commit 9590d92f9e36b10b6960f83246f35e73d72f55e5 Author: Arturo Filastò arturo@filasto.net Date: Sun Oct 7 16:24:46 2012 +0000
Turn DOMClass into a kit --- ooni/kit/domclass.py | 154 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 154 insertions(+), 0 deletions(-)
diff --git a/ooni/kit/domclass.py b/ooni/kit/domclass.py new file mode 100644 index 0000000..d50647c --- /dev/null +++ b/ooni/kit/domclass.py @@ -0,0 +1,154 @@ +#!/usr/bin/env python +#-*- encoding: utf-8 -*- +# +# domclass +# ******** +# +# :copyright: (c) 2012 by Arturo Filastò +# :license: see LICENSE for more details. +# +# how this works +# -------------- +# +# This classifier uses the DOM structure of a website to determine how similar +# the two sites are. +# The procedure we use is the following: +# * First we parse all the DOM tree of the web page and we build a list of +# TAG parent child relationships (ex. <html><a><b></b></a><c></c></html> => +# (html, a), (a, b), (html, c)). +# +# * We then use this information to build a matrix (M) where m[i][j] = P(of +# transitioning from tag[i] to tag[j]). If tag[i] does not exists P() = 0. +# Note: M is a square matrix that is number_of_tags wide. +# +# * We then calculate the eigenvectors (v_i) and eigenvalues (e) of M. +# +# * The corelation between page A and B is given via this formula: +# correlation = dot_product(e_A, e_B), where e_A and e_B are +# resepectively the eigenvalues for the probability matrix A and the +# probability matrix B. +# + +import yaml +import numpy +from bs4 import BeautifulSoup + +# All HTML4 tags +# XXX add link to W3C page where these came from +alltags = ['A', 'ABBR', 'ACRONYM', 'ADDRESS', 'APPLET', 'AREA', 'B', 'BASE', + 'BASEFONT', 'BD', 'BIG', 'BLOCKQUOTE', 'BODY', 'BR', 'BUTTON', 'CAPTION', + 'CENTER', 'CITE', 'CODE', 'COL', 'COLGROUP', 'DD', 'DEL', 'DFN', 'DIR', 'DIV', + 'DL', 'DT', 'E M', 'FIELDSET', 'FONT', 'FORM', 'FRAME', 'FRAMESET', 'H1', 'H2', + 'H3', 'H4', 'H5', 'H6', 'HEAD', 'HR', 'HTML', 'I', 'IFRAME ', 'IMG', + 'INPUT', 'INS', 'ISINDEX', 'KBD', 'LABEL', 'LEGEND', 'LI', 'LINK', 'MAP', + 'MENU', 'META', 'NOFRAMES', 'NOSCRIPT', 'OBJECT', 'OL', 'OPTGROUP', 'OPTION', + 'P', 'PARAM', 'PRE', 'Q', 'S', 'SAMP', 'SCRIPT', 'SELECT', 'SMALL', 'SPAN', + 'STRIKE', 'STRONG', 'STYLE', 'SUB', 'SUP', 'TABLE', 'TBODY', 'TD', + 'TEXTAREA', 'TFOOT', 'TH', 'THEAD', 'TITLE', 'TR', 'TT', 'U', 'UL', 'VAR'] + +# Reduced subset of only the most common tags +commontags = ['A', 'B', 'BLOCKQUOTE', 'BODY', 'BR', 'BUTTON', 'CAPTION', + 'CENTER', 'CITE', 'CODE', 'COL', 'DD', 'DIV', + 'DL', 'DT', 'EM', 'FIELDSET', 'FONT', 'FORM', 'FRAME', 'FRAMESET', 'H1', 'H2', + 'H3', 'H4', 'H5', 'H6', 'HEAD', 'HR', 'HTML', 'IFRAME ', 'IMG', + 'INPUT', 'INS', 'LABEL', 'LEGEND', 'LI', 'LINK', 'MAP', + 'MENU', 'META', 'NOFRAMES', 'NOSCRIPT', 'OBJECT', 'OL', 'OPTION', + 'P', 'PRE', 'SCRIPT', 'SELECT', 'SMALL', 'SPAN', + 'STRIKE', 'STRONG', 'STYLE', 'SUB', 'SUP', 'TABLE', 'TBODY', 'TD', + 'TEXTAREA', 'TFOOT', 'TH', 'THEAD', 'TITLE', 'TR', 'TT', 'U', 'UL'] + +# The tags we are intested in using for our analysis +thetags = ['A', 'DIV', 'FRAME', 'H1', 'H2', + 'H3', 'H4', 'IFRAME ', 'INPUT', + 'LABEL','LI', 'P', 'SCRIPT', 'SPAN', + 'STYLE', 'TR'] + +def compute_probability_matrix(dataset): + """ + Compute the probability matrix based on the input dataset. + + :dataset: an array of pairs representing the parent child relationships. + """ + import itertools + ret = {} + matrix = numpy.zeros((len(thetags) + 1, len(thetags) + 1)) + + for data in dataset: + x = data[0].upper() + y = data[1].upper() + try: + x = thetags.index(x) + except: + x = len(thetags) + + try: + y = thetags.index(y) + except: + y = len(thetags) + + matrix[x,y] += 1 + + for x in xrange(len(thetags) + 1): + possibilities = 0 + for y in matrix[x]: + possibilities += y + + for i in xrange(len(matrix[x])): + if possibilities != 0: + matrix[x][i] = matrix[x][i]/possibilities + + return matrix + +def compute_eigenvalues(matrix): + """ + Returns the eigenvalues of the supplied square matrix. + + :matrix: must be a square matrix and diagonalizable. + """ + return numpy.linalg.eigvals(matrix) + +def readDOM(content=None, filename=None): + """ + Parses the DOM of the HTML page and returns an array of parent, child + pairs. + + :content: the content of the HTML page to be read. + + :filename: the filename to be read from for getting the content of the + page. + """ + + if filename: + f = open(filename) + content = ''.join(f.readlines()) + f.close() + + dom = BeautifulSoup(content) + couples = [] + for x in dom.findAll(): + couples.append((str(x.parent.name), str(x.name))) + + return couples + +def compute_correlation(matrix_a, matrix_b): + correlation = numpy.vdot(matrix_a, matrix_b) + correlation /= numpy.linalg.norm(matrix_a)*numpy.linalg.norm(matrix_b) + correlation = (correlation + 1)/2 + return correlation + +def example(): + site_a = readDOM(filename='filea.txt') + site_b = readDOM(filename='fileb.txt') + + a = {} + a['matrix'] = compute_probability_matrix(site_a) + a['eigen'] = compute_eigenvalues(a['matrix']) + + b = {} + b['matrix'] = compute_probability_matrix(site_b) + b['eigen'] = compute_eigenvalues(b['matrix']) + + correlation = compute_correlation(a['eigen'], b['eigen']) + print "Corelation: %s" % correlation + +
tor-commits@lists.torproject.org