuffle(empty); + let mut one = [1]; + r.shuffle(&mut one); + let b: &[_] = &[1]; + assert_eq!(one, b); + + let mut two = [1, 2]; + r.shuffle(&mut two); + assert!(two == [1, 2] || two == [2, 1]); + + let mut x = [1, 1, 1]; + r.shuffle(&mut x); + let b: &[_] = &[1, 1, 1]; + assert_eq!(x, b); + } + + #[test] + fn test_rng_trait_object() { + use distributions::{Distribution, Standard}; + let mut rng = rng(109); + let mut r = &mut rng as &mut RngCore; + r.next_u32(); + r.gen::<i32>(); + let mut v = [1, 1, 1]; + r.shuffle(&mut v); + let b: &[_] = &[1, 1, 1]; + assert_eq!(v, b); + assert_eq!(r.gen_range(0, 1), 0); + let _c: u8 = Standard.sample(&mut r); + } + + #[test] + #[cfg(feature="alloc")] + fn test_rng_boxed_trait() { + use distributions::{Distribution, Standard}; + let rng = rng(110); + let mut r = Box::new(rng) as Box<RngCore>; + r.next_u32(); + r.gen::<i32>(); + let mut v = [1, 1, 1]; + r.shuffle(&mut v); + let b: &[_] = &[1, 1, 1]; + assert_eq!(v, b); + assert_eq!(r.gen_range(0, 1), 0); + let _c: u8 = Standard.sample(&mut r); + } + + #[test] + fn test_stdrng_construction() { + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng1 = StdRng::from_seed(seed); + assert_eq!(rng1.next_u64(), 15759097995037006553); + + let mut rng2 = StdRng::from_rng(rng1).unwrap(); + assert_eq!(rng2.next_u64(), 6766915756997287454); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/mock.rs b/vendor/rand-8c5b0ac51d/src/mock.rs new file mode 100644 index 0000000..090258e --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/mock.rs @@ -0,0 +1,61 @@ +// Copyright 2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Mock random number generator + +use rand_core::{RngCore, Error, impls}; + +/// A simple implementation of `RngCore` for testing purposes. +/// +/// This generates an arithmetic sequence (i.e. adds a constant each step) +/// over a `u64` number, using wrapping arithmetic. If the increment is 0 +/// the generator yields a constant. +/// +/// ```rust +/// use rand::Rng; +/// use rand::mock::StepRng; +/// +/// let mut my_rng = StepRng::new(2, 1); +/// let sample: [u64; 3] = my_rng.gen(); +/// assert_eq!(sample, [2, 3, 4]); +/// ``` +#[derive(Debug, Clone)] +pub struct StepRng { + v: u64, + a: u64, +} + +impl StepRng { + /// Create a `StepRng`, yielding an arithmetic sequence starting with + /// `initial` and incremented by `increment` each time. + pub fn new(initial: u64, increment: u64) -> Self { + StepRng { v: initial, a: increment } + } +} + +impl RngCore for StepRng { + fn next_u32(&mut self) -> u32 { + self.next_u64() as u32 + } + + fn next_u64(&mut self) -> u64 { + let result = self.v; + self.v = self.v.wrapping_add(self.a); + result + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + impls::fill_bytes_via_next(self, dest); + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + Ok(self.fill_bytes(dest)) + } +} diff --git a/vendor/rand-8c5b0ac51d/src/os.rs b/vendor/rand-8c5b0ac51d/src/os.rs new file mode 100644 index 0000000..ef96e31 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/os.rs @@ -0,0 +1,833 @@ +// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Interfaces to the operating system provided random number +//! generators. + +use std::fmt; +use rand_core::{RngCore, Error, impls}; + +/// A random number generator that retrieves randomness straight from the +/// operating system. +/// +/// This is the preferred external source of entropy for most +/// applications. Commonly it is used to initialize a user-space RNG, which can +/// then be used to generate random values with much less overhead than `OsRng`. +/// +/// You may prefer to use [`EntropyRng`] instead of `OsRng`. Is is unlikely, but +/// not entirely theoretical, for `OsRng` to fail. In such cases `EntropyRng` +/// falls back on a good alternative entropy source. +/// +/// `OsRng` usually does not block. On some systems, and notably virtual +/// machines, it may block very early in the init process, when the OS CSPRNG +/// has not yet been seeded. +/// +/// `OsRng::new()` is guaranteed to be very cheap (after the first successful +/// call), and will never consume more than one file handle per process. +/// +/// ## Platform sources: +/// +/// - Linux, Android: reads from the `getrandom(2)` system call if available, +/// otherwise from `/dev/urandom`. +/// - macOS, iOS: calls `SecRandomCopyBytes`. +/// - Windows: calls `RtlGenRandom`. +/// - WASM: calls `window.crypto.getRandomValues` in browsers, +/// and in Node.js `require("crypto").randomBytes`. +/// - OpenBSD: calls `getentropy(2)`. +/// - FreeBSD: uses the `kern.arandom` `sysctl(2)` mib. +/// - Fuchsia: calls `cprng_draw`. +/// - Redox: reads from `rand:` device. +/// - CloudABI: calls `random_get`. +/// - Other Unix-like systems: reads directly from `/dev/urandom`. +/// Note: many Unix systems provide `/dev/random` as well as `/dev/urandom`. +/// On all modern systems these two interfaces offer identical quality, with +/// the difference that on some systems `/dev/random` may block. This is a +/// dated design, and `/dev/urandom` is preferred by cryptography experts. [1] +/// +/// [1] See [Myths about urandom](https://www.2uo.de/myths-about-urandom/). +/// +/// [`EntropyRng`]: struct.EntropyRng.html + +#[allow(unused)] // not used by all targets +#[derive(Clone)] +pub struct OsRng(imp::OsRng); + +impl fmt::Debug for OsRng { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + self.0.fmt(f) + } +} + +impl OsRng { + /// Create a new `OsRng`. + pub fn new() -> Result<OsRng, Error> { + imp::OsRng::new().map(OsRng) + } +} + +impl RngCore for OsRng { + fn next_u32(&mut self) -> u32 { + impls::next_u32_via_fill(self) + } + + fn next_u64(&mut self) -> u64 { + impls::next_u64_via_fill(self) + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + use std::{time, thread}; + + // We cannot return Err(..), so we try to handle before panicking. + const MAX_RETRY_PERIOD: u32 = 10; // max 10s + const WAIT_DUR_MS: u32 = 100; // retry every 100ms + let wait_dur = time::Duration::from_millis(WAIT_DUR_MS as u64); + const RETRY_LIMIT: u32 = (MAX_RETRY_PERIOD * 1000) / WAIT_DUR_MS; + const TRANSIENT_RETRIES: u32 = 8; + let mut err_count = 0; + let mut error_logged = false; + + loop { + if let Err(e) = self.try_fill_bytes(dest) { + if err_count >= RETRY_LIMIT { + error!("OsRng failed too many times; last error: {}", e); + panic!("OsRng failed too many times; last error: {}", e); + } + + if e.kind.should_wait() { + if !error_logged { + warn!("OsRng failed; waiting up to {}s and retrying. Error: {}", + MAX_RETRY_PERIOD, e); + error_logged = true; + } + err_count += 1; + thread::sleep(wait_dur); + continue; + } else if e.kind.should_retry() { + if !error_logged { + warn!("OsRng failed; retrying up to {} times. Error: {}", + TRANSIENT_RETRIES, e); + error_logged = true; + } + err_count += (RETRY_LIMIT + TRANSIENT_RETRIES - 1) + / TRANSIENT_RETRIES; // round up + continue; + } else { + error!("OsRng failed: {}", e); + panic!("OsRng fatal error: {}", e); + } + } + + break; + } + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +#[cfg(all(unix, + not(target_os = "cloudabi"), + not(target_os = "freebsd"), + not(target_os = "fuchsia"), + not(target_os = "ios"), + not(target_os = "macos"), + not(target_os = "openbsd"), + not(target_os = "redox")))] +mod imp { + extern crate libc; + use {Error, ErrorKind}; + use std::fs::{OpenOptions, File}; + use std::os::unix::fs::OpenOptionsExt; + use std::io; + use std::io::Read; + use std::sync::{Once, Mutex, ONCE_INIT}; + + #[derive(Clone, Debug)] + pub struct OsRng(OsRngMethod); + + #[derive(Clone, Debug)] + enum OsRngMethod { + GetRandom, + RandomDevice, + } + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + if is_getrandom_available() { + return Ok(OsRng(OsRngMethod::GetRandom)); + } + + open_dev_random()?; + Ok(OsRng(OsRngMethod::RandomDevice)) + } + + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + match self.0 { + OsRngMethod::GetRandom => getrandom_try_fill(dest), + OsRngMethod::RandomDevice => dev_random_try_fill(dest), + } + } + } + + #[cfg(all(any(target_os = "linux", target_os = "android"), + any(target_arch = "x86_64", target_arch = "x86", + target_arch = "arm", target_arch = "aarch64", + target_arch = "s390x", target_arch = "powerpc", + target_arch = "mips", target_arch = "mips64")))] + fn getrandom(buf: &mut [u8]) -> libc::c_long { + extern "C" { + fn syscall(number: libc::c_long, ...) -> libc::c_long; + } + + #[cfg(target_arch = "x86_64")] + const NR_GETRANDOM: libc::c_long = 318; + #[cfg(target_arch = "x86")] + const NR_GETRANDOM: libc::c_long = 355; + #[cfg(target_arch = "arm")] + const NR_GETRANDOM: libc::c_long = 384; + #[cfg(target_arch = "aarch64")] + const NR_GETRANDOM: libc::c_long = 278; + #[cfg(target_arch = "s390x")] + const NR_GETRANDOM: libc::c_long = 349; + #[cfg(target_arch = "powerpc")] + const NR_GETRANDOM: libc::c_long = 359; + #[cfg(target_arch = "mips")] // old ABI + const NR_GETRANDOM: libc::c_long = 4353; + #[cfg(target_arch = "mips64")] + const NR_GETRANDOM: libc::c_long = 5313; + + const GRND_NONBLOCK: libc::c_uint = 0x0001; + + unsafe { + syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK) + } + } + + #[cfg(not(all(any(target_os = "linux", target_os = "android"), + any(target_arch = "x86_64", target_arch = "x86", + target_arch = "arm", target_arch = "aarch64", + target_arch = "s390x", target_arch = "powerpc", + target_arch = "mips", target_arch = "mips64"))))] + fn getrandom(_buf: &mut [u8]) -> libc::c_long { -1 } + + fn getrandom_try_fill(dest: &mut [u8]) -> Result<(), Error> { + trace!("OsRng: reading {} bytes via getrandom", dest.len()); + let mut read = 0; + let len = dest.len(); + while read < len { + let result = getrandom(&mut dest[read..]); + if result == -1 { + let err = io::Error::last_os_error(); + let kind = err.kind(); + if kind == io::ErrorKind::Interrupted { + continue; + } else if kind == io::ErrorKind::WouldBlock { + // Potentially this would waste bytes, but since we use + // /dev/urandom blocking only happens if not initialised. + // Also, wasting the bytes in dest doesn't matter very much. + return Err(Error::with_cause( + ErrorKind::NotReady, + "getrandom not ready", + err, + )); + } else { + return Err(Error::with_cause( + ErrorKind::Unavailable, + "unexpected getrandom error", + err, + )); + } + } else { + read += result as usize; + } + } + Ok(()) + } + + #[cfg(all(any(target_os = "linux", target_os = "android"), + any(target_arch = "x86_64", target_arch = "x86", + target_arch = "arm", target_arch = "aarch64", + target_arch = "s390x", target_arch = "powerpc", + target_arch = "mips", target_arch = "mips64")))] + fn is_getrandom_available() -> bool { + use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering}; + use std::sync::{Once, ONCE_INIT}; + + static CHECKER: Once = ONCE_INIT; + static AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT; + + CHECKER.call_once(|| { + debug!("OsRng: testing getrandom"); + let mut buf: [u8; 0] = []; + let result = getrandom(&mut buf); + let available = if result == -1 { + let err = io::Error::last_os_error().raw_os_error(); + err != Some(libc::ENOSYS) + } else { + true + }; + AVAILABLE.store(available, Ordering::Relaxed); + info!("OsRng: using {}", if available { "getrandom" } else { "/dev/urandom" }); + }); + + AVAILABLE.load(Ordering::Relaxed) + } + + #[cfg(not(all(any(target_os = "linux", target_os = "android"), + any(target_arch = "x86_64", target_arch = "x86", + target_arch = "arm", target_arch = "aarch64", + target_arch = "s390x", target_arch = "powerpc", + target_arch = "mips", target_arch = "mips64"))))] + fn is_getrandom_available() -> bool { false } + + // TODO: remove outer Option when `Mutex::new(None)` is a constant expression + static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None; + static READ_RNG_ONCE: Once = ONCE_INIT; + + // Note: all instances use a single internal file handle, to prevent + // possible exhaustion of file descriptors. + // + // On some systems reading from `/dev/urandom` "may return data prior to the + // to the entropy pool being initialized". I.e., early in the boot process, + // and especially on virtual machines, `/dev/urandom` may return data that + // is less random. + // + // As a countermeasure we try to do a single read from `/dev/random` in + // non-blocking mode. If the OS RNG is not yet properly seeded, we will get + // an error. Because we keep `/dev/urandom` open when succesful, this is + // only a small one-time cost. + fn open_dev_random() -> Result<(), Error> { + fn map_err(err: io::Error) -> Error { + match err.kind() { + io::ErrorKind::Interrupted => + Error::new(ErrorKind::Transient, "interrupted"), + io::ErrorKind::WouldBlock => + Error::with_cause(ErrorKind::NotReady, + "OS RNG not yet seeded", err), + _ => Error::with_cause(ErrorKind::Unavailable, + "error while opening random device", err) + } + } + + READ_RNG_ONCE.call_once(|| { + unsafe { READ_RNG_FILE = Some(Mutex::new(None)) } + }); + + // We try opening the file outside the `call_once` fn because we cannot + // clone the error, thus we must retry on failure. + + let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; + let mut guard = mutex.lock().unwrap(); + if (*guard).is_none() { + { + info!("OsRng: opening random device /dev/random"); + let mut file = OpenOptions::new() + .read(true) + .custom_flags(libc::O_NONBLOCK) + .open("/dev/random") + .map_err(map_err)?; + let mut buf = [0u8; 1]; + file.read_exact(&mut buf).map_err(map_err)?; + } + + info!("OsRng: opening random device /dev/urandom"); + let file = File::open("/dev/urandom").map_err(map_err)?; + *guard = Some(file); + }; + Ok(()) + } + + fn dev_random_try_fill(dest: &mut [u8]) -> Result<(), Error> { + if dest.len() == 0 { return Ok(()); } + trace!("OsRng: reading {} bytes from random device", dest.len()); + + // We expect this function only to be used after `open_dev_random` was + // succesful. Therefore we can assume that our memory was set with a + // valid object. + let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; + let mut guard = mutex.lock().unwrap(); + let file = (*guard).as_mut().unwrap(); + // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. + file.read_exact(dest).map_err(|err| { + match err.kind() { + ::std::io::ErrorKind::WouldBlock => Error::with_cause( + ErrorKind::NotReady, + "reading from random device would block", err), + _ => Error::with_cause(ErrorKind::Unavailable, + "error reading random device", err) + } + }) + } +} + +#[cfg(target_os = "cloudabi")] +mod imp { + extern crate cloudabi; + + use {Error, ErrorKind}; + + #[derive(Clone, Debug)] + pub struct OsRng; + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + Ok(OsRng) + } + + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + trace!("OsRng: reading {} bytes via cloadabi::random_get", dest.len()); + let errno = unsafe { cloudabi::random_get(dest) }; + if errno == cloudabi::errno::SUCCESS { + Ok(()) + } else { + // Cloudlibc provides its own `strerror` implementation so we + // can use `from_raw_os_error` here. + Err(Error::with_cause( + ErrorKind::Unavailable, + "random_get() system call failed", + io::Error::from_raw_os_error(errno), + )) + } + } + } +} + +#[cfg(any(target_os = "macos", target_os = "ios"))] +mod imp { + extern crate libc; + + use {Error, ErrorKind}; + + use std::io; + use self::libc::{c_int, size_t}; + + #[derive(Clone, Debug)] + pub struct OsRng; + + enum SecRandom {} + + #[allow(non_upper_case_globals)] + const kSecRandomDefault: *const SecRandom = 0 as *const SecRandom; + + #[link(name = "Security", kind = "framework")] + extern { + fn SecRandomCopyBytes(rnd: *const SecRandom, + count: size_t, bytes: *mut u8) -> c_int; + } + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + Ok(OsRng) + } + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + trace!("OsRng: reading {} bytes via SecRandomCopyBytes", dest.len()); + let ret = unsafe { + SecRandomCopyBytes(kSecRandomDefault, dest.len() as size_t, dest.as_mut_ptr()) + }; + if ret == -1 { + Err(Error::with_cause( + ErrorKind::Unavailable, + "couldn't generate random bytes", + io::Error::last_os_error())) + } else { + Ok(()) + } + } + } +} + +#[cfg(target_os = "freebsd")] +mod imp { + extern crate libc; + + use {Error, ErrorKind}; + + use std::ptr; + use std::io; + + #[derive(Clone, Debug)] + pub struct OsRng; + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + Ok(OsRng) + } + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + let mib = [libc::CTL_KERN, libc::KERN_ARND]; + trace!("OsRng: reading {} bytes via kern.arandom", dest.len()); + // kern.arandom permits a maximum buffer size of 256 bytes + for s in dest.chunks_mut(256) { + let mut s_len = s.len(); + let ret = unsafe { + libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint, + s.as_mut_ptr() as *mut _, &mut s_len, + ptr::null(), 0) + }; + if ret == -1 || s_len != s.len() { + return Err(Error::with_cause( + ErrorKind::Unavailable, + "kern.arandom sysctl failed", + io::Error::last_os_error())); + } + } + Ok(()) + } + } +} + +#[cfg(target_os = "openbsd")] +mod imp { + extern crate libc; + + use {Error, ErrorKind}; + + use std::io; + + #[derive(Clone, Debug)] + pub struct OsRng; + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + Ok(OsRng) + } + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + // getentropy(2) permits a maximum buffer size of 256 bytes + for s in dest.chunks_mut(256) { + trace!("OsRng: reading {} bytes via getentropy", s.len()); + let ret = unsafe { + libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len()) + }; + if ret == -1 { + return Err(Error::with_cause( + ErrorKind::Unavailable, + "getentropy failed", + io::Error::last_os_error())); + } + } + Ok(()) + } + } +} + +#[cfg(target_os = "redox")] +mod imp { + use {Error, ErrorKind}; + use std::fs::File; + use std::io::Read; + use std::io::ErrorKind::*; + use std::sync::{Once, Mutex, ONCE_INIT}; + + #[derive(Clone, Debug)] + pub struct OsRng(); + + // TODO: remove outer Option when `Mutex::new(None)` is a constant expression + static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None; + static READ_RNG_ONCE: Once = ONCE_INIT; + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + READ_RNG_ONCE.call_once(|| { + unsafe { READ_RNG_FILE = Some(Mutex::new(None)) } + }); + + // We try opening the file outside the `call_once` fn because we cannot + // clone the error, thus we must retry on failure. + + let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; + let mut guard = mutex.lock().unwrap(); + if (*guard).is_none() { + info!("OsRng: opening random device 'rand:'"); + let file = File::open("rand:").map_err(|err| { + match err.kind() { + Interrupted => Error::new(ErrorKind::Transient, "interrupted"), + WouldBlock => Error::with_cause(ErrorKind::NotReady, + "opening random device would block", err), + _ => Error::with_cause(ErrorKind::Unavailable, + "error while opening random device", err) + } + })?; + *guard = Some(file); + }; + Ok(OsRng()) + } + + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + if dest.len() == 0 { return Ok(()); } + trace!("OsRng: reading {} bytes from random device", dest.len()); + + // Since we have an instance of Self, we can assume that our memory was + // set with a valid object. + let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; + let mut guard = mutex.lock().unwrap(); + let file = (*guard).as_mut().unwrap(); + // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. + file.read_exact(dest).map_err(|err| { + Error::with_cause(ErrorKind::Unavailable, + "error reading random device", err) + }) + } + } +} + +#[cfg(target_os = "fuchsia")] +mod imp { + extern crate fuchsia_zircon; + + use {Error, ErrorKind}; + + use std::io; + + #[derive(Clone, Debug)] + pub struct OsRng; + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + Ok(OsRng) + } + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + for s in dest.chunks_mut(fuchsia_zircon::sys::ZX_CPRNG_DRAW_MAX_LEN) { + trace!("OsRng: reading {} bytes via cprng_draw", s.len()); + let mut filled = 0; + while filled < s.len() { + match fuchsia_zircon::cprng_draw(&mut s[filled..]) { + Ok(actual) => filled += actual, + Err(e) => { + return Err(Error::with_cause( + ErrorKind::Unavailable, + "cprng_draw failed", + e)); + } + }; + } + } + Ok(()) + } + } +} + +#[cfg(windows)] +mod imp { + extern crate winapi; + + use {Error, ErrorKind}; + + use std::io; + + use self::winapi::shared::minwindef::ULONG; + use self::winapi::um::ntsecapi::RtlGenRandom; + use self::winapi::um::winnt::PVOID; + + #[derive(Clone, Debug)] + pub struct OsRng; + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + Ok(OsRng) + } + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + // RtlGenRandom takes an ULONG (u32) for the length so we need to + // split up the buffer. + for slice in dest.chunks_mut(<ULONG>::max_value() as usize) { + trace!("OsRng: reading {} bytes via RtlGenRandom", slice.len()); + let ret = unsafe { + RtlGenRandom(slice.as_mut_ptr() as PVOID, slice.len() as ULONG) + }; + if ret == 0 { + return Err(Error::with_cause( + ErrorKind::Unavailable, + "couldn't generate random bytes", + io::Error::last_os_error())); + } + } + Ok(()) + } + } +} + +#[cfg(all(target_arch = "wasm32", + not(target_os = "emscripten"), + not(feature = "stdweb")))] +mod imp { + use {Error, ErrorKind}; + + #[derive(Clone, Debug)] + pub struct OsRng; + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + Err(Error::new(ErrorKind::Unavailable, + "not supported on WASM without stdweb")) + } + + pub fn try_fill_bytes(&mut self, _v: &mut [u8]) -> Result<(), Error> { + Err(Error::new(ErrorKind::Unavailable, + "not supported on WASM without stdweb")) + } + } +} + +#[cfg(all(target_arch = "wasm32", + not(target_os = "emscripten"), + feature = "stdweb"))] +mod imp { + use std::mem; + use stdweb::unstable::TryInto; + use stdweb::web::error::Error as WebError; + use {Error, ErrorKind}; + + #[derive(Clone, Debug)] + enum OsRngInner { + Browser, + Node + } + + #[derive(Clone, Debug)] + pub struct OsRng(OsRngInner); + + impl OsRng { + pub fn new() -> Result<OsRng, Error> { + let result = js! { + try { + if ( + typeof window === "object" && + typeof window.crypto === "object" && + typeof window.crypto.getRandomValues === "function" + ) { + return { success: true, ty: 1 }; + } + + if (typeof require("crypto").randomBytes === "function") { + return { success: true, ty: 2 }; + } + + return { success: false, error: new Error("not supported") }; + } catch(err) { + return { success: false, error: err }; + } + }; + + if js!{ return @{ result.as_ref() }.success } == true { + let ty = js!{ return @{ result }.ty }; + + if ty == 1 { Ok(OsRng(OsRngInner::Browser)) } + else if ty == 2 { Ok(OsRng(OsRngInner::Node)) } + else { unreachable!() } + } else { + let err: WebError = js!{ return @{ result }.error }.try_into().unwrap(); + Err(Error::with_cause(ErrorKind::Unavailable, "WASM Error", err)) + } + } + + pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + assert_eq!(mem::size_of::<usize>(), 4); + + let len = dest.len() as u32; + let ptr = dest.as_mut_ptr() as i32; + + let result = match self.0 { + OsRngInner::Browser => js! { + try { + let array = new Uint8Array(@{ len }); + window.crypto.getRandomValues(array); + HEAPU8.set(array, @{ ptr }); + + return { success: true }; + } catch(err) { + return { success: false, error: err }; + } + }, + OsRngInner::Node => js! { + try { + let bytes = require("crypto").randomBytes(@{ len }); + HEAPU8.set(new Uint8Array(bytes), @{ ptr }); + + return { success: true }; + } catch(err) { + return { success: false, error: err }; + } + } + }; + + if js!{ return @{ result.as_ref() }.success } == true { + Ok(()) + } else { + let err: WebError = js!{ return @{ result }.error }.try_into().unwrap(); + Err(Error::with_cause(ErrorKind::Unexpected, "WASM Error", err)) + } + } + } +} + +#[cfg(test)] +mod test { + use RngCore; + use OsRng; + + #[test] + fn test_os_rng() { + let mut r = OsRng::new().unwrap(); + + r.next_u32(); + r.next_u64(); + + let mut v1 = [0u8; 1000]; + r.fill_bytes(&mut v1); + + let mut v2 = [0u8; 1000]; + r.fill_bytes(&mut v2); + + let mut n_diff_bits = 0; + for i in 0..v1.len() { + n_diff_bits += (v1[i] ^ v2[i]).count_ones(); + } + + // Check at least 1 bit per byte differs. p(failure) < 1e-1000 with random input. + assert!(n_diff_bits >= v1.len() as u32); + } + + #[cfg(not(any(target_arch = "wasm32", target_arch = "asmjs")))] + #[test] + fn test_os_rng_tasks() { + use std::sync::mpsc::channel; + use std::thread; + + let mut txs = vec!(); + for _ in 0..20 { + let (tx, rx) = channel(); + txs.push(tx); + + thread::spawn(move|| { + // wait until all the tasks are ready to go. + rx.recv().unwrap(); + + // deschedule to attempt to interleave things as much + // as possible (XXX: is this a good test?) + let mut r = OsRng::new().unwrap(); + thread::yield_now(); + let mut v = [0u8; 1000]; + + for _ in 0..100 { + r.next_u32(); + thread::yield_now(); + r.next_u64(); + thread::yield_now(); + r.fill_bytes(&mut v); + thread::yield_now(); + } + }); + } + + // start all the tasks + for tx in txs.iter() { + tx.send(()).unwrap(); + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/prng/chacha.rs b/vendor/rand-8c5b0ac51d/src/prng/chacha.rs new file mode 100644 index 0000000..55af770 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/prng/chacha.rs @@ -0,0 +1,463 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://www.rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The ChaCha random number generator. + +use core::fmt; +use rand_core::{BlockRngCore, CryptoRng, RngCore, SeedableRng, Error, le}; +use rand_core::impls::BlockRng; + +const SEED_WORDS: usize = 8; // 8 words for the 256-bit key +const STATE_WORDS: usize = 16; + +/// A cryptographically secure random number generator that uses the ChaCha +/// algorithm. +/// +/// ChaCha is a stream cipher designed by Daniel J. Bernstein [1], that we use +/// as an RNG. It is an improved variant of the Salsa20 cipher family, which was +/// selected as one of the "stream ciphers suitable for widespread adoption" by +/// eSTREAM [2]. +/// +/// ChaCha uses add-rotate-xor (ARX) operations as its basis. These are safe +/// against timing attacks, although that is mostly a concern for ciphers and +/// not for RNGs. Also it is very suitable for SIMD implementation. +/// Here we do not provide a SIMD implementation yet, except for what is +/// provided by auto-vectorisation. +/// +/// With the ChaCha algorithm it is possible to choose the number of rounds the +/// core algorithm should run. By default `ChaChaRng` is created as ChaCha20, +/// which means 20 rounds. The number of rounds is a tradeoff between performance +/// and security, 8 rounds are considered the minimum to be secure. A different +/// number of rounds can be set using [`set_rounds`]. +/// +/// We deviate slightly from the ChaCha specification regarding the nonce and +/// the counter. Instead of a 64-bit nonce and 64-bit counter (or a 96-bit nonce +/// and 32-bit counter in the IETF variant [3]), we use a 128-bit counter. This +/// is because a nonce does not give a meaningful advantage for ChaCha when used +/// as an RNG. The modification is provably as strong as the original cipher, +/// though, since any distinguishing attack on our variant also works against +/// ChaCha with a chosen nonce. +/// +/// The modified word layout is: +/// +/// ```text +/// constant constant constant constant +/// key key key key +/// key key key key +/// counter counter counter counter +/// ``` +/// +/// [1]: D. J. Bernstein, [*ChaCha, a variant of Salsa20*]( +/// https://cr.yp.to/chacha.html) +/// +/// [2]: [eSTREAM: the ECRYPT Stream Cipher Project]( +/// http://www.ecrypt.eu.org/stream/) +/// +/// [3]: [ChaCha20 and Poly1305 for IETF Protocols]( +/// https://tools.ietf.org/html/rfc7539) +/// +/// [`set_rounds`]: #method.set_counter +#[derive(Clone, Debug)] +pub struct ChaChaRng(BlockRng<ChaChaCore>); + +impl RngCore for ChaChaRng { + #[inline] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + #[inline] + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + #[inline] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for ChaChaRng { + type Seed = <ChaChaCore as SeedableRng>::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + ChaChaRng(BlockRng::<ChaChaCore>::from_seed(seed)) + } + + fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { + BlockRng::<ChaChaCore>::from_rng(rng).map(ChaChaRng) + } +} + +impl CryptoRng for ChaChaRng {} + +impl ChaChaRng { + /// Create an ChaCha random number generator using the default + /// fixed key of 8 zero words. + /// + /// # Examples + /// + /// ```rust + /// # #![allow(deprecated)] + /// use rand::{RngCore, ChaChaRng}; + /// + /// let mut ra = ChaChaRng::new_unseeded(); + /// println!("{:?}", ra.next_u32()); + /// println!("{:?}", ra.next_u32()); + /// ``` + /// + /// Since this equivalent to a RNG with a fixed seed, repeated executions + /// of an unseeded RNG will produce the same result. This code sample will + /// consistently produce: + /// + /// - 2917185654 + /// - 2419978656 + #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] + pub fn new_unseeded() -> ChaChaRng { + ChaChaRng::from_seed([0; SEED_WORDS*4]) + } + + /// Sets the internal 128-bit ChaCha counter to a user-provided value. This + /// permits jumping arbitrarily ahead (or backwards) in the pseudorandom + /// stream. + /// + /// The 128 bits used for the counter overlap with the nonce and smaller + /// counter of ChaCha when used as a stream cipher. It is in theory possible + /// to use `set_counter` to obtain the conventional ChaCha pseudorandom + /// stream associated with a particular nonce. This is not a supported use + /// of the RNG, because a nonce set that way is not treated as a constant + /// value but still as part of the counter, besides endian issues. + /// + /// # Examples + /// + /// ```rust + /// use rand::{ChaChaRng, RngCore, SeedableRng}; + /// + /// // Note: Use `FromEntropy` or `ChaChaRng::from_rng()` outside of testing. + /// let mut rng1 = ChaChaRng::from_seed([0; 32]); + /// let mut rng2 = rng1.clone(); + /// + /// // Skip to round 20. Because every round generates 16 `u32` values, this + /// // actually means skipping 320 values. + /// for _ in 0..(20*16) { rng1.next_u32(); } + /// rng2.set_counter(20, 0); + /// assert_eq!(rng1.next_u32(), rng2.next_u32()); + /// ``` + pub fn set_counter(&mut self, counter_low: u64, counter_high: u64) { + self.0.inner_mut().set_counter(counter_low, counter_high); + self.0.reset(); // force recomputation on next use + } + + /// Sets the number of rounds to run the ChaCha core algorithm per block to + /// generate. + /// + /// By default this is set to 20. Other recommended values are 12 and 8, + /// which trade security for performance. `rounds` only supports values + /// that are multiples of 4 and less than or equal to 20. + /// + /// # Examples + /// + /// ```rust + /// use rand::{ChaChaRng, RngCore, SeedableRng}; + /// + /// // Note: Use `FromEntropy` or `ChaChaRng::from_rng()` outside of testing. + /// let mut rng = ChaChaRng::from_seed([0; 32]); + /// rng.set_rounds(8); + /// + /// assert_eq!(rng.next_u32(), 0x2fef003e); + /// ``` + pub fn set_rounds(&mut self, rounds: usize) { + self.0.inner_mut().set_rounds(rounds); + self.0.reset(); // force recomputation on next use + } +} + +/// The core of `ChaChaRng`, used with `BlockRng`. +#[derive(Clone)] +pub struct ChaChaCore { + state: [u32; STATE_WORDS], + rounds: usize, +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for ChaChaCore { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "ChaChaCore {{}}") + } +} + +macro_rules! quarter_round{ + ($a: expr, $b: expr, $c: expr, $d: expr) => {{ + $a = $a.wrapping_add($b); $d ^= $a; $d = $d.rotate_left(16); + $c = $c.wrapping_add($d); $b ^= $c; $b = $b.rotate_left(12); + $a = $a.wrapping_add($b); $d ^= $a; $d = $d.rotate_left( 8); + $c = $c.wrapping_add($d); $b ^= $c; $b = $b.rotate_left( 7); + }} +} + +macro_rules! double_round{ + ($x: expr) => {{ + // Column round + quarter_round!($x[ 0], $x[ 4], $x[ 8], $x[12]); + quarter_round!($x[ 1], $x[ 5], $x[ 9], $x[13]); + quarter_round!($x[ 2], $x[ 6], $x[10], $x[14]); + quarter_round!($x[ 3], $x[ 7], $x[11], $x[15]); + // Diagonal round + quarter_round!($x[ 0], $x[ 5], $x[10], $x[15]); + quarter_round!($x[ 1], $x[ 6], $x[11], $x[12]); + quarter_round!($x[ 2], $x[ 7], $x[ 8], $x[13]); + quarter_round!($x[ 3], $x[ 4], $x[ 9], $x[14]); + }} +} + +impl BlockRngCore for ChaChaCore { + type Item = u32; + type Results = [u32; STATE_WORDS]; + + fn generate(&mut self, results: &mut Self::Results) { + // For some reason extracting this part into a separate function + // improves performance by 50%. + fn core(results: &mut [u32; STATE_WORDS], + state: &[u32; STATE_WORDS], + rounds: usize) + { + let mut tmp = *state; + for _ in 0..rounds / 2 { + double_round!(tmp); + } + for i in 0..STATE_WORDS { + results[i] = tmp[i].wrapping_add(state[i]); + } + } + + core(results, &self.state, self.rounds); + + // update 128-bit counter + self.state[12] = self.state[12].wrapping_add(1); + if self.state[12] != 0 { return; }; + self.state[13] = self.state[13].wrapping_add(1); + if self.state[13] != 0 { return; }; + self.state[14] = self.state[14].wrapping_add(1); + if self.state[14] != 0 { return; }; + self.state[15] = self.state[15].wrapping_add(1); + } +} + +impl ChaChaCore { + /// Sets the internal 128-bit ChaCha counter to a user-provided value. This + /// permits jumping arbitrarily ahead (or backwards) in the pseudorandom + /// stream. + pub fn set_counter(&mut self, counter_low: u64, counter_high: u64) { + self.state[12] = counter_low as u32; + self.state[13] = (counter_low >> 32) as u32; + self.state[14] = counter_high as u32; + self.state[15] = (counter_high >> 32) as u32; + } + + /// Sets the number of rounds to run the ChaCha core algorithm per block to + /// generate. + pub fn set_rounds(&mut self, rounds: usize) { + assert!([4usize, 8, 12, 16, 20].iter().any(|x| *x == rounds)); + self.rounds = rounds; + } +} + +impl SeedableRng for ChaChaCore { + type Seed = [u8; SEED_WORDS*4]; + + fn from_seed(seed: Self::Seed) -> Self { + let mut seed_le = [0u32; SEED_WORDS]; + le::read_u32_into(&seed, &mut seed_le); + Self { + state: [0x61707865, 0x3320646E, 0x79622D32, 0x6B206574, // constants + seed_le[0], seed_le[1], seed_le[2], seed_le[3], // seed + seed_le[4], seed_le[5], seed_le[6], seed_le[7], // seed + 0, 0, 0, 0], // counter + rounds: 20, + } + } +} + +impl CryptoRng for ChaChaCore {} + +#[cfg(test)] +mod test { + use {RngCore, SeedableRng}; + use super::ChaChaRng; + + #[test] + fn test_chacha_construction() { + let seed = [0,0,0,0,0,0,0,0, + 1,0,0,0,0,0,0,0, + 2,0,0,0,0,0,0,0, + 3,0,0,0,0,0,0,0]; + let mut rng1 = ChaChaRng::from_seed(seed); + assert_eq!(rng1.next_u32(), 137206642); + + let mut rng2 = ChaChaRng::from_rng(rng1).unwrap(); + assert_eq!(rng2.next_u32(), 1325750369); + } + + #[test] + fn test_chacha_true_values_a() { + // Test vectors 1 and 2 from + // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 + let seed = [0u8; 32]; + let mut rng = ChaChaRng::from_seed(seed); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653, + 0xb819d2bd, 0x1aed8da0, 0xccef36a8, 0xc70d778b, + 0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8, + 0xf4b8436a, 0x1ca11815, 0x69b687c3, 0x8665eeb2]; + assert_eq!(results, expected); + + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73, + 0xa0290fcb, 0x6965e348, 0x3e53c612, 0xed7aee32, + 0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874, + 0x281fed31, 0x45fb0a51, 0x1f0ae1ac, 0x6f4d794b]; + assert_eq!(results, expected); + } + + #[test] + fn test_chacha_true_values_b() { + // Test vector 3 from + // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 + let seed = [0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 1]; + let mut rng = ChaChaRng::from_seed(seed); + + // Skip block 0 + for _ in 0..16 { rng.next_u32(); } + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0x2452eb3a, 0x9249f8ec, 0x8d829d9b, 0xddd4ceb1, + 0xe8252083, 0x60818b01, 0xf38422b8, 0x5aaa49c9, + 0xbb00ca8e, 0xda3ba7b4, 0xc4b592d1, 0xfdf2732f, + 0x4436274e, 0x2561b3c8, 0xebdd4aa6, 0xa0136c00]; + assert_eq!(results, expected); + } + + #[test] + fn test_chacha_true_values_c() { + // Test vector 4 from + // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 + let seed = [0, 0xff, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0]; + let expected = [0xfb4dd572, 0x4bc42ef1, 0xdf922636, 0x327f1394, + 0xa78dea8f, 0x5e269039, 0xa1bebbc1, 0xcaf09aae, + 0xa25ab213, 0x48a6b46c, 0x1b9d9bcb, 0x092c5be6, + 0x546ca624, 0x1bec45d5, 0x87f47473, 0x96f0992e]; + let mut results = [0u32; 16]; + + // Test block 2 by skipping block 0 and 1 + let mut rng1 = ChaChaRng::from_seed(seed); + for _ in 0..32 { rng1.next_u32(); } + for i in results.iter_mut() { *i = rng1.next_u32(); } + assert_eq!(results, expected); + + // Test block 2 by using `set_counter` + let mut rng2 = ChaChaRng::from_seed(seed); + rng2.set_counter(2, 0); + for i in results.iter_mut() { *i = rng2.next_u32(); } + assert_eq!(results, expected); + } + + #[test] + fn test_chacha_multiple_blocks() { + let seed = [0,0,0,0, 1,0,0,0, 2,0,0,0, 3,0,0,0, 4,0,0,0, 5,0,0,0, 6,0,0,0, 7,0,0,0]; + let mut rng = ChaChaRng::from_seed(seed); + + // Store the 17*i-th 32-bit word, + // i.e., the i-th word of the i-th 16-word block + let mut results = [0u32; 16]; + for i in results.iter_mut() { + *i = rng.next_u32(); + for _ in 0..16 { + rng.next_u32(); + } + } + let expected = [0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036, + 0x49884684, 0x64efec72, 0x4be2d186, 0x3615b384, + 0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530, + 0x2c5bad8f, 0x898881dc, 0x5f1c86d9, 0xc1f8e7f4]; + assert_eq!(results, expected); + } + + #[test] + fn test_chacha_true_bytes() { + let seed = [0u8; 32]; + let mut rng = ChaChaRng::from_seed(seed); + let mut results = [0u8; 32]; + rng.fill_bytes(&mut results); + let expected = [118, 184, 224, 173, 160, 241, 61, 144, + 64, 93, 106, 229, 83, 134, 189, 40, + 189, 210, 25, 184, 160, 141, 237, 26, + 168, 54, 239, 204, 139, 119, 13, 199]; + assert_eq!(results, expected); + } + + #[test] + fn test_chacha_set_counter() { + // Test vector 5 from + // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 + // Although we do not support setting a nonce, we try it here anyway so + // we can use this test vector. + let seed = [0u8; 32]; + let mut rng = ChaChaRng::from_seed(seed); + rng.set_counter(0, 2u64 << 56); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0x374dc6c2, 0x3736d58c, 0xb904e24a, 0xcd3f93ef, + 0x88228b1a, 0x96a4dfb3, 0x5b76ab72, 0xc727ee54, + 0x0e0e978a, 0xf3145c95, 0x1b748ea8, 0xf786c297, + 0x99c28f5f, 0x628314e8, 0x398a19fa, 0x6ded1b53]; + assert_eq!(results, expected); + } + + #[test] + fn test_chacha_set_rounds() { + let seed = [0u8; 32]; + let mut rng = ChaChaRng::from_seed(seed); + rng.set_rounds(8); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + + let expected = [0x2fef003e, 0xd6405f89, 0xe8b85b7f, 0xa1a5091f, + 0xc30e842c, 0x3b7f9ace, 0x88e11b18, 0x1e1a71ef, + 0x72e14c98, 0x416f21b9, 0x6753449f, 0x19566d45, + 0xa3424a31, 0x01b086da, 0xb8fd7b38, 0x42fe0c0e]; + assert_eq!(results, expected); + } + + #[test] + fn test_chacha_clone() { + let seed = [0,0,0,0, 1,0,0,0, 2,0,0,0, 3,0,0,0, 4,0,0,0, 5,0,0,0, 6,0,0,0, 7,0,0,0]; + let mut rng = ChaChaRng::from_seed(seed); + let mut clone = rng.clone(); + for _ in 0..16 { + assert_eq!(rng.next_u64(), clone.next_u64()); + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/prng/hc128.rs b/vendor/rand-8c5b0ac51d/src/prng/hc128.rs new file mode 100644 index 0000000..bd7fa46 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/prng/hc128.rs @@ -0,0 +1,457 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://www.rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The HC-128 random number generator. + +use core::fmt; +use rand_core::{BlockRngCore, CryptoRng, RngCore, SeedableRng, Error, le}; +use rand_core::impls::BlockRng; + +const SEED_WORDS: usize = 8; // 128 bit key followed by 128 bit iv + +/// A cryptographically secure random number generator that uses the HC-128 +/// algorithm. +/// +/// HC-128 is a stream cipher designed by Hongjun Wu [1], that we use as an RNG. +/// It is selected as one of the "stream ciphers suitable for widespread +/// adoption" by eSTREAM [2]. +/// +/// HC-128 is an array based RNG. In this it is similar to RC-4 and ISAAC before +/// it, but those have never been proven cryptographically secure (or have even +/// been significantly compromised, as in the case of RC-4 [5]). +/// +/// Because HC-128 works with simple indexing into a large array and with a few +/// operations that parallelize well, it has very good performance. The size of +/// the array it needs, 4kb, can however be a disadvantage. +/// +/// This implementation is not based on the version of HC-128 submitted to the +/// eSTREAM contest, but on a later version by the author with a few small +/// improvements from December 15, 2009 [3]. +/// +/// HC-128 has no known weaknesses that are easier to exploit than doing a +/// brute-force search of 2<sup>128</sup>. A very comprehensive analysis of the +/// current state of known attacks / weaknesses of HC-128 is given in [4]. +/// +/// The average cycle length is expected to be +/// 2<sup>1024*32-1</sup> = 2<sup>32767</sup>. +/// We support seeding with a 256-bit array, which matches the 128-bit key +/// concatenated with a 128-bit IV from the stream cipher. +/// +/// ## References +/// [1]: Hongjun Wu (2008). ["The Stream Cipher HC-128"]( +/// http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf). +/// *The eSTREAM Finalists*, LNCS 4986, pp. 39--47, Springer-Verlag. +/// +/// [2]: [eSTREAM: the ECRYPT Stream Cipher Project]( +/// http://www.ecrypt.eu.org/stream/) +/// +/// [3]: Hongjun Wu, [Stream Ciphers HC-128 and HC-256]( +/// https://www.ntu.edu.sg/home/wuhj/research/hc/index.html) +/// +/// [4]: Shashwat Raizada (January 2015),["Some Results On Analysis And +/// Implementation Of HC-128 Stream Cipher"]( +/// http://library.isical.ac.in:8080/jspui/bitstream/123456789/6636/1/TH431.pdf). +/// +/// [5]: Internet Engineering Task Force (Februari 2015), +/// ["Prohibiting RC4 Cipher Suites"](https://tools.ietf.org/html/rfc7465). +#[derive(Clone, Debug)] +pub struct Hc128Rng(BlockRng<Hc128Core>); + +impl RngCore for Hc128Rng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for Hc128Rng { + type Seed = <Hc128Core as SeedableRng>::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + Hc128Rng(BlockRng::<Hc128Core>::from_seed(seed)) + } + + fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { + BlockRng::<Hc128Core>::from_rng(rng).map(Hc128Rng) + } +} + +impl CryptoRng for Hc128Rng {} + +/// The core of `Hc128Rng`, used with `BlockRng`. +#[derive(Clone)] +pub struct Hc128Core { + t: [u32; 1024], + counter1024: usize, +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for Hc128Core { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "Hc128Core {{}}") + } +} + +impl BlockRngCore for Hc128Core { + type Item = u32; + type Results = [u32; 16]; + + fn generate(&mut self, results: &mut Self::Results) { + assert!(self.counter1024 % 16 == 0); + + let cc = self.counter1024 % 512; + let dd = (cc + 16) % 512; + let ee = cc.wrapping_sub(16) % 512; + + if self.counter1024 & 512 == 0 { + // P block + results[0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); + results[1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); + results[2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); + results[3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); + results[4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); + results[5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); + results[6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); + results[7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); + results[8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); + results[9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); + results[10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); + results[11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); + results[12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); + results[13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); + results[14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); + results[15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); + } else { + // Q block + results[0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); + results[1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); + results[2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); + results[3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); + results[4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); + results[5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); + results[6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); + results[7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); + results[8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); + results[9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); + results[10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); + results[11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); + results[12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); + results[13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); + results[14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); + results[15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); + } + self.counter1024 = self.counter1024.wrapping_add(16); + } +} + +impl Hc128Core { + // One step of HC-128, update P and generate 32 bits keystream + #[inline(always)] + fn step_p(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) + -> u32 + { + let (p, q) = self.t.split_at_mut(512); + // FIXME: it would be great if we the bounds checks here could be + // optimized out, and we would not need unsafe. + // This improves performance by about 7%. + unsafe { + let temp0 = p.get_unchecked(i511).rotate_right(23); + let temp1 = p.get_unchecked(i3).rotate_right(10); + let temp2 = p.get_unchecked(i10).rotate_right(8); + *p.get_unchecked_mut(i) = p.get_unchecked(i) + .wrapping_add(temp2) + .wrapping_add(temp0 ^ temp1); + let temp3 = { + // The h1 function in HC-128 + let a = *p.get_unchecked(i12) as u8; + let c = (p.get_unchecked(i12) >> 16) as u8; + q[a as usize].wrapping_add(q[256 + c as usize]) + }; + temp3 ^ p.get_unchecked(i) + } + } + + // One step of HC-128, update Q and generate 32 bits keystream + // Similar to `step_p`, but `p` and `q` are swapped, and the rotates are to + // the left instead of to the right. + #[inline(always)] + fn step_q(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) + -> u32 + { + let (p, q) = self.t.split_at_mut(512); + unsafe { + let temp0 = q.get_unchecked(i511).rotate_left(23); + let temp1 = q.get_unchecked(i3).rotate_left(10); + let temp2 = q.get_unchecked(i10).rotate_left(8); + *q.get_unchecked_mut(i) = q.get_unchecked(i) + .wrapping_add(temp2) + .wrapping_add(temp0 ^ temp1); + let temp3 = { + // The h2 function in HC-128 + let a = *q.get_unchecked(i12) as u8; + let c = (q.get_unchecked(i12) >> 16) as u8; + p[a as usize].wrapping_add(p[256 + c as usize]) + }; + temp3 ^ q.get_unchecked(i) + } + } + + fn sixteen_steps(&mut self) { + assert!(self.counter1024 % 16 == 0); + + let cc = self.counter1024 % 512; + let dd = (cc + 16) % 512; + let ee = cc.wrapping_sub(16) % 512; + + if self.counter1024 < 512 { + // P block + self.t[cc+0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); + self.t[cc+1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); + self.t[cc+2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); + self.t[cc+3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); + self.t[cc+4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); + self.t[cc+5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); + self.t[cc+6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); + self.t[cc+7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); + self.t[cc+8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); + self.t[cc+9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); + self.t[cc+10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); + self.t[cc+11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); + self.t[cc+12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); + self.t[cc+13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); + self.t[cc+14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); + self.t[cc+15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); + } else { + // Q block + self.t[cc+512+0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); + self.t[cc+512+1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); + self.t[cc+512+2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); + self.t[cc+512+3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); + self.t[cc+512+4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); + self.t[cc+512+5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); + self.t[cc+512+6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); + self.t[cc+512+7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); + self.t[cc+512+8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); + self.t[cc+512+9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); + self.t[cc+512+10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); + self.t[cc+512+11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); + self.t[cc+512+12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); + self.t[cc+512+13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); + self.t[cc+512+14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); + self.t[cc+512+15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); + } + self.counter1024 += 16; + } + + // Initialize an HC-128 random number generator. The seed has to be + // 256 bits in length (`[u32; 8]`), matching the 128 bit `key` followed by + // 128 bit `iv` when HC-128 where to be used as a stream cipher. + fn init(seed: [u32; SEED_WORDS]) -> Self { + #[inline] + fn f1(x: u32) -> u32 { + x.rotate_right(7) ^ x.rotate_right(18) ^ (x >> 3) + } + + #[inline] + fn f2(x: u32) -> u32 { + x.rotate_right(17) ^ x.rotate_right(19) ^ (x >> 10) + } + + let mut t = [0u32; 1024]; + + // Expand the key and iv into P and Q + let (key, iv) = seed.split_at(4); + t[..4].copy_from_slice(key); + t[4..8].copy_from_slice(key); + t[8..12].copy_from_slice(iv); + t[12..16].copy_from_slice(iv); + + // Generate the 256 intermediate values W[16] ... W[256+16-1], and + // copy the last 16 generated values to the start op P. + for i in 16..256+16 { + t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) + .wrapping_add(t[i-16]).wrapping_add(i as u32); + } + { + let (p1, p2) = t.split_at_mut(256); + p1[0..16].copy_from_slice(&p2[0..16]); + } + + // Generate both the P and Q tables + for i in 16..1024 { + t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) + .wrapping_add(t[i-16]).wrapping_add(256 + i as u32); + } + + let mut core = Self { t, counter1024: 0 }; + + // run the cipher 1024 steps + for _ in 0..64 { core.sixteen_steps() }; + core.counter1024 = 0; + core + } +} + +impl SeedableRng for Hc128Core { + type Seed = [u8; SEED_WORDS*4]; + + /// Create an HC-128 random number generator with a seed. The seed has to be + /// 256 bits in length, matching the 128 bit `key` followed by 128 bit `iv` + /// when HC-128 where to be used as a stream cipher. + fn from_seed(seed: Self::Seed) -> Self { + let mut seed_u32 = [0u32; SEED_WORDS]; + le::read_u32_into(&seed, &mut seed_u32); + Self::init(seed_u32) + } +} + +impl CryptoRng for Hc128Core {} + +#[cfg(test)] +mod test { + use {RngCore, SeedableRng}; + use super::Hc128Rng; + + #[test] + // Test vector 1 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_a() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0x73150082, 0x3bfd03a0, 0xfb2fd77f, 0xaa63af0e, + 0xde122fc6, 0xa7dc29b6, 0x62a68527, 0x8b75ec68, + 0x9036db1e, 0x81896005, 0x00ade078, 0x491fbf9a, + 0x1cdc3013, 0x6c3d6e24, 0x90f664b2, 0x9cd57102]; + assert_eq!(results, expected); + } + + #[test] + // Test vector 2 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_b() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0xc01893d5, 0xb7dbe958, 0x8f65ec98, 0x64176604, + 0x36fc6724, 0xc82c6eec, 0x1b1c38a7, 0xc9b42a95, + 0x323ef123, 0x0a6a908b, 0xce757b68, 0x9f14f7bb, + 0xe4cde011, 0xaeb5173f, 0x89608c94, 0xb5cf46ca]; + assert_eq!(results, expected); + } + + #[test] + // Test vector 3 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_c() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0x518251a4, 0x04b4930a, 0xb02af931, 0x0639f032, + 0xbcb4a47a, 0x5722480b, 0x2bf99f72, 0xcdc0e566, + 0x310f0c56, 0xd3cc83e8, 0x663db8ef, 0x62dfe07f, + 0x593e1790, 0xc5ceaa9c, 0xab03806f, 0xc9a6e5a0]; + assert_eq!(results, expected); + } + + #[test] + fn test_hc128_true_values_u64() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u64; 8]; + for i in results.iter_mut() { *i = rng.next_u64(); } + let expected = [0x3bfd03a073150082, 0xaa63af0efb2fd77f, + 0xa7dc29b6de122fc6, 0x8b75ec6862a68527, + 0x818960059036db1e, 0x491fbf9a00ade078, + 0x6c3d6e241cdc3013, 0x9cd5710290f664b2]; + assert_eq!(results, expected); + + // The RNG operates in a P block of 512 results and next a Q block. + // After skipping 2*800 u32 results we end up somewhere in the Q block + // of the second round + for _ in 0..800 { rng.next_u64(); } + + for i in results.iter_mut() { *i = rng.next_u64(); } + let expected = [0xd8c4d6ca84d0fc10, 0xf16a5d91dc66e8e7, + 0xd800de5bc37a8653, 0x7bae1f88c0dfbb4c, + 0x3bfe1f374e6d4d14, 0x424b55676be3fa06, + 0xe3a1e8758cbff579, 0x417f7198c5652bcd]; + assert_eq!(results, expected); + } + + #[test] + fn test_hc128_true_values_bytes() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + let expected = [0x31, 0xf9, 0x2a, 0xb0, 0x32, 0xf0, 0x39, 0x06, + 0x7a, 0xa4, 0xb4, 0xbc, 0x0b, 0x48, 0x22, 0x57, + 0x72, 0x9f, 0xf9, 0x2b, 0x66, 0xe5, 0xc0, 0xcd, + 0x56, 0x0c, 0x0f, 0x31, 0xe8, 0x83, 0xcc, 0xd3, + 0xef, 0xb8, 0x3d, 0x66, 0x7f, 0xe0, 0xdf, 0x62, + 0x90, 0x17, 0x3e, 0x59, 0x9c, 0xaa, 0xce, 0xc5, + 0x6f, 0x80, 0x03, 0xab, 0xa0, 0xe5, 0xa6, 0xc9, + 0x60, 0x95, 0x84, 0x7a, 0xa5, 0x68, 0x5a, 0x84, + 0xea, 0xd5, 0xf3, 0xea, 0x73, 0xa9, 0xad, 0x01, + 0x79, 0x7d, 0xbe, 0x9f, 0xea, 0xe3, 0xf9, 0x74, + 0x0e, 0xda, 0x2f, 0xa0, 0xe4, 0x7b, 0x4b, 0x1b, + 0xdd, 0x17, 0x69, 0x4a, 0xfe, 0x9f, 0x56, 0x95, + 0xad, 0x83, 0x6b, 0x9d, 0x60, 0xa1, 0x99, 0x96, + 0x90, 0x00, 0x66, 0x7f, 0xfa, 0x7e, 0x65, 0xe9, + 0xac, 0x8b, 0x92, 0x34, 0x77, 0xb4, 0x23, 0xd0, + 0xb9, 0xab, 0xb1, 0x47, 0x7d, 0x4a, 0x13, 0x0a]; + + // Pick a somewhat large buffer so we can test filling with the + // remainder from `state.results`, directly filling the buffer, and + // filling the remainder of the buffer. + let mut buffer = [0u8; 16*4*2]; + // Consume a value so that we have a remainder. + assert!(rng.next_u64() == 0x04b4930a518251a4); + rng.fill_bytes(&mut buffer); + + // [u8; 128] doesn't implement PartialEq + assert_eq!(buffer.len(), expected.len()); + for (b, e) in buffer.iter().zip(expected.iter()) { + assert_eq!(b, e); + } + } + + #[test] + fn test_hc128_clone() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng1 = Hc128Rng::from_seed(seed); + let mut rng2 = rng1.clone(); + for _ in 0..16 { + assert_eq!(rng1.next_u32(), rng2.next_u32()); + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/prng/isaac.rs b/vendor/rand-8c5b0ac51d/src/prng/isaac.rs new file mode 100644 index 0000000..5bf739d --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/prng/isaac.rs @@ -0,0 +1,482 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The ISAAC random number generator. + +use core::{fmt, slice}; +use core::num::Wrapping as w; +use rand_core::{BlockRngCore, RngCore, SeedableRng, Error, le}; +use rand_core::impls::BlockRng; +use prng::isaac_array::IsaacArray; + +#[allow(non_camel_case_types)] +type w32 = w<u32>; + +const RAND_SIZE_LEN: usize = 8; +const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; + +/// A random number generator that uses the ISAAC algorithm. +/// +/// ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are +/// the principal bitwise operations employed. It is the most advanced of a +/// series of array based random number generator designed by Robert Jenkins +/// in 1996[1][2]. +/// +/// ISAAC is notably fast and produces excellent quality random numbers for +/// non-cryptographic applications. +/// +/// In spite of being designed with cryptographic security in mind, ISAAC hasn't +/// been stringently cryptanalyzed and thus cryptographers do not not +/// consensually trust it to be secure. When looking for a secure RNG, prefer +/// [`Hc128Rng`] instead, which, like ISAAC, is an array-based RNG and one of +/// the stream-ciphers selected the by eSTREAM contest. +/// +/// In 2006 an improvement to ISAAC was suggested by Jean-Philippe Aumasson, +/// named ISAAC+[3]. But because the specification is not complete, because +/// there is no good implementation, and because the suggested bias may not +/// exist, it is not implemented here. +/// +/// ## Overview of the ISAAC algorithm: +/// (in pseudo-code) +/// +/// ```text +/// Input: a, b, c, s[256] // state +/// Output: r[256] // results +/// +/// mix(a,i) = a ^ a << 13 if i = 0 mod 4 +/// a ^ a >> 6 if i = 1 mod 4 +/// a ^ a << 2 if i = 2 mod 4 +/// a ^ a >> 16 if i = 3 mod 4 +/// +/// c = c + 1 +/// b = b + c +/// +/// for i in 0..256 { +/// x = s_[i] +/// a = f(a,i) + s[i+128 mod 256] +/// y = a + b + s[x>>2 mod 256] +/// s[i] = y +/// b = x + s[y>>10 mod 256] +/// r[i] = b +/// } +/// ``` +/// +/// Numbers are generated in blocks of 256. This means the function above only +/// runs once every 256 times you ask for a next random number. In all other +/// circumstances the last element of the results array is returned. +/// +/// ISAAC therefore needs a lot of memory, relative to other non-vrypto RNGs. +/// 2 * 256 * 4 = 2 kb to hold the state and results. +/// +/// ## References +/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number generator*]( +/// http://burtleburtle.net/bob/rand/isaacafa.html) +/// +/// [2]: Bob Jenkins, [*ISAAC and RC4*]( +/// http://burtleburtle.net/bob/rand/isaac.html) +/// +/// [3]: Jean-Philippe Aumasson, [*On the pseudo-random generator ISAAC*]( +/// https://eprint.iacr.org/2006/438) +/// +/// [`Hc128Rng`]: ../hc128/struct.Hc128Rng.html +#[derive(Clone, Debug)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct IsaacRng(BlockRng<IsaacCore>); + +impl RngCore for IsaacRng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for IsaacRng { + type Seed = <IsaacCore as SeedableRng>::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + IsaacRng(BlockRng::<IsaacCore>::from_seed(seed)) + } + + fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { + BlockRng::<IsaacCore>::from_rng(rng).map(|rng| IsaacRng(rng)) + } +} + +impl IsaacRng { + /// Create an ISAAC random number generator using the default + /// fixed seed. + /// + /// DEPRECATED. `IsaacRng::new_from_u64(0)` will produce identical results. + #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] + pub fn new_unseeded() -> Self { + Self::new_from_u64(0) + } + + /// Create an ISAAC random number generator using an `u64` as seed. + /// If `seed == 0` this will produce the same stream of random numbers as + /// the reference implementation when used unseeded. + pub fn new_from_u64(seed: u64) -> Self { + IsaacRng(BlockRng::new(IsaacCore::new_from_u64(seed))) + } +} + +/// The core of `IsaacRng`, used with `BlockRng`. +#[derive(Clone)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct IsaacCore { + #[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))] + mem: [w32; RAND_SIZE], + a: w32, + b: w32, + c: w32, +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for IsaacCore { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "IsaacCore {{}}") + } +} + +impl BlockRngCore for IsaacCore { + type Item = u32; + type Results = IsaacArraySelf::Item; + + /// Refills the output buffer, `results`. See also the pseudocode desciption + /// of the algorithm in the [`Isaac64Rng`] documentation. + /// + /// Optimisations used (similar to the reference implementation): + /// + /// - The loop is unrolled 4 times, once for every constant of mix(). + /// - The contents of the main loop are moved to a function `rngstep`, to + /// reduce code duplication. + /// - We use local variables for a and b, which helps with optimisations. + /// - We split the main loop in two, one that operates over 0..128 and one + /// over 128..256. This way we can optimise out the addition and modulus + /// from `s[i+128 mod 256]`. + /// - We maintain one index `i` and add `m` or `m2` as base (m2 for the + /// `s[i+128 mod 256]`), relying on the optimizer to turn it into pointer + /// arithmetic. + /// - We fill `results` backwards. The reference implementation reads values + /// from `results` in reverse. We read them in the normal direction, to + /// make `fill_bytes` a memcopy. To maintain compatibility we fill in + /// reverse. + /// + /// [`IsaacRng`]: struct.IsaacRng.html + fn generate(&mut self, results: &mut IsaacArraySelf::Item) { + self.c += w(1); + // abbreviations + let mut a = self.a; + let mut b = self.b + self.c; + const MIDPOINT: usize = RAND_SIZE / 2; + + #[inline] + fn ind(mem:&[w32; RAND_SIZE], v: w32, amount: usize) -> w32 { + let index = (v >> amount).0 as usize % RAND_SIZE; + mem[index] + } + + #[inline] + fn rngstep(mem: &mut [w32; RAND_SIZE], + results: &mut [u32; RAND_SIZE], + mix: w32, + a: &mut w32, + b: &mut w32, + base: usize, + m: usize, + m2: usize) { + let x = mem[base + m]; + *a = mix + mem[base + m2]; + let y = *a + *b + ind(&mem, x, 2); + mem[base + m] = y; + *b = x + ind(&mem, y, 2 + RAND_SIZE_LEN); + results[RAND_SIZE - 1 - base - m] = (*b).0; + } + + let mut m = 0; + let mut m2 = MIDPOINT; + for i in (0..MIDPOINT/4).map(|i| i * 4) { + rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 6 ), &mut a, &mut b, i + 1, m, m2); + rngstep(&mut self.mem, results, a ^ (a << 2 ), &mut a, &mut b, i + 2, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 16), &mut a, &mut b, i + 3, m, m2); + } + + m = MIDPOINT; + m2 = 0; + for i in (0..MIDPOINT/4).map(|i| i * 4) { + rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 6 ), &mut a, &mut b, i + 1, m, m2); + rngstep(&mut self.mem, results, a ^ (a << 2 ), &mut a, &mut b, i + 2, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 16), &mut a, &mut b, i + 3, m, m2); + } + + self.a = a; + self.b = b; + } +} + +impl IsaacCore { + /// Create a new ISAAC random number generator. + /// + /// The author Bob Jenkins describes how to best initialize ISAAC here: + /// https://rt.cpan.org/Public/Bug/Display.html?id=64324 + /// The answer is included here just in case: + /// + /// "No, you don't need a full 8192 bits of seed data. Normal key sizes will + /// do fine, and they should have their expected strength (eg a 40-bit key + /// will take as much time to brute force as 40-bit keys usually will). You + /// could fill the remainder with 0, but set the last array element to the + /// length of the key provided (to distinguish keys that differ only by + /// different amounts of 0 padding). You do still need to call randinit() to + /// make sure the initial state isn't uniform-looking." + /// "After publishing ISAAC, I wanted to limit the key to half the size of + /// r[], and repeat it twice. That would have made it hard to provide a key + /// that sets the whole internal state to anything convenient. But I'd + /// already published it." + /// + /// And his answer to the question "For my code, would repeating the key + /// over and over to fill 256 integers be a better solution than + /// zero-filling, or would they essentially be the same?": + /// "If the seed is under 32 bytes, they're essentially the same, otherwise + /// repeating the seed would be stronger. randinit() takes a chunk of 32 + /// bytes, mixes it, and combines that with the next 32 bytes, et cetera. + /// Then loops over all the elements the same way a second time." + #[inline] + fn init(mut mem: [w32; RAND_SIZE], rounds: u32) -> Self { + fn mix(a: &mut w32, b: &mut w32, c: &mut w32, d: &mut w32, + e: &mut w32, f: &mut w32, g: &mut w32, h: &mut w32) { + *a ^= *b << 11; *d += *a; *b += *c; + *b ^= *c >> 2; *e += *b; *c += *d; + *c ^= *d << 8; *f += *c; *d += *e; + *d ^= *e >> 16; *g += *d; *e += *f; + *e ^= *f << 10; *h += *e; *f += *g; + *f ^= *g >> 4; *a += *f; *g += *h; + *g ^= *h << 8; *b += *g; *h += *a; + *h ^= *a >> 9; *c += *h; *a += *b; + } + + // These numbers are the result of initializing a...h with the + // fractional part of the golden ratio in binary (0x9e3779b9) + // and applying mix() 4 times. + let mut a = w(0x1367df5a); + let mut b = w(0x95d90059); + let mut c = w(0xc3163e4b); + let mut d = w(0x0f421ad8); + let mut e = w(0xd92a4a78); + let mut f = w(0xa51a3c49); + let mut g = w(0xc4efea1b); + let mut h = w(0x30609119); + + // Normally this should do two passes, to make all of the seed effect + // all of `mem` + for _ in 0..rounds { + for i in (0..RAND_SIZE/8).map(|i| i * 8) { + a += mem[i ]; b += mem[i+1]; + c += mem[i+2]; d += mem[i+3]; + e += mem[i+4]; f += mem[i+5]; + g += mem[i+6]; h += mem[i+7]; + mix(&mut a, &mut b, &mut c, &mut d, + &mut e, &mut f, &mut g, &mut h); + mem[i ] = a; mem[i+1] = b; + mem[i+2] = c; mem[i+3] = d; + mem[i+4] = e; mem[i+5] = f; + mem[i+6] = g; mem[i+7] = h; + } + } + + Self { mem, a: w(0), b: w(0), c: w(0) } + } + + /// Create an ISAAC random number generator using an `u64` as seed. + /// If `seed == 0` this will produce the same stream of random numbers as + /// the reference implementation when used unseeded. + fn new_from_u64(seed: u64) -> Self { + let mut key = [w(0); RAND_SIZE]; + key[0] = w(seed as u32); + key[1] = w((seed >> 32) as u32); + // Initialize with only one pass. + // A second pass does not improve the quality here, because all of the + // seed was already available in the first round. + // Not doing the second pass has the small advantage that if + // `seed == 0` this method produces exactly the same state as the + // reference implementation when used unseeded. + Self::init(key, 1) + } +} + +impl SeedableRng for IsaacCore { + type Seed = [u8; 32]; + + fn from_seed(seed: Self::Seed) -> Self { + let mut seed_u32 = [0u32; 8]; + le::read_u32_into(&seed, &mut seed_u32); + // Convert the seed to `Wrapping<u32>` and zero-extend to `RAND_SIZE`. + let mut seed_extended = [w(0); RAND_SIZE]; + for (x, y) in seed_extended.iter_mut().zip(seed_u32.iter()) { + *x = w(*y); + } + Self::init(seed_extended, 2) + } + + fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { + // Custom `from_rng` implementation that fills a seed with the same size + // as the entire state. + let mut seed = [w(0u32); RAND_SIZE]; + unsafe { + let ptr = seed.as_mut_ptr() as *mut u8; + + let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 4); + rng.try_fill_bytes(slice)?; + } + for i in seed.iter_mut() { + *i = w(i.0.to_le()); + } + + Ok(Self::init(seed, 2)) + } +} + +#[cfg(test)] +mod test { + use {RngCore, SeedableRng}; + use super::IsaacRng; + + #[test] + fn test_isaac_construction() { + // Test that various construction techniques produce a working RNG. + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng1 = IsaacRng::from_seed(seed); + assert_eq!(rng1.next_u32(), 2869442790); + + let mut rng2 = IsaacRng::from_rng(rng1).unwrap(); + assert_eq!(rng2.next_u32(), 3094074039); + } + + #[test] + fn test_isaac_true_values_32() { + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng1 = IsaacRng::from_seed(seed); + let mut results = [0u32; 10]; + for i in results.iter_mut() { *i = rng1.next_u32(); } + let expected = [ + 2558573138, 873787463, 263499565, 2103644246, 3595684709, + 4203127393, 264982119, 2765226902, 2737944514, 3900253796]; + assert_eq!(results, expected); + + let seed = [57,48,0,0, 50,9,1,0, 49,212,0,0, 148,38,0,0, + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng2 = IsaacRng::from_seed(seed); + // skip forward to the 10000th number + for _ in 0..10000 { rng2.next_u32(); } + + for i in results.iter_mut() { *i = rng2.next_u32(); } + let expected = [ + 3676831399, 3183332890, 2834741178, 3854698763, 2717568474, + 1576568959, 3507990155, 179069555, 141456972, 2478885421]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac_true_values_64() { + // As above, using little-endian versions of above values + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng = IsaacRng::from_seed(seed); + let mut results = [0u64; 5]; + for i in results.iter_mut() { *i = rng.next_u64(); } + let expected = [ + 3752888579798383186, 9035083239252078381,18052294697452424037, + 11876559110374379111, 16751462502657800130]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac_true_bytes() { + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng = IsaacRng::from_seed(seed); + let mut results = [0u8; 32]; + rng.fill_bytes(&mut results); + // Same as first values in test_isaac_true_values as bytes in LE order + let expected = [82, 186, 128, 152, 71, 240, 20, 52, + 45, 175, 180, 15, 86, 16, 99, 125, + 101, 203, 81, 214, 97, 162, 134, 250, + 103, 78, 203, 15, 150, 3, 210, 164]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac_new_uninitialized() { + // Compare the results from initializing `IsaacRng` with + // `new_from_u64(0)`, to make sure it is the same as the reference + // implementation when used uninitialized. + // Note: We only test the first 16 integers, not the full 256 of the + // first block. + let mut rng = IsaacRng::new_from_u64(0); + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected: [u32; 16] = [ + 0x71D71FD2, 0xB54ADAE7, 0xD4788559, 0xC36129FA, + 0x21DC1EA9, 0x3CB879CA, 0xD83B237F, 0xFA3CE5BD, + 0x8D048509, 0xD82E9489, 0xDB452848, 0xCA20E846, + 0x500F972E, 0x0EEFF940, 0x00D6B993, 0xBC12C17F]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac_clone() { + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng1 = IsaacRng::from_seed(seed); + let mut rng2 = rng1.clone(); + for _ in 0..16 { + assert_eq!(rng1.next_u32(), rng2.next_u32()); + } + } + + #[test] + #[cfg(all(feature="serde1", feature="std"))] + fn test_isaac_serde() { + use bincode; + use std::io::{BufWriter, BufReader}; + + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng = IsaacRng::from_seed(seed); + + let buf: Vec<u8> = Vec::new(); + let mut buf = BufWriter::new(buf); + bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); + + let buf = buf.into_inner().unwrap(); + let mut read = BufReader::new(&buf[..]); + let mut deserialized: IsaacRng = bincode::deserialize_from(&mut read).expect("Could not deserialize"); + + for _ in 0..300 { // more than the 256 buffered results + assert_eq!(rng.next_u32(), deserialized.next_u32()); + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/prng/isaac64.rs b/vendor/rand-8c5b0ac51d/src/prng/isaac64.rs new file mode 100644 index 0000000..35376fb --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/prng/isaac64.rs @@ -0,0 +1,474 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The ISAAC-64 random number generator. + +use core::{fmt, slice}; +use core::num::Wrapping as w; +use rand_core::{BlockRngCore, RngCore, SeedableRng, Error, le}; +use rand_core::impls::BlockRng64; +use prng::isaac_array::IsaacArray; + +#[allow(non_camel_case_types)] +type w64 = w<u64>; + +const RAND_SIZE_LEN: usize = 8; +const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; + +/// A random number generator that uses ISAAC-64, the 64-bit variant of the +/// ISAAC algorithm. +/// +/// ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are +/// the principal bitwise operations employed. It is the most advanced of a +/// series of array based random number generator designed by Robert Jenkins +/// in 1996[1]. +/// +/// ISAAC-64 is mostly similar to ISAAC. Because it operates on 64-bit integers +/// instead of 32-bit, it uses twice as much memory to hold its state and +/// results. Also it uses different constants for shifts and indirect indexing, +/// optimized to give good results for 64bit arithmetic. +/// +/// ISAAC-64 is notably fast and produces excellent quality random numbers for +/// non-cryptographic applications. +/// +/// In spite of being designed with cryptographic security in mind, ISAAC hasn't +/// been stringently cryptanalyzed and thus cryptographers do not not +/// consensually trust it to be secure. When looking for a secure RNG, prefer +/// [`Hc128Rng`] instead, which, like ISAAC, is an array-based RNG and one of +/// the stream-ciphers selected the by eSTREAM contest. +/// +/// ## Overview of the ISAAC-64 algorithm: +/// (in pseudo-code) +/// +/// ```text +/// Input: a, b, c, s[256] // state +/// Output: r[256] // results +/// +/// mix(a,i) = !(a ^ a << 21) if i = 0 mod 4 +/// a ^ a >> 5 if i = 1 mod 4 +/// a ^ a << 12 if i = 2 mod 4 +/// a ^ a >> 33 if i = 3 mod 4 +/// +/// c = c + 1 +/// b = b + c +/// +/// for i in 0..256 { +/// x = s_[i] +/// a = mix(a,i) + s[i+128 mod 256] +/// y = a + b + s[x>>3 mod 256] +/// s[i] = y +/// b = x + s[y>>11 mod 256] +/// r[i] = b +/// } +/// ``` +/// +/// See for more information the documentation of [`IsaacRng`]. +/// +/// [1]: Bob Jenkins, [*ISAAC and RC4*]( +/// http://burtleburtle.net/bob/rand/isaac.html) +/// +/// [`IsaacRng`]: ../isaac/struct.IsaacRng.html +/// [`Hc128Rng`]: ../hc128/struct.Hc128Rng.html +#[derive(Clone, Debug)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct Isaac64Rng(BlockRng64<Isaac64Core>); + +impl RngCore for Isaac64Rng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for Isaac64Rng { + type Seed = <Isaac64Core as SeedableRng>::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + Isaac64Rng(BlockRng64::<Isaac64Core>::from_seed(seed)) + } + + fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { + BlockRng64::<Isaac64Core>::from_rng(rng).map(|rng| Isaac64Rng(rng)) + } +} + +impl Isaac64Rng { + /// Create a 64-bit ISAAC random number generator using the + /// default fixed seed. + /// + /// DEPRECATED. `Isaac64Rng::new_from_u64(0)` will produce identical results. + #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] + pub fn new_unseeded() -> Self { + Self::new_from_u64(0) + } + + /// Create an ISAAC-64 random number generator using an `u64` as seed. + /// If `seed == 0` this will produce the same stream of random numbers as + /// the reference implementation when used unseeded. + pub fn new_from_u64(seed: u64) -> Self { + Isaac64Rng(BlockRng64::new(Isaac64Core::new_from_u64(seed))) + } +} + +/// The core of `Isaac64Rng`, used with `BlockRng`. +#[derive(Clone)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct Isaac64Core { + #[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))] + mem: [w64; RAND_SIZE], + a: w64, + b: w64, + c: w64, +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for Isaac64Core { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "Isaac64Core {{}}") + } +} + +impl BlockRngCore for Isaac64Core { + type Item = u64; + type Results = IsaacArraySelf::Item; + + /// Refills the output buffer, `results`. See also the pseudocode desciption + /// of the algorithm in the [`Isaac64Rng`] documentation. + /// + /// Optimisations used (similar to the reference implementation): + /// + /// - The loop is unrolled 4 times, once for every constant of mix(). + /// - The contents of the main loop are moved to a function `rngstep`, to + /// reduce code duplication. + /// - We use local variables for a and b, which helps with optimisations. + /// - We split the main loop in two, one that operates over 0..128 and one + /// over 128..256. This way we can optimise out the addition and modulus + /// from `s[i+128 mod 256]`. + /// - We maintain one index `i` and add `m` or `m2` as base (m2 for the + /// `s[i+128 mod 256]`), relying on the optimizer to turn it into pointer + /// arithmetic. + /// - We fill `results` backwards. The reference implementation reads values + /// from `results` in reverse. We read them in the normal direction, to + /// make `fill_bytes` a memcopy. To maintain compatibility we fill in + /// reverse. + /// + /// [`Isaac64Rng`]: struct.Isaac64Rng.html + fn generate(&mut self, results: &mut IsaacArraySelf::Item) { + self.c += w(1); + // abbreviations + let mut a = self.a; + let mut b = self.b + self.c; + const MIDPOINT: usize = RAND_SIZE / 2; + + #[inline] + fn ind(mem:&[w64; RAND_SIZE], v: w64, amount: usize) -> w64 { + let index = (v >> amount).0 as usize % RAND_SIZE; + mem[index] + } + + #[inline] + fn rngstep(mem: &mut [w64; RAND_SIZE], + results: &mut [u64; RAND_SIZE], + mix: w64, + a: &mut w64, + b: &mut w64, + base: usize, + m: usize, + m2: usize) { + let x = mem[base + m]; + *a = mix + mem[base + m2]; + let y = *a + *b + ind(&mem, x, 3); + mem[base + m] = y; + *b = x + ind(&mem, y, 3 + RAND_SIZE_LEN); + results[RAND_SIZE - 1 - base - m] = (*b).0; + } + + let mut m = 0; + let mut m2 = MIDPOINT; + for i in (0..MIDPOINT/4).map(|i| i * 4) { + rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 5 ), &mut a, &mut b, i + 1, m, m2); + rngstep(&mut self.mem, results, a ^ (a << 12), &mut a, &mut b, i + 2, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 33), &mut a, &mut b, i + 3, m, m2); + } + + m = MIDPOINT; + m2 = 0; + for i in (0..MIDPOINT/4).map(|i| i * 4) { + rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 5 ), &mut a, &mut b, i + 1, m, m2); + rngstep(&mut self.mem, results, a ^ (a << 12), &mut a, &mut b, i + 2, m, m2); + rngstep(&mut self.mem, results, a ^ (a >> 33), &mut a, &mut b, i + 3, m, m2); + } + + self.a = a; + self.b = b; + } +} + +impl Isaac64Core { + /// Create a new ISAAC-64 random number generator. + fn init(mut mem: [w64; RAND_SIZE], rounds: u32) -> Self { + fn mix(a: &mut w64, b: &mut w64, c: &mut w64, d: &mut w64, + e: &mut w64, f: &mut w64, g: &mut w64, h: &mut w64) { + *a -= *e; *f ^= *h >> 9; *h += *a; + *b -= *f; *g ^= *a << 9; *a += *b; + *c -= *g; *h ^= *b >> 23; *b += *c; + *d -= *h; *a ^= *c << 15; *c += *d; + *e -= *a; *b ^= *d >> 14; *d += *e; + *f -= *b; *c ^= *e << 20; *e += *f; + *g -= *c; *d ^= *f >> 17; *f += *g; + *h -= *d; *e ^= *g << 14; *g += *h; + } + + // These numbers are the result of initializing a...h with the + // fractional part of the golden ratio in binary (0x9e3779b97f4a7c13) + // and applying mix() 4 times. + let mut a = w(0x647c4677a2884b7c); + let mut b = w(0xb9f8b322c73ac862); + let mut c = w(0x8c0ea5053d4712a0); + let mut d = w(0xb29b2e824a595524); + let mut e = w(0x82f053db8355e0ce); + let mut f = w(0x48fe4a0fa5a09315); + let mut g = w(0xae985bf2cbfc89ed); + let mut h = w(0x98f5704f6c44c0ab); + + // Normally this should do two passes, to make all of the seed effect + // all of `mem` + for _ in 0..rounds { + for i in (0..RAND_SIZE/8).map(|i| i * 8) { + a += mem[i ]; b += mem[i+1]; + c += mem[i+2]; d += mem[i+3]; + e += mem[i+4]; f += mem[i+5]; + g += mem[i+6]; h += mem[i+7]; + mix(&mut a, &mut b, &mut c, &mut d, + &mut e, &mut f, &mut g, &mut h); + mem[i ] = a; mem[i+1] = b; + mem[i+2] = c; mem[i+3] = d; + mem[i+4] = e; mem[i+5] = f; + mem[i+6] = g; mem[i+7] = h; + } + } + + Self { mem, a: w(0), b: w(0), c: w(0) } + } + + /// Create an ISAAC-64 random number generator using an `u64` as seed. + /// If `seed == 0` this will produce the same stream of random numbers as + /// the reference implementation when used unseeded. + pub fn new_from_u64(seed: u64) -> Self { + let mut key = [w(0); RAND_SIZE]; + key[0] = w(seed); + // Initialize with only one pass. + // A second pass does not improve the quality here, because all of the + // seed was already available in the first round. + // Not doing the second pass has the small advantage that if + // `seed == 0` this method produces exactly the same state as the + // reference implementation when used unseeded. + Self::init(key, 1) + } +} + +impl SeedableRng for Isaac64Core { + type Seed = [u8; 32]; + + fn from_seed(seed: Self::Seed) -> Self { + let mut seed_u64 = [0u64; 4]; + le::read_u64_into(&seed, &mut seed_u64); + // Convert the seed to `Wrapping<u64>` and zero-extend to `RAND_SIZE`. + let mut seed_extended = [w(0); RAND_SIZE]; + for (x, y) in seed_extended.iter_mut().zip(seed_u64.iter()) { + *x = w(*y); + } + Self::init(seed_extended, 2) + } + + fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { + // Custom `from_rng` implementation that fills a seed with the same size + // as the entire state. + let mut seed = [w(0u64); RAND_SIZE]; + unsafe { + let ptr = seed.as_mut_ptr() as *mut u8; + let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 8); + rng.try_fill_bytes(slice)?; + } + for i in seed.iter_mut() { + *i = w(i.0.to_le()); + } + + Ok(Self::init(seed, 2)) + } +} + +#[cfg(test)] +mod test { + use {RngCore, SeedableRng}; + use super::Isaac64Rng; + + #[test] + fn test_isaac64_construction() { + // Test that various construction techniques produce a working RNG. + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng1 = Isaac64Rng::from_seed(seed); + assert_eq!(rng1.next_u64(), 14964555543728284049); + + let mut rng2 = Isaac64Rng::from_rng(rng1).unwrap(); + assert_eq!(rng2.next_u64(), 919595328260451758); + } + + #[test] + fn test_isaac64_true_values_64() { + let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, + 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; + let mut rng1 = Isaac64Rng::from_seed(seed); + let mut results = [0u64; 10]; + for i in results.iter_mut() { *i = rng1.next_u64(); } + let expected = [ + 15071495833797886820, 7720185633435529318, + 10836773366498097981, 5414053799617603544, + 12890513357046278984, 17001051845652595546, + 9240803642279356310, 12558996012687158051, + 14673053937227185542, 1677046725350116783]; + assert_eq!(results, expected); + + let seed = [57,48,0,0, 0,0,0,0, 50,9,1,0, 0,0,0,0, + 49,212,0,0, 0,0,0,0, 148,38,0,0, 0,0,0,0]; + let mut rng2 = Isaac64Rng::from_seed(seed); + // skip forward to the 10000th number + for _ in 0..10000 { rng2.next_u64(); } + + for i in results.iter_mut() { *i = rng2.next_u64(); } + let expected = [ + 18143823860592706164, 8491801882678285927, 2699425367717515619, + 17196852593171130876, 2606123525235546165, 15790932315217671084, + 596345674630742204, 9947027391921273664, 11788097613744130851, + 10391409374914919106]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac64_true_values_32() { + let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, + 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; + let mut rng = Isaac64Rng::from_seed(seed); + let mut results = [0u32; 12]; + for i in results.iter_mut() { *i = rng.next_u32(); } + // Subset of above values, as an LE u32 sequence + let expected = [ + 3477963620, 3509106075, + 687845478, 1797495790, + 227048253, 2523132918, + 4044335064, 1260557630, + 4079741768, 3001306521, + 69157722, 3958365844]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac64_true_values_mixed() { + let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, + 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; + let mut rng = Isaac64Rng::from_seed(seed); + // Test alternating between `next_u64` and `next_u32` works as expected. + // Values are the same as `test_isaac64_true_values` and + // `test_isaac64_true_values_32`. + assert_eq!(rng.next_u64(), 15071495833797886820); + assert_eq!(rng.next_u32(), 687845478); + assert_eq!(rng.next_u32(), 1797495790); + assert_eq!(rng.next_u64(), 10836773366498097981); + assert_eq!(rng.next_u32(), 4044335064); + // Skip one u32 + assert_eq!(rng.next_u64(), 12890513357046278984); + assert_eq!(rng.next_u32(), 69157722); + } + + #[test] + fn test_isaac64_true_bytes() { + let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, + 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; + let mut rng = Isaac64Rng::from_seed(seed); + let mut results = [0u8; 32]; + rng.fill_bytes(&mut results); + // Same as first values in test_isaac64_true_values as bytes in LE order + let expected = [100, 131, 77, 207, 155, 181, 40, 209, + 102, 176, 255, 40, 238, 155, 35, 107, + 61, 123, 136, 13, 246, 243, 99, 150, + 216, 167, 15, 241, 62, 149, 34, 75]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac64_new_uninitialized() { + // Compare the results from initializing `IsaacRng` with + // `new_from_u64(0)`, to make sure it is the same as the reference + // implementation when used uninitialized. + // Note: We only test the first 16 integers, not the full 256 of the + // first block. + let mut rng = Isaac64Rng::new_from_u64(0); + let mut results = [0u64; 16]; + for i in results.iter_mut() { *i = rng.next_u64(); } + let expected: [u64; 16] = [ + 0xF67DFBA498E4937C, 0x84A5066A9204F380, 0xFEE34BD5F5514DBB, + 0x4D1664739B8F80D6, 0x8607459AB52A14AA, 0x0E78BC5A98529E49, + 0xFE5332822AD13777, 0x556C27525E33D01A, 0x08643CA615F3149F, + 0xD0771FAF3CB04714, 0x30E86F68A37B008D, 0x3074EBC0488A3ADF, + 0x270645EA7A2790BC, 0x5601A0A8D3763C6A, 0x2F83071F53F325DD, + 0xB9090F3D42D2D2EA]; + assert_eq!(results, expected); + } + + #[test] + fn test_isaac64_clone() { + let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, + 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; + let mut rng1 = Isaac64Rng::from_seed(seed); + let mut rng2 = rng1.clone(); + for _ in 0..16 { + assert_eq!(rng1.next_u64(), rng2.next_u64()); + } + } + + #[test] + #[cfg(all(feature="serde1", feature="std"))] + fn test_isaac64_serde() { + use bincode; + use std::io::{BufWriter, BufReader}; + + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng = Isaac64Rng::from_seed(seed); + + let buf: Vec<u8> = Vec::new(); + let mut buf = BufWriter::new(buf); + bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); + + let buf = buf.into_inner().unwrap(); + let mut read = BufReader::new(&buf[..]); + let mut deserialized: Isaac64Rng = bincode::deserialize_from(&mut read).expect("Could not deserialize"); + + for _ in 0..300 { // more than the 256 buffered results + assert_eq!(rng.next_u64(), deserialized.next_u64()); + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs b/vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs new file mode 100644 index 0000000..327cfbf --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs @@ -0,0 +1,130 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! ISAAC helper functions for 256-element arrays. + +// Terrible workaround because arrays with more than 32 elements do not +// implement `AsRef`, `Default`, `Serialize`, `Deserialize`, or any other +// traits for that matter. + +#[cfg(feature="serde1")] use serde::{Serialize, Deserialize}; + +const RAND_SIZE_LEN: usize = 8; +const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; + + +#[derive(Copy, Clone)] +#[allow(missing_debug_implementations)] +#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] +pub struct IsaacArray<T> { + #[cfg_attr(feature="serde1",serde(with="isaac_array_serde"))] + #[cfg_attr(feature="serde1", serde(bound( + serialize = "T: Serialize", + deserialize = "T: Deserialize<'de> + Copy + Default")))] + inner: [T; RAND_SIZE] +} + +impl<T> ::core::convert::AsRef<[T]> for IsaacArray<T> { + #[inline(always)] + fn as_ref(&self) -> &[T] { + &self.inner[..] + } +} + +impl<T> ::core::ops::Deref for IsaacArray<T> { + type Target = [T; RAND_SIZE]; + #[inline(always)] + fn deref(&self) -> &Self::Target { + &self.inner + } +} + +impl<T> ::core::ops::DerefMut for IsaacArray<T> { + #[inline(always)] + fn deref_mut(&mut self) -> &mut [T; RAND_SIZE] { + &mut self.inner + } +} + +impl<T> ::core::default::Default for IsaacArray<T> where T: Copy + Default { + fn default() -> IsaacArray<T> { + IsaacArray { inner: [T::default(); RAND_SIZE] } + } +} + + +#[cfg(feature="serde1")] +pub(super) mod isaac_array_serde { + const RAND_SIZE_LEN: usize = 8; + const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; + + use serde::{Deserialize, Deserializer, Serialize, Serializer}; + use serde::de::{Visitor,SeqAccess}; + use serde::de; + + use core::fmt; + + pub fn serialize<T, S>(arr: &[T;RAND_SIZE], ser: S) -> Result<S::Ok, S::Error> + where + T: Serialize, + S: Serializer + { + use serde::ser::SerializeTuple; + + let mut seq = ser.serialize_tuple(RAND_SIZE)?; + + for e in arr.iter() { + seq.serialize_element(&e)?; + } + + seq.end() + } + + #[inline] + pub fn deserialize<'de, T, D>(de: D) -> Result<[T;RAND_SIZE], D::Error> + where + T: Deserialize<'de>+Default+Copy, + D: Deserializer<'de>, + { + use core::marker::PhantomData; + struct ArrayVisitor<T> { + _pd: PhantomData<T>, + }; + impl<'de,T> Visitor<'de> for ArrayVisitor<T> + where + T: Deserialize<'de>+Default+Copy + { + type Value = [T; RAND_SIZE]; + + fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { + formatter.write_str("Isaac state array") + } + + #[inline] + fn visit_seq<A>(self, mut seq: A) -> Result<[T; RAND_SIZE], A::Error> + where + A: SeqAccess<'de>, + { + let mut out = [Default::default();RAND_SIZE]; + + for i in 0..RAND_SIZE { + match seq.next_element()? { + Some(val) => out[i] = val, + None => return Err(de::Error::invalid_length(i, &self)), + }; + } + + Ok(out) + } + } + + de.deserialize_tuple(RAND_SIZE, ArrayVisitor{_pd: PhantomData}) + } +} diff --git a/vendor/rand-8c5b0ac51d/src/prng/mod.rs b/vendor/rand-8c5b0ac51d/src/prng/mod.rs new file mode 100644 index 0000000..c4bd003 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/prng/mod.rs @@ -0,0 +1,55 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Pseudo random number generators are algorithms to produce *apparently +//! random* numbers deterministically, and usually fairly quickly. +//! +//! So long as the algorithm is computationally secure, is initialised with +//! sufficient entropy (i.e. unknown by an attacker), and its internal state is +//! also protected (unknown to an attacker), the output will also be +//! *computationally secure*. Computationally Secure Pseudo Random Number +//! Generators (CSPRNGs) are thus suitable sources of random numbers for +//! cryptography. There are a couple of gotchas here, however. First, the seed +//! used for initialisation must be unknown. Usually this should be provided by +//! the operating system and should usually be secure, however this may not +//! always be the case (especially soon after startup). Second, user-space +//! memory may be vulnerable, for example when written to swap space, and after +//! forking a child process should reinitialise any user-space PRNGs. For this +//! reason it may be preferable to source random numbers directly from the OS +//! for cryptographic applications. +//! +//! PRNGs are also widely used for non-cryptographic uses: randomised +//! algorithms, simulations, games. In these applications it is usually not +//! important for numbers to be cryptographically *unguessable*, but even +//! distribution and independence from other samples (from the point of view +//! of someone unaware of the algorithm used, at least) may still be important. +//! Good PRNGs should satisfy these properties, but do not take them for +//! granted; Wikipedia's article on +//! [Pseudorandom number generators](https://en.wikipedia.org/wiki/Pseudorandom_number_generator) +//! provides some background on this topic. +//! +//! Care should be taken when seeding (initialising) PRNGs. Some PRNGs have +//! short periods for some seeds. If one PRNG is seeded from another using the +//! same algorithm, it is possible that both will yield the same sequence of +//! values (with some lag). + +pub mod chacha; +pub mod hc128; +pub mod isaac; +pub mod isaac64; +mod xorshift; + +mod isaac_array; + +pub use self::chacha::ChaChaRng; +pub use self::hc128::Hc128Rng; +pub use self::isaac::IsaacRng; +pub use self::isaac64::Isaac64Rng; +pub use self::xorshift::XorShiftRng; diff --git a/vendor/rand-8c5b0ac51d/src/prng/xorshift.rs b/vendor/rand-8c5b0ac51d/src/prng/xorshift.rs new file mode 100644 index 0000000..5f96170 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/prng/xorshift.rs @@ -0,0 +1,226 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Xorshift generators + +use core::num::Wrapping as w; +use core::{fmt, slice}; +use rand_core::{RngCore, SeedableRng, Error, impls, le}; + +/// An Xorshift[1] random number +/// generator. +/// +/// The Xorshift algorithm is not suitable for cryptographic purposes +/// but is very fast. If you do not know for sure that it fits your +/// requirements, use a more secure one such as `IsaacRng` or `OsRng`. +/// +/// [1]: Marsaglia, George (July 2003). ["Xorshift +/// RNGs"](https://www.jstatsoft.org/v08/i14/paper). *Journal of +/// Statistical Software*. Vol. 8 (Issue 14). +#[derive(Clone)] +#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))] +pub struct XorShiftRng { + x: w<u32>, + y: w<u32>, + z: w<u32>, + w: w<u32>, +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for XorShiftRng { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "XorShiftRng {{}}") + } +} + +impl XorShiftRng { + /// Creates a new XorShiftRng instance which is not seeded. + /// + /// The initial values of this RNG are constants, so all generators created + /// by this function will yield the same stream of random numbers. It is + /// highly recommended that this is created through `SeedableRng` instead of + /// this function + #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] + pub fn new_unseeded() -> XorShiftRng { + XorShiftRng { + x: w(0x193a6754), + y: w(0xa8a7d469), + z: w(0x97830e05), + w: w(0x113ba7bb), + } + } +} + +impl RngCore for XorShiftRng { + #[inline] + fn next_u32(&mut self) -> u32 { + let x = self.x; + let t = x ^ (x << 11); + self.x = self.y; + self.y = self.z; + self.z = self.w; + let w_ = self.w; + self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8)); + self.w.0 + } + + #[inline] + fn next_u64(&mut self) -> u64 { + impls::next_u64_via_u32(self) + } + + #[inline] + fn fill_bytes(&mut self, dest: &mut [u8]) { + impls::fill_bytes_via_next(self, dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + Ok(self.fill_bytes(dest)) + } +} + +impl SeedableRng for XorShiftRng { + type Seed = [u8; 16]; + + fn from_seed(seed: Self::Seed) -> Self { + let mut seed_u32 = [0u32; 4]; + le::read_u32_into(&seed, &mut seed_u32); + + // Xorshift cannot be seeded with 0 and we cannot return an Error, but + // also do not wish to panic (because a random seed can legitimately be + // 0); our only option is therefore to use a preset value. + if seed_u32.iter().all(|&x| x == 0) { + seed_u32 = [0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED]; + } + + XorShiftRng { + x: w(seed_u32[0]), + y: w(seed_u32[1]), + z: w(seed_u32[2]), + w: w(seed_u32[3]), + } + } + + fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { + let mut seed_u32 = [0u32; 4]; + loop { + unsafe { + let ptr = seed_u32.as_mut_ptr() as *mut u8; + + let slice = slice::from_raw_parts_mut(ptr, 4 * 4); + rng.try_fill_bytes(slice)?; + } + if !seed_u32.iter().all(|&x| x == 0) { break; } + } + + Ok(XorShiftRng { + x: w(seed_u32[0]), + y: w(seed_u32[1]), + z: w(seed_u32[2]), + w: w(seed_u32[3]), + }) + } +} + +#[cfg(test)] +mod tests { + use {RngCore, SeedableRng}; + use super::XorShiftRng; + + #[test] + fn test_xorshift_construction() { + // Test that various construction techniques produce a working RNG. + let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16]; + let mut rng1 = XorShiftRng::from_seed(seed); + assert_eq!(rng1.next_u64(), 4325440999699518727); + + let _rng2 = XorShiftRng::from_rng(rng1).unwrap(); + // Note: we cannot test the state of _rng2 because from_rng does not + // fix Endianness. This is allowed in the trait specification. + } + + #[test] + fn test_xorshift_true_values() { + let seed = [16,15,14,13, 12,11,10,9, 8,7,6,5, 4,3,2,1]; + let mut rng = XorShiftRng::from_seed(seed); + + let mut results = [0u32; 9]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected: [u32; 9] = [ + 2081028795, 620940381, 269070770, 16943764, 854422573, 29242889, + 1550291885, 1227154591, 271695242]; + assert_eq!(results, expected); + + let mut results = [0u64; 9]; + for i in results.iter_mut() { *i = rng.next_u64(); } + let expected: [u64; 9] = [ + 9247529084182843387, 8321512596129439293, 14104136531997710878, + 6848554330849612046, 343577296533772213, 17828467390962600268, + 9847333257685787782, 7717352744383350108, 1133407547287910111]; + assert_eq!(results, expected); + + let mut results = [0u8; 32]; + rng.fill_bytes(&mut results); + let expected = [102, 57, 212, 16, 233, 130, 49, 183, + 158, 187, 44, 203, 63, 149, 45, 17, + 117, 129, 131, 160, 70, 121, 158, 155, + 224, 209, 192, 53, 10, 62, 57, 72]; + assert_eq!(results, expected); + } + + #[test] + fn test_xorshift_zero_seed() { + // Xorshift does not work with an all zero seed. + // Assert it does not panic. + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + let mut rng = XorShiftRng::from_seed(seed); + let a = rng.next_u64(); + let b = rng.next_u64(); + assert!(a != 0); + assert!(b != a); + } + + #[test] + fn test_xorshift_clone() { + let seed = [1,2,3,4, 5,5,7,8, 8,7,6,5, 4,3,2,1]; + let mut rng1 = XorShiftRng::from_seed(seed); + let mut rng2 = rng1.clone(); + for _ in 0..16 { + assert_eq!(rng1.next_u64(), rng2.next_u64()); + } + } + + #[cfg(all(feature="serde1", feature="std"))] + #[test] + fn test_xorshift_serde() { + use bincode; + use std::io::{BufWriter, BufReader}; + + let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16]; + let mut rng = XorShiftRng::from_seed(seed); + + let buf: Vec<u8> = Vec::new(); + let mut buf = BufWriter::new(buf); + bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); + + let buf = buf.into_inner().unwrap(); + let mut read = BufReader::new(&buf[..]); + let mut deserialized: XorShiftRng = bincode::deserialize_from(&mut read).expect("Could not deserialize"); + + assert_eq!(rng.x, deserialized.x); + assert_eq!(rng.y, deserialized.y); + assert_eq!(rng.z, deserialized.z); + assert_eq!(rng.w, deserialized.w); + + for _ in 0..16 { + assert_eq!(rng.next_u64(), deserialized.next_u64()); + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/read.rs b/vendor/rand-8c5b0ac51d/src/read.rs new file mode 100644 index 0000000..a6ab6f5 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/read.rs @@ -0,0 +1,129 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A wrapper around any Read to treat it as an RNG. + +use std::io::Read; + +use rand_core::{RngCore, Error, ErrorKind, impls}; + + +/// An RNG that reads random bytes straight from a `Read`. +/// +/// This will work best with an infinite reader, but that is not required. +/// +/// # Panics +/// +/// `ReadRng` uses `std::io::read_exact`, which retries on interrupts. All other +/// errors from the underlying reader, including when it does not have enough +/// data, will only be reported through `try_fill_bytes`. The other `RngCore` +/// methods will panic in case of an error error. +/// +/// # Example +/// +/// ```rust +/// use rand::{read, Rng}; +/// +/// let data = vec![1, 2, 3, 4, 5, 6, 7, 8]; +/// let mut rng = read::ReadRng::new(&data[..]); +/// println!("{:x}", rng.gen::<u32>()); +/// ``` +#[derive(Debug)] +pub struct ReadRng<R> { + reader: R +} + +impl<R: Read> ReadRng<R> { + /// Create a new `ReadRng` from a `Read`. + pub fn new(r: R) -> ReadRng<R> { + ReadRng { + reader: r + } + } +} + +impl<R: Read> RngCore for ReadRng<R> { + fn next_u32(&mut self) -> u32 { + impls::next_u32_via_fill(self) + } + + fn next_u64(&mut self) -> u64 { + impls::next_u64_via_fill(self) + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.try_fill_bytes(dest).unwrap_or_else(|err| + panic!("reading random bytes from Read implementation failed; error: {}", err)); + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + if dest.len() == 0 { return Ok(()); } + // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. + self.reader.read_exact(dest).map_err(|err| { + match err.kind() { + ::std::io::ErrorKind::UnexpectedEof => Error::with_cause( + ErrorKind::Unavailable, + "not enough bytes available, reached end of source", err), + _ => Error::with_cause(ErrorKind::Unavailable, + "error reading from Read source", err) + } + }) + } +} + +#[cfg(test)] +mod test { + use super::ReadRng; + use {RngCore, ErrorKind}; + + #[test] + fn test_reader_rng_u64() { + // transmute from the target to avoid endianness concerns. + let v = vec![0u8, 0, 0, 0, 0, 0, 0, 1, + 0 , 0, 0, 0, 0, 0, 0, 2, + 0, 0, 0, 0, 0, 0, 0, 3]; + let mut rng = ReadRng::new(&v[..]); + + assert_eq!(rng.next_u64(), 1_u64.to_be()); + assert_eq!(rng.next_u64(), 2_u64.to_be()); + assert_eq!(rng.next_u64(), 3_u64.to_be()); + } + + #[test] + fn test_reader_rng_u32() { + let v = vec![0u8, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3]; + let mut rng = ReadRng::new(&v[..]); + + assert_eq!(rng.next_u32(), 1_u32.to_be()); + assert_eq!(rng.next_u32(), 2_u32.to_be()); + assert_eq!(rng.next_u32(), 3_u32.to_be()); + } + + #[test] + fn test_reader_rng_fill_bytes() { + let v = [1u8, 2, 3, 4, 5, 6, 7, 8]; + let mut w = [0u8; 8]; + + let mut rng = ReadRng::new(&v[..]); + rng.fill_bytes(&mut w); + + assert!(v == w); + } + + #[test] + fn test_reader_rng_insufficient_bytes() { + let v = [1u8, 2, 3, 4, 5, 6, 7, 8]; + let mut w = [0u8; 9]; + + let mut rng = ReadRng::new(&v[..]); + + assert!(rng.try_fill_bytes(&mut w).err().unwrap().kind == ErrorKind::Unavailable); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/reseeding.rs b/vendor/rand-8c5b0ac51d/src/reseeding.rs new file mode 100644 index 0000000..0f7f049 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/reseeding.rs @@ -0,0 +1,260 @@ +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A wrapper around another PRNG that reseeds it after it +//! generates a certain number of random bytes. + +use core::mem::size_of; + +use rand_core::{RngCore, BlockRngCore, CryptoRng, SeedableRng, Error, ErrorKind}; +use rand_core::impls::BlockRng; + +/// A wrapper around any PRNG which reseeds the underlying PRNG after it has +/// generated a certain number of random bytes. +/// +/// When the RNG gets cloned, the clone is reseeded on first use. +/// +/// Reseeding is never strictly *necessary*. Cryptographic PRNGs don't have a +/// limited number of bytes they can output, or at least not a limit reachable +/// in any practical way. There is no such thing as 'running out of entropy'. +/// +/// Some small non-cryptographic PRNGs can have very small periods, for +/// example less than 2<sup>64</sup>. Would reseeding help to ensure that you do +/// not wrap around at the end of the period? A period of 2<sup>64</sup> still +/// takes several centuries of CPU-years on current hardware. Reseeding will +/// actually make things worse, because the reseeded PRNG will just continue +/// somewhere else *in the same period*, with a high chance of overlapping with +/// previously used parts of it. +/// +/// # When should you use `ReseedingRng`? +/// +/// - Reseeding can be seen as some form of 'security in depth'. Even if in the +/// future a cryptographic weakness is found in the CSPRNG being used, +/// occasionally reseeding should make exploiting it much more difficult or +/// even impossible. +/// - It can be used as a poor man's cryptography (not recommended, just use a +/// good CSPRNG). Previous implementations of `thread_rng` for example used +/// `ReseedingRng` with the ISAAC RNG. That algorithm, although apparently +/// strong and with no known attack, does not come with any proof of security +/// and does not meet the current standards for a cryptographically secure +/// PRNG. By reseeding it frequently (every 32 kiB) it seems safe to assume +/// there is no attack that can operate on the tiny window between reseeds. +/// +/// # Error handling +/// +/// Although extremely unlikely, reseeding the wrapped PRNG can fail. +/// `ReseedingRng` will never panic but try to handle the error intelligently +/// through some combination of retrying and delaying reseeding until later. +/// If handling the source error fails `ReseedingRng` will continue generating +/// data from the wrapped PRNG without reseeding. +#[derive(Debug)] +pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>) +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore; + +impl<R, Rsdr> ReseedingRng<R, Rsdr> +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore +{ + /// Create a new `ReseedingRng` with the given parameters. + /// + /// # Arguments + /// + /// * `rng`: the random number generator to use. + /// * `threshold`: the number of generated bytes after which to reseed the RNG. + /// * `reseeder`: the RNG to use for reseeding. + pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { + ReseedingRng(BlockRng::new(ReseedingCore::new(rng, threshold, reseeder))) + } + + /// Reseed the internal PRNG. + pub fn reseed(&mut self) -> Result<(), Error> { + self.0.inner_mut().reseed() + } +} + +// TODO: this should be implemented for any type where the inner type +// implements RngCore, but we can't specify that because ReseedingCore is private +impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr> +where R: BlockRngCore<Item = u32> + SeedableRng, + <R as BlockRngCore>::Results: AsRef<[u32]> +{ + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr> +where R: BlockRngCore + SeedableRng + Clone, + Rsdr: RngCore + Clone +{ + fn clone(&self) -> ReseedingRng<R, Rsdr> { + // Recreating `BlockRng` seems easier than cloning it and resetting + // the index. + ReseedingRng(BlockRng::new(self.0.inner().clone())) + } +} + +impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr> +where R: BlockRngCore + SeedableRng + CryptoRng, + Rsdr: RngCore + CryptoRng {} + +#[derive(Debug)] +struct ReseedingCore<R, Rsdr> { + inner: R, + reseeder: Rsdr, + threshold: i64, + bytes_until_reseed: i64, +} + +impl<R, Rsdr> BlockRngCore for ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore +{ + type Item = <R as BlockRngCore>::Item; + type Results = <R as BlockRngCore>::Results; + + fn generate(&mut self, results: &mut Self::Results) { + if self.bytes_until_reseed <= 0 { + // We get better performance by not calling only `auto_reseed` here + // and continuing with the rest of the function, but by directly + // returning from a non-inlined function. + return self.reseed_and_generate(results); + } + let num_bytes = results.as_ref().len() * size_of::Self::Item(); + self.bytes_until_reseed -= num_bytes as i64; + self.inner.generate(results); + } +} + +impl<R, Rsdr> ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore +{ + /// Create a new `ReseedingCore` with the given parameters. + /// + /// # Arguments + /// + /// * `rng`: the random number generator to use. + /// * `threshold`: the number of generated bytes after which to reseed the RNG. + /// * `reseeder`: the RNG to use for reseeding. + pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { + assert!(threshold <= ::core::i64::MAX as u64); + ReseedingCore { + inner: rng, + reseeder, + threshold: threshold as i64, + bytes_until_reseed: threshold as i64, + } + } + + /// Reseed the internal PRNG. + fn reseed(&mut self) -> Result<(), Error> { + R::from_rng(&mut self.reseeder).map(|result| { + self.bytes_until_reseed = self.threshold; + self.inner = result + }) + } + + #[inline(never)] + fn reseed_and_generate(&mut self, + results: &mut <Self as BlockRngCore>::Results) + { + trace!("Reseeding RNG after {} generated bytes", + self.threshold - self.bytes_until_reseed); + let threshold = if let Err(e) = self.reseed() { + let delay = match e.kind { + ErrorKind::Transient => 0, + kind @ _ if kind.should_retry() => self.threshold >> 8, + _ => self.threshold, + }; + warn!("Reseeding RNG delayed reseeding by {} bytes due to \ + error from source: {}", delay, e); + delay + } else { + self.threshold + }; + + let num_bytes = results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>(); + self.bytes_until_reseed = threshold - num_bytes as i64; + self.inner.generate(results); + } +} + +impl<R, Rsdr> Clone for ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng + Clone, + Rsdr: RngCore + Clone +{ + fn clone(&self) -> ReseedingCore<R, Rsdr> { + ReseedingCore { + inner: self.inner.clone(), + reseeder: self.reseeder.clone(), + threshold: self.threshold, + bytes_until_reseed: 0, // reseed clone on first use + } + } +} + +impl<R, Rsdr> CryptoRng for ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng + CryptoRng, + Rsdr: RngCore + CryptoRng {} + +#[cfg(test)] +mod test { + use {Rng, SeedableRng}; + use prng::chacha::ChaChaCore; + use mock::StepRng; + use super::ReseedingRng; + + #[test] + fn test_reseeding() { + let mut zero = StepRng::new(0, 0); + let rng = ChaChaCore::from_rng(&mut zero).unwrap(); + let mut reseeding = ReseedingRng::new(rng, 32*4, zero); + + // Currently we only support for arrays up to length 32. + // TODO: cannot generate seq via Rng::gen because it uses different alg + let mut buf = [0u32; 32]; // Needs to be a multiple of the RNGs result + // size to test exactly. + reseeding.fill(&mut buf); + let seq = buf; + for _ in 0..10 { + reseeding.fill(&mut buf); + assert_eq!(buf, seq); + } + } + + #[test] + fn test_clone_reseeding() { + let mut zero = StepRng::new(0, 0); + let rng = ChaChaCore::from_rng(&mut zero).unwrap(); + let mut rng1 = ReseedingRng::new(rng, 32*4, zero); + + let first: u32 = rng1.gen(); + for _ in 0..10 { let _ = rng1.gen::<u32>(); } + + let mut rng2 = rng1.clone(); + assert_eq!(first, rng2.gen::<u32>()); + } +} diff --git a/vendor/rand-8c5b0ac51d/src/seq.rs b/vendor/rand-8c5b0ac51d/src/seq.rs new file mode 100644 index 0000000..1a128ce --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/seq.rs @@ -0,0 +1,335 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Functions for randomly accessing and sampling sequences. + +use super::Rng; + +// This crate is only enabled when either std or alloc is available. +// BTreeMap is not as fast in tests, but better than nothing. +#[cfg(feature="std")] use std::collections::HashMap; +#[cfg(not(feature="std"))] use alloc::btree_map::BTreeMap; + +#[cfg(not(feature="std"))] use alloc::Vec; + +/// Randomly sample `amount` elements from a finite iterator. +/// +/// The following can be returned: +/// +/// - `Ok`: `Vec` of `amount` non-repeating randomly sampled elements. The order is not random. +/// - `Err`: `Vec` of all the elements from `iterable` in sequential order. This happens when the +/// length of `iterable` was less than `amount`. This is considered an error since exactly +/// `amount` elements is typically expected. +/// +/// This implementation uses `O(len(iterable))` time and `O(amount)` memory. +/// +/// # Example +/// +/// ```rust +/// use rand::{thread_rng, seq}; +/// +/// let mut rng = thread_rng(); +/// let sample = seq::sample_iter(&mut rng, 1..100, 5).unwrap(); +/// println!("{:?}", sample); +/// ``` +pub fn sample_iter<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Result<Vec<T>, Vec<T>> + where I: IntoIterator<Item=T>, + R: Rng + ?Sized, +{ + let mut iter = iterable.into_iter(); + let mut reservoir = Vec::with_capacity(amount); + reservoir.extend(iter.by_ref().take(amount)); + + // Continue unless the iterator was exhausted + // + // note: this prevents iterators that "restart" from causing problems. + // If the iterator stops once, then so do we. + if reservoir.len() == amount { + for (i, elem) in iter.enumerate() { + let k = rng.gen_range(0, i + 1 + amount); + if let Some(spot) = reservoir.get_mut(k) { + *spot = elem; + } + } + Ok(reservoir) + } else { + // Don't hang onto extra memory. There is a corner case where + // `amount` was much less than `len(iterable)`. + reservoir.shrink_to_fit(); + Err(reservoir) + } +} + +/// Randomly sample exactly `amount` values from `slice`. +/// +/// The values are non-repeating and in random order. +/// +/// This implementation uses `O(amount)` time and memory. +/// +/// Panics if `amount > slice.len()` +/// +/// # Example +/// +/// ```rust +/// use rand::{thread_rng, seq}; +/// +/// let mut rng = thread_rng(); +/// let values = vec![5, 6, 1, 3, 4, 6, 7]; +/// println!("{:?}", seq::sample_slice(&mut rng, &values, 3)); +/// ``` +pub fn sample_slice<R, T>(rng: &mut R, slice: &[T], amount: usize) -> Vec<T> + where R: Rng + ?Sized, + T: Clone +{ + let indices = sample_indices(rng, slice.len(), amount); + + let mut out = Vec::with_capacity(amount); + out.extend(indices.iter().map(|i| slice[*i].clone())); + out +} + +/// Randomly sample exactly `amount` references from `slice`. +/// +/// The references are non-repeating and in random order. +/// +/// This implementation uses `O(amount)` time and memory. +/// +/// Panics if `amount > slice.len()` +/// +/// # Example +/// +/// ```rust +/// use rand::{thread_rng, seq}; +/// +/// let mut rng = thread_rng(); +/// let values = vec![5, 6, 1, 3, 4, 6, 7]; +/// println!("{:?}", seq::sample_slice_ref(&mut rng, &values, 3)); +/// ``` +pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T> + where R: Rng + ?Sized +{ + let indices = sample_indices(rng, slice.len(), amount); + + let mut out = Vec::with_capacity(amount); + out.extend(indices.iter().map(|i| &slice[*i])); + out +} + +/// Randomly sample exactly `amount` indices from `0..length`. +/// +/// The values are non-repeating and in random order. +/// +/// This implementation uses `O(amount)` time and memory. +/// +/// This method is used internally by the slice sampling methods, but it can sometimes be useful to +/// have the indices themselves so this is provided as an alternative. +/// +/// Panics if `amount > length` +pub fn sample_indices<R>(rng: &mut R, length: usize, amount: usize) -> Vec<usize> + where R: Rng + ?Sized, +{ + if amount > length { + panic!("`amount` must be less than or equal to `slice.len()`"); + } + + // We are going to have to allocate at least `amount` for the output no matter what. However, + // if we use the `cached` version we will have to allocate `amount` as a HashMap as well since + // it inserts an element for every loop. + // + // Therefore, if `amount >= length / 2` then inplace will be both faster and use less memory. + // In fact, benchmarks show the inplace version is faster for length up to about 20 times + // faster than amount. + // + // TODO: there is probably even more fine-tuning that can be done here since + // `HashMap::with_capacity(amount)` probably allocates more than `amount` in practice, + // and a trade off could probably be made between memory/cpu, since hashmap operations + // are slower than array index swapping. + if amount >= length / 20 { + sample_indices_inplace(rng, length, amount) + } else { + sample_indices_cache(rng, length, amount) + } +} + +/// Sample an amount of indices using an inplace partial fisher yates method. +/// +/// This allocates the entire `length` of indices and randomizes only the first `amount`. +/// It then truncates to `amount` and returns. +/// +/// This is better than using a `HashMap` "cache" when `amount >= length / 2` +/// since it does not require allocating an extra cache and is much faster. +fn sample_indices_inplace<R>(rng: &mut R, length: usize, amount: usize) -> Vec<usize> + where R: Rng + ?Sized, +{ + debug_assert!(amount <= length); + let mut indices: Vec<usize> = Vec::with_capacity(length); + indices.extend(0..length); + for i in 0..amount { + let j: usize = rng.gen_range(i, length); + indices.swap(i, j); + } + indices.truncate(amount); + debug_assert_eq!(indices.len(), amount); + indices +} + + +/// This method performs a partial fisher-yates on a range of indices using a +/// `HashMap` as a cache to record potential collisions. +/// +/// The cache avoids allocating the entire `length` of values. This is especially useful when +/// `amount <<< length`, i.e. select 3 non-repeating from `1_000_000` +fn sample_indices_cache<R>( + rng: &mut R, + length: usize, + amount: usize, +) -> Vec<usize> + where R: Rng + ?Sized, +{ + debug_assert!(amount <= length); + #[cfg(feature="std")] let mut cache = HashMap::with_capacity(amount); + #[cfg(not(feature="std"))] let mut cache = BTreeMap::new(); + let mut out = Vec::with_capacity(amount); + for i in 0..amount { + let j: usize = rng.gen_range(i, length); + + // equiv: let tmp = slice[i]; + let tmp = match cache.get(&i) { + Some(e) => *e, + None => i, + }; + + // equiv: slice[i] = slice[j]; + let x = match cache.get(&j) { + Some(x) => *x, + None => j, + }; + + // equiv: slice[j] = tmp; + cache.insert(j, tmp); + + // note that in the inplace version, slice[i] is automatically "returned" value + out.push(x); + } + debug_assert_eq!(out.len(), amount); + out +} + +#[cfg(test)] +mod test { + use super::*; + use {XorShiftRng, Rng, SeedableRng}; + #[cfg(not(feature="std"))] + use alloc::Vec; + + #[test] + fn test_sample_iter() { + let min_val = 1; + let max_val = 100; + + let mut r = ::test::rng(401); + let vals = (min_val..max_val).collect::<Vec<i32>>(); + let small_sample = sample_iter(&mut r, vals.iter(), 5).unwrap(); + let large_sample = sample_iter(&mut r, vals.iter(), vals.len() + 5).unwrap_err(); + + assert_eq!(small_sample.len(), 5); + assert_eq!(large_sample.len(), vals.len()); + // no randomization happens when amount >= len + assert_eq!(large_sample, vals.iter().collect::<Vec<_>>()); + + assert!(small_sample.iter().all(|e| { + **e >= min_val && **e <= max_val + })); + } + #[test] + fn test_sample_slice_boundaries() { + let empty: &[u8] = &[]; + + let mut r = ::test::rng(402); + + // sample 0 items + assert_eq!(&sample_slice(&mut r, empty, 0)[..], [0u8; 0]); + assert_eq!(&sample_slice(&mut r, &[42, 2, 42], 0)[..], [0u8; 0]); + + // sample 1 item + assert_eq!(&sample_slice(&mut r, &[42], 1)[..], [42]); + let v = sample_slice(&mut r, &[1, 42], 1)[0]; + assert!(v == 1 || v == 42); + + // sample "all" the items + let v = sample_slice(&mut r, &[42, 133], 2); + assert!(&v[..] == [42, 133] || v[..] == [133, 42]); + + assert_eq!(&sample_indices_inplace(&mut r, 0, 0)[..], [0usize; 0]); + assert_eq!(&sample_indices_inplace(&mut r, 1, 0)[..], [0usize; 0]); + assert_eq!(&sample_indices_inplace(&mut r, 1, 1)[..], [0]); + + assert_eq!(&sample_indices_cache(&mut r, 0, 0)[..], [0usize; 0]); + assert_eq!(&sample_indices_cache(&mut r, 1, 0)[..], [0usize; 0]); + assert_eq!(&sample_indices_cache(&mut r, 1, 1)[..], [0]); + + // Make sure lucky 777's aren't lucky + let slice = &[42, 777]; + let mut num_42 = 0; + let total = 1000; + for _ in 0..total { + let v = sample_slice(&mut r, slice, 1); + assert_eq!(v.len(), 1); + let v = v[0]; + assert!(v == 42 || v == 777); + if v == 42 { + num_42 += 1; + } + } + let ratio_42 = num_42 as f64 / 1000 as f64; + assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42); + } + + #[test] + fn test_sample_slice() { + let xor_rng = XorShiftRng::from_seed; + + let max_range = 100; + let mut r = ::test::rng(403); + + for length in 1usize..max_range { + let amount = r.gen_range(0, length); + let mut seed = [0u8; 16]; + r.fill(&mut seed); + + // assert that the two index methods give exactly the same result + let inplace = sample_indices_inplace( + &mut xor_rng(seed), length, amount); + let cache = sample_indices_cache( + &mut xor_rng(seed), length, amount); + assert_eq!(inplace, cache); + + // assert the basics work + let regular = sample_indices( + &mut xor_rng(seed), length, amount); + assert_eq!(regular.len(), amount); + assert!(regular.iter().all(|e| *e < length)); + assert_eq!(regular, inplace); + + // also test that sampling the slice works + let vec: Vec<usize> = (0..length).collect(); + { + let result = sample_slice(&mut xor_rng(seed), &vec, amount); + assert_eq!(result, regular); + } + + { + let result = sample_slice_ref(&mut xor_rng(seed), &vec, amount); + let expected = regular.iter().map(|v| v).collect::<Vec<_>>(); + assert_eq!(result, expected); + } + } + } +} diff --git a/vendor/rand-8c5b0ac51d/src/thread_rng.rs b/vendor/rand-8c5b0ac51d/src/thread_rng.rs new file mode 100644 index 0000000..1b93a8c --- /dev/null +++ b/vendor/rand-8c5b0ac51d/src/thread_rng.rs @@ -0,0 +1,206 @@ +// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Thread-local random number generator + +use std::cell::UnsafeCell; +use std::rc::Rc; + +use {RngCore, CryptoRng, SeedableRng, EntropyRng}; +use prng::hc128::Hc128Core; +use {Distribution, Standard, Rng, Error}; +use reseeding::ReseedingRng; + +// Rationale for using `UnsafeCell` in `ThreadRng`: +// +// Previously we used a `RefCell`, with an overhead of ~15%. There will only +// ever be one mutable reference to the interior of the `UnsafeCell`, because +// we only have such a reference inside `next_u32`, `next_u64`, etc. Within a +// single thread (which is the definition of `ThreadRng`), there will only ever +// be one of these methods active at a time. +// +// A possible scenario where there could be multiple mutable references is if +// `ThreadRng` is used inside `next_u32` and co. But the implementation is +// completely under our control. We just have to ensure none of them use +// `ThreadRng` internally, which is nonsensical anyway. We should also never run +// `ThreadRng` in destructors of its implementation, which is also nonsensical. +// +// The additional `Rc` is not strictly neccesary, and could be removed. For now +// it ensures `ThreadRng` stays `!Send` and `!Sync`, and implements `Clone`. + + +// Number of generated bytes after which to reseed `TreadRng`. +// +// The time it takes to reseed HC-128 is roughly equivalent to generating 7 KiB. +// We pick a treshold here that is large enough to not reduce the average +// performance too much, but also small enough to not make reseeding something +// that basically never happens. +const THREAD_RNG_RESEED_THRESHOLD: u64 = 32*1024*1024; // 32 MiB + +/// The type returned by [`thread_rng`], essentially just a reference to the +/// PRNG in thread-local memory. +/// +/// Cloning this handle just produces a new reference to the same thread-local +/// generator. +/// +/// [`thread_rng`]: fn.thread_rng.html +#[derive(Clone, Debug)] +pub struct ThreadRng { + rng: Rc<UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>>>, +} + +thread_local!( + static THREAD_RNG_KEY: Rc<UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>>> = { + let mut entropy_source = EntropyRng::new(); + let r = Hc128Core::from_rng(&mut entropy_source).unwrap_or_else(|err| + panic!("could not initialize thread_rng: {}", err)); + let rng = ReseedingRng::new(r, + THREAD_RNG_RESEED_THRESHOLD, + entropy_source); + Rc::new(UnsafeCell::new(rng)) + } +); + +/// Retrieve the lazily-initialized thread-local random number +/// generator, seeded by the system. Intended to be used in method +/// chaining style, e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g. +/// `let mut rng = thread_rng();`. +/// +/// `ThreadRng` uses [`ReseedingRng`] wrapping the same PRNG as [`StdRng`], +/// which is reseeded after generating 32 MiB of random data. A single instance +/// is cached per thread and the returned `ThreadRng` is a reference to this +/// instance — hence `ThreadRng` is neither `Send` nor `Sync` but is safe to use +/// within a single thread. This RNG is seeded and reseeded via [`EntropyRng`] +/// as required. +/// +/// Note that the reseeding is done as an extra precaution against entropy +/// leaks and is in theory unnecessary — to predict `thread_rng`'s output, an +/// attacker would have to either determine most of the RNG's seed or internal +/// state, or crack the algorithm used. +/// +/// Like [`StdRng`], `ThreadRng` is a cryptographically secure PRNG. The current +/// algorithm used is [HC-128], which is an array-based PRNG that trades memory +/// usage for better performance. This makes it similar to ISAAC, the algorithm +/// used in `ThreadRng` before rand 0.5. +/// +/// [`ReseedingRng`]: reseeding/struct.ReseedingRng.html +/// [`StdRng`]: struct.StdRng.html +/// [`EntropyRng`]: struct.EntropyRng.html +/// [HC-128]: prng/hc128/struct.Hc128Rng.html +pub fn thread_rng() -> ThreadRng { + ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) } +} + +impl RngCore for ThreadRng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + unsafe { (*self.rng.get()).next_u32() } + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + unsafe { (*self.rng.get()).next_u64() } + } + + fn fill_bytes(&mut self, bytes: &mut [u8]) { + unsafe { (*self.rng.get()).fill_bytes(bytes) } + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + unsafe { (*self.rng.get()).try_fill_bytes(dest) } + } +} + +impl CryptoRng for ThreadRng {} + +/// DEPRECATED: use `thread_rng().gen()` instead. +/// +/// Generates a random value using the thread-local random number generator. +/// +/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for +/// documentation of the entropy source and [`Rand`] for documentation of +/// distributions and type-specific generation. +/// +/// # Examples +/// +/// ``` +/// # #![allow(deprecated)] +/// let x = rand::random::<u8>(); +/// println!("{}", x); +/// +/// let y = rand::random::<f64>(); +/// println!("{}", y); +/// +/// if rand::random() { // generates a boolean +/// println!("Better lucky than good!"); +/// } +/// ``` +/// +/// If you're calling `random()` in a loop, caching the generator as in the +/// following example can increase performance. +/// +/// ``` +/// # #![allow(deprecated)] +/// use rand::Rng; +/// +/// let mut v = vec![1, 2, 3]; +/// +/// for x in v.iter_mut() { +/// *x = rand::random() +/// } +/// +/// // can be made faster by caching thread_rng +/// +/// let mut rng = rand::thread_rng(); +/// +/// for x in v.iter_mut() { +/// *x = rng.gen(); +/// } +/// ``` +/// +/// [`thread_rng`]: fn.thread_rng.html +/// [`Rand`]: trait.Rand.html +#[deprecated(since="0.5.0", note="removed in favor of thread_rng().gen()")] +#[inline] +pub fn random<T>() -> T where Standard: Distribution<T> { + thread_rng().gen() +} + +#[cfg(test)] +mod test { + #[test] + #[cfg(not(feature="stdweb"))] + fn test_thread_rng() { + use Rng; + let mut r = ::thread_rng(); + r.gen::<i32>(); + let mut v = [1, 1, 1]; + r.shuffle(&mut v); + let b: &[_] = &[1, 1, 1]; + assert_eq!(v, b); + assert_eq!(r.gen_range(0, 1), 0); + } + + #[test] + #[allow(deprecated)] + fn test_random() { + use super::random; + // not sure how to test this aside from just getting some values + let _n : usize = random(); + let _f : f32 = random(); + let _o : Option<Option<i8>> = random(); + let _many : ((), + (usize, + isize, + Option<(u32, (bool,))>), + (u8, i8, u16, i16, u32, i32, u64, i64), + (f32, (f64, (f64,)))) = random(); + } +} diff --git a/vendor/rand-8c5b0ac51d/utils/ci/install.sh b/vendor/rand-8c5b0ac51d/utils/ci/install.sh new file mode 100644 index 0000000..8e636e1 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/utils/ci/install.sh @@ -0,0 +1,49 @@ +# From https://github.com/japaric/trust + +set -ex + +main() { + local target= + if [ $TRAVIS_OS_NAME = linux ]; then + target=x86_64-unknown-linux-musl + sort=sort + else + target=x86_64-apple-darwin + sort=gsort # for `sort --sort-version`, from brew's coreutils. + fi + + # Builds for iOS are done on OSX, but require the specific target to be + # installed. + case $TARGET in + aarch64-apple-ios) + rustup target install aarch64-apple-ios + ;; + armv7-apple-ios) + rustup target install armv7-apple-ios + ;; + armv7s-apple-ios) + rustup target install armv7s-apple-ios + ;; + i386-apple-ios) + rustup target install i386-apple-ios + ;; + x86_64-apple-ios) + rustup target install x86_64-apple-ios + ;; + esac + + # This fetches latest stable release + local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \ + | cut -d/ -f3 \ + | grep -E '^v[0.1.0-9.]+$' \ + | $sort --version-sort \ + | tail -n1) + curl -LSfs https://japaric.github.io/trust/install.sh | \ + sh -s -- \ + --force \ + --git japaric/cross \ + --tag $tag \ + --target $target +} + +main diff --git a/vendor/rand-8c5b0ac51d/utils/ci/script.sh b/vendor/rand-8c5b0ac51d/utils/ci/script.sh new file mode 100644 index 0000000..a34dc5f --- /dev/null +++ b/vendor/rand-8c5b0ac51d/utils/ci/script.sh @@ -0,0 +1,27 @@ +# Derived from https://github.com/japaric/trust + +set -ex + +main() { + if [ ! -z $DISABLE_TESTS ]; then + cross build --all --no-default-features --target $TARGET --release + if [ -z $DISABLE_STD ]; then + cross build --features log,serde1 --target $TARGET + fi + return + fi + + if [ ! -z $NIGHTLY ]; then + cross test --all --tests --no-default-features --features alloc --target $TARGET + cross test --features serde1,log,nightly --target $TARGET + cross test --all --benches --target $TARGET + else + cross test --all --tests --no-default-features --target $TARGET + cross test --features serde1,log --target $TARGET + fi +} + +# we don't run the "test phase" when doing deploys +if [ -z $TRAVIS_TAG ]; then + main +fi diff --git a/vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py b/vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py new file mode 100755 index 0000000..9973b83 --- /dev/null +++ b/vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py @@ -0,0 +1,127 @@ +#!/usr/bin/env python +# +# Copyright 2013 The Rust Project Developers. See the COPYRIGHT +# file at the top-level directory of this distribution and at +# https://rust-lang.org/COPYRIGHT. +# +# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +# https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +# <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +# option. This file may not be copied, modified, or distributed +# except according to those terms. + +# This creates the tables used for distributions implemented using the +# ziggurat algorithm in `rand::distributions;`. They are +# (basically) the tables as used in the ZIGNOR variant (Doornik 2005). +# They are changed rarely, so the generated file should be checked in +# to git. +# +# It creates 3 tables: X as in the paper, F which is f(x_i), and +# F_DIFF which is f(x_i) - f(x_{i-1}). The latter two are just cached +# values which is not done in that paper (but is done in other +# variants). Note that the adZigR table is unnecessary because of +# algebra. +# +# It is designed to be compatible with Python 2 and 3. + +from math import exp, sqrt, log, floor +import random + +# The order should match the return value of `tables` +TABLE_NAMES = ['X', 'F'] + +# The actual length of the table is 1 more, to stop +# index-out-of-bounds errors. This should match the bitwise operation +# to find `i` in `zigurrat` in `libstd/rand/mod.rs`. Also the *_R and +# *_V constants below depend on this value. +TABLE_LEN = 256 + +# equivalent to `zigNorInit` in Doornik2005, but generalised to any +# distribution. r = dR, v = dV, f = probability density function, +# f_inv = inverse of f +def tables(r, v, f, f_inv): + # compute the x_i + xvec = [0]*(TABLE_LEN+1) + + xvec[0] = v / f(r) + xvec[1] = r + + for i in range(2, TABLE_LEN): + last = xvec[i-1] + xvec[i] = f_inv(v / last + f(last)) + + # cache the f's + fvec = [0]*(TABLE_LEN+1) + for i in range(TABLE_LEN+1): + fvec[i] = f(xvec[i]) + + return xvec, fvec + +# Distributions +# N(0, 1) +def norm_f(x): + return exp(-x*x/2.0) +def norm_f_inv(y): + return sqrt(-2.0*log(y)) + +NORM_R = 3.6541528853610088 +NORM_V = 0.00492867323399 + +NORM = tables(NORM_R, NORM_V, + norm_f, norm_f_inv) + +# Exp(1) +def exp_f(x): + return exp(-x) +def exp_f_inv(y): + return -log(y) + +EXP_R = 7.69711747013104972 +EXP_V = 0.0039496598225815571993 + +EXP = tables(EXP_R, EXP_V, + exp_f, exp_f_inv) + + +# Output the tables/constants/types + +def render_static(name, type, value): + # no space or + return 'pub static %s: %s =%s;\n' % (name, type, value) + +# static `name`: [`type`, .. `len(values)`] = +# [values[0], ..., values[3], +# values[4], ..., values[7], +# ... ]; +def render_table(name, values): + rows = [] + # 4 values on each row + for i in range(0, len(values), 4): + row = values[i:i+4] + rows.append(', '.join('%.18f' % f for f in row)) + + rendered = '\n [%s]' % ',\n '.join(rows) + return render_static(name, '[f64, .. %d]' % len(values), rendered) + + +with open('ziggurat_tables.rs', 'w') as f: + f.write('''// Copyright 2013 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// https://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// Tables for distributions which are sampled using the ziggurat +// algorithm. Autogenerated by `ziggurat_tables.py`. + +pub type ZigTable = &'static [f64, .. %d]; +''' % (TABLE_LEN + 1)) + for name, tables, r in [('NORM', NORM, NORM_R), + ('EXP', EXP, EXP_R)]: + f.write(render_static('ZIG_%s_R' % name, 'f64', ' %.18f' % r)) + for (tabname, table) in zip(TABLE_NAMES, tables): + f.write(render_table('ZIG_%s_%s' % (name, tabname), table))
tor-commits@lists.torproject.org