commit c5994e0a528ddfb14496fbba504042df3fcf19f2 Author: Isis Lovecruft isis@torproject.org Date: Fri May 4 20:19:56 2018 +0000
Remove manually vendored rand-8c5b0ac51d dependency. --- vendor/rand-8c5b0ac51d/CHANGELOG.md | 369 ------ vendor/rand-8c5b0ac51d/Cargo.toml | 60 - vendor/rand-8c5b0ac51d/LICENSE-APACHE | 201 ---- vendor/rand-8c5b0ac51d/LICENSE-MIT | 25 - vendor/rand-8c5b0ac51d/README.md | 152 --- vendor/rand-8c5b0ac51d/UPDATING.md | 266 ----- vendor/rand-8c5b0ac51d/appveyor.yml | 39 - vendor/rand-8c5b0ac51d/benches/distributions.rs | 152 --- vendor/rand-8c5b0ac51d/benches/generators.rs | 224 ---- vendor/rand-8c5b0ac51d/benches/misc.rs | 134 --- vendor/rand-8c5b0ac51d/examples/monte-carlo.rs | 52 - vendor/rand-8c5b0ac51d/examples/monty-hall.rs | 117 -- vendor/rand-8c5b0ac51d/master.zip | Bin 168983 -> 0 bytes vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md | 21 - vendor/rand-8c5b0ac51d/rand_core/Cargo.toml | 29 - vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE | 201 ---- vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT | 25 - vendor/rand-8c5b0ac51d/rand_core/README.md | 62 - vendor/rand-8c5b0ac51d/rand_core/src/error.rs | 163 --- vendor/rand-8c5b0ac51d/rand_core/src/impls.rs | 543 --------- vendor/rand-8c5b0ac51d/rand_core/src/le.rs | 70 -- vendor/rand-8c5b0ac51d/rand_core/src/lib.rs | 438 ------- .../rand-8c5b0ac51d/src/distributions/binomial.rs | 172 --- .../src/distributions/exponential.rs | 122 -- vendor/rand-8c5b0ac51d/src/distributions/float.rs | 89 -- vendor/rand-8c5b0ac51d/src/distributions/gamma.rs | 360 ------ .../rand-8c5b0ac51d/src/distributions/integer.rs | 138 --- .../rand-8c5b0ac51d/src/distributions/log_gamma.rs | 51 - vendor/rand-8c5b0ac51d/src/distributions/mod.rs | 643 ----------- vendor/rand-8c5b0ac51d/src/distributions/normal.rs | 192 ---- vendor/rand-8c5b0ac51d/src/distributions/other.rs | 207 ---- .../rand-8c5b0ac51d/src/distributions/poisson.rs | 157 --- .../rand-8c5b0ac51d/src/distributions/uniform.rs | 650 ----------- .../src/distributions/ziggurat_tables.rs | 280 ----- vendor/rand-8c5b0ac51d/src/entropy_rng.rs | 167 --- vendor/rand-8c5b0ac51d/src/jitter.rs | 875 -------------- vendor/rand-8c5b0ac51d/src/lib.rs | 1206 -------------------- vendor/rand-8c5b0ac51d/src/mock.rs | 61 - vendor/rand-8c5b0ac51d/src/os.rs | 833 -------------- vendor/rand-8c5b0ac51d/src/prng/chacha.rs | 463 -------- vendor/rand-8c5b0ac51d/src/prng/hc128.rs | 457 -------- vendor/rand-8c5b0ac51d/src/prng/isaac.rs | 482 -------- vendor/rand-8c5b0ac51d/src/prng/isaac64.rs | 474 -------- vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs | 130 --- vendor/rand-8c5b0ac51d/src/prng/mod.rs | 55 - vendor/rand-8c5b0ac51d/src/prng/xorshift.rs | 226 ---- vendor/rand-8c5b0ac51d/src/read.rs | 129 --- vendor/rand-8c5b0ac51d/src/reseeding.rs | 260 ----- vendor/rand-8c5b0ac51d/src/seq.rs | 335 ------ vendor/rand-8c5b0ac51d/src/thread_rng.rs | 206 ---- vendor/rand-8c5b0ac51d/utils/ci/install.sh | 49 - vendor/rand-8c5b0ac51d/utils/ci/script.sh | 27 - vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py | 127 --- 53 files changed, 12966 deletions(-)
diff --git a/vendor/rand-8c5b0ac51d/CHANGELOG.md b/vendor/rand-8c5b0ac51d/CHANGELOG.md deleted file mode 100644 index c0544e5..0000000 --- a/vendor/rand-8c5b0ac51d/CHANGELOG.md +++ /dev/null @@ -1,369 +0,0 @@ -# Changelog -All notable changes to this project will be documented in this file. - -The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) -and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). - -A [separate changelog is kept for rand_core](rand_core/CHANGELOG.md). - -You may also find the [Update Guide](UPDATING.md) useful. - - -## [0.5.0] - Unreleased - -### Crate features and organisation -- Minimum Rust version update: 1.22.0. (#239) -- Create a seperate `rand_core` crate. (#288) -- Deprecate `rand_derive`. (#256) -- Add `log` feature. Logging is now available in `JitterRng`, `OsRng`, `EntropyRng` and `ReseedingRng`. (#246) -- Add `serde1` feature for some PRNGs. (#189) -- `stdweb` feature for `OsRng` support on WASM via stdweb. (#272, #336) - -### `Rng` trait -- Split `Rng` in `RngCore` and `Rng` extension trait. - `next_u32`, `next_u64` and `fill_bytes` are now part of `RngCore`. (#265) -- Add `Rng::sample`. (#256) -- Deprecate `Rng::gen_weighted_bool`. (#308) -- Add `Rng::gen_bool`. (#308) -- Remove `Rng::next_f32` and `Rng::next_f64`. (#273) -- Add optimized `Rng::fill` and `Rng::try_fill` methods. (#247) -- Deprecate `Rng::gen_iter`. (#286) -- Deprecate `Rng::gen_ascii_chars`. (#279) - -### `rand_core` crate -- `rand` now depends on new `rand_core` crate (#288) -- `RngCore` and `SeedableRng` are now part of `rand_core`. (#288) -- Add modules to help implementing RNGs `impl` and `le`. (#209, #228) -- Add `Error` and `ErrorKind`. (#225) -- Add `CryptoRng` marker trait. (#273) -- Add `BlockRngCore` trait. (#281) -- Add `BlockRng` and `BlockRng64` wrappers to help implementations. (#281, #325) -- Revise the `SeedableRng` trait. (#233) -- Remove default implementations for `RngCore::next_u64` and `RngCore::fill_bytes`. (#288) -- Add `RngCore::try_fill_bytes`. (#225) - -### Other traits and types -- Add `FromEntropy` trait. (#233, #375) -- Add `SmallRng` wrapper. (#296) -- Rewrite `ReseedingRng` to only work with `BlockRngCore` (substantial performance improvement). (#281) -- Deprecate `weak_rng`. Use `SmallRng` instead. (#296) -- Deprecate `random`. (#296) -- Deprecate `AsciiGenerator`. (#279) - -### Random number generators -- Switch `StdRng` and `thread_rng` to HC-128. (#277) -- `StdRng` must now be created with `from_entropy` instead of `new` -- Change `thread_rng` reseeding threshold to 32 MiB. (#277) -- PRNGs no longer implement `Copy`. (#209) -- `Debug` implementations no longer show internals. (#209) -- Implement serialization for `XorShiftRng`, `IsaacRng` and `Isaac64Rng` under the `serde1` feature. (#189) -- Implement `BlockRngCore` for `ChaChaCore` and `Hc128Core`. (#281) -- All PRNGs are now portable across big- and little-endian architectures. (#209) -- `Isaac64Rng::next_u32` no longer throws away half the results. (#209) -- Add `IsaacRng::new_from_u64` and `Isaac64Rng::new_from_u64`. (#209) -- Add the HC-128 CSPRNG `Hc128Rng`. (#210) -- Add `ChaChaRng::set_rounds` method. (#243) -- Changes to `JitterRng` to get its size down from 2112 to 24 bytes. (#251) -- Various performance improvements to all PRNGs. - -### Platform support and `OsRng` -- Add support for CloudABI. (#224) -- Remove support for NaCl. (#225) -- WASM support for `OsRng` via stdweb, behind the `stdweb` feature. (#272, #336) -- Use `getrandom` on more platforms for Linux, and on Android. (#338) -- Use the `SecRandomCopyBytes` interface on macOS. (#322) -- On systems that do not have a syscall interface, only keep a single file descriptor open for `OsRng`. (#239) -- On Unix, first try a single read from `/dev/random`, then `/dev/urandom`. (#338) -- Better error handling and reporting in `OsRng` (using new error type). (#225) -- `OsRng` now uses non-blocking when available. (#225) -- Add `EntropyRng`, which provides `OsRng`, but has `JitterRng` as a fallback. (#235) - -### Distributions -- New `Distribution` trait. (#256) -- Deprecate `Rand`, `Sample` and `IndependentSample` traits. (#256) -- Add a `Standard` distribution (replaces most `Rand` implementations). (#256) -- Add `Binomial` and `Poisson` distributions. (#96) -- Add `Alphanumeric` distribution. (#279) -- Remove `Open01` and `Closed01` distributions, use `Standard` instead (open distribution). (#274) -- Rework `Range` type, making it possible to implement it for user types. (#274) -- Add `Range::new_inclusive` for inclusive ranges. (#274) -- Add `Range::sample_single` to allow for optimized implementations. (#274) -- Use widening multiply method for much faster integer range reduction. (#274) -- `Standard` distributions for `bool` uses `Range`. (#274) -- `Standard` distributions for `bool` uses sign test. (#274) - - -## [0.4.2] - 2018-01-06 -### Changed -- Use `winapi` on Windows -- Update for Fuchsia OS -- Remove dev-dependency on `log` - - -## [0.4.1] - 2017-12-17 -### Added -- `no_std` support - - -## [0.4.0-pre.0] - 2017-12-11 -### Added -- `JitterRng` added as a high-quality alternative entropy source using the - system timer -- new `seq` module with `sample_iter`, `sample_slice`, etc. -- WASM support via dummy implementations (fail at run-time) -- Additional benchmarks, covering generators and new seq code - -### Changed -- `thread_rng` uses `JitterRng` if seeding from system time fails - (slower but more secure than previous method) - -### Deprecated - - `sample` function deprecated (replaced by `sample_iter`) - - -## [0.3.20] - 2018-01-06 -### Changed -- Remove dev-dependency on `log` -- Update `fuchsia-zircon` dependency to 0.3.2 - - -## [0.3.19] - 2017-12-27 -### Changed -- Require `log <= 0.3.8` for dev builds -- Update `fuchsia-zircon` dependency to 0.3 -- Fix broken links in docs (to unblock compiler docs testing CI) - - -## [0.3.18] - 2017-11-06 -### Changed -- `thread_rng` is seeded from the system time if `OsRng` fails -- `weak_rng` now uses `thread_rng` internally - - -## [0.3.17] - 2017-10-07 -### Changed - - Fuchsia: Magenta was renamed Zircon - -## [0.3.16] - 2017-07-27 -### Added -- Implement Debug for mote non-public types -- implement `Rand` for (i|u)i128 -- Support for Fuchsia - -### Changed -- Add inline attribute to SampleRange::construct_range. - This improves the benchmark for sample in 11% and for shuffle in 16%. -- Use `RtlGenRandom` instead of `CryptGenRandom` - - -## [0.3.15] - 2016-11-26 -### Added -- Add `Rng` trait method `choose_mut` -- Redox support - -### Changed -- Use `arc4rand` for `OsRng` on FreeBSD. -- Use `arc4random(3)` for `OsRng` on OpenBSD. - -### Fixed -- Fix filling buffers 4 GiB or larger with `OsRng::fill_bytes` on Windows - - -## [0.3.14] - 2016-02-13 -### Fixed -- Inline definitions from winapi/advapi32, wich decreases build times - - -## [0.3.13] - 2016-01-09 -### Fixed -- Compatible with Rust 1.7.0-nightly (needed some extra type annotations) - - -## [0.3.12] - 2015-11-09 -### Changed -- Replaced the methods in `next_f32` and `next_f64` with the technique described - Saito & Matsumoto at MCQMC'08. The new method should exhibit a slightly more - uniform distribution. -- Depend on libc 0.2 - -### Fixed -- Fix iterator protocol issue in `rand::sample` - - -## [0.3.11] - 2015-08-31 -### Added -- Implement `Rand` for arrays with n <= 32 - - -## [0.3.10] - 2015-08-17 -### Added -- Support for NaCl platforms - -### Changed -- Allow `Rng` to be `?Sized`, impl for `&mut R` and `Box<R>` where `R: ?Sized + Rng` - - -## [0.3.9] - 2015-06-18 -### Changed -- Use `winapi` for Windows API things - -### Fixed -- Fixed test on stable/nightly -- Fix `getrandom` syscall number for aarch64-unknown-linux-gnu - - -## [0.3.8] - 2015-04-23 -### Changed -- `log` is a dev dependency - -### Fixed -- Fix race condition of atomics in `is_getrandom_available` - - -## [0.3.7] - 2015-04-03 -### Fixed -- Derive Copy/Clone changes - - -## [0.3.6] - 2015-04-02 -### Changed -- Move to stable Rust! - - -## [0.3.5] - 2015-04-01 -### Fixed -- Compatible with Rust master - - -## [0.3.4] - 2015-03-31 -### Added -- Implement Clone for `Weighted` - -### Fixed -- Compatible with Rust master - - -## [0.3.3] - 2015-03-26 -### Fixed -- Fix compile on Windows - - -## [0.3.2] - 2015-03-26 - - -## [0.3.1] - 2015-03-26 -### Fixed -- Fix compile on Windows - - -## [0.3.0] - 2015-03-25 -### Changed -- Update to use log version 0.3.x - - -## [0.2.1] - 2015-03-22 -### Fixed -- Compatible with Rust master -- Fixed iOS compilation - - -## [0.2.0] - 2015-03-06 -### Fixed -- Compatible with Rust master (move from `old_io` to `std::io`) - - -## [0.1.4] - 2015-03-04 -### Fixed -- Compatible with Rust master (use wrapping ops) - - -## [0.1.3] - 2015-02-20 -### Fixed -- Compatible with Rust master - -### Removed -- Removed Copy inplementaions from RNGs - - -## [0.1.2] - 2015-02-03 -### Added -- Imported functionality from `std::rand`, including: - - `StdRng`, `SeedableRng`, `TreadRng`, `weak_rng()` - - `ReaderRng`: A wrapper around any Reader to treat it as an RNG. -- Imported documentation from `std::rand` -- Imported tests from `std::rand` - - -## [0.1.1] - 2015-02-03 -### Added -- Migrate to a cargo-compatible directory structure. - -### Fixed -- Do not use entropy during `gen_weighted_bool(1)` - - -## [Rust 0.12.0] - 2014-10-09 -### Added -- Impl Rand for tuples of arity 11 and 12 -- Include ChaCha pseudorandom generator -- Add `next_f64` and `next_f32` to Rng -- Implement Clone for PRNGs - -### Changed -- Rename `TaskRng` to `ThreadRng` and `task_rng` to `thread_rng` (since a - runtime is removed from Rust). - -### Fixed -- Improved performance of ISAAC and ISAAC64 by 30% and 12 % respectively, by - informing the optimiser that indexing is never out-of-bounds. - -### Removed -- Removed the Deprecated `choose_option` - - -## [Rust 0.11.0] - 2014-07-02 -### Added -- document when to use `OSRng` in cryptographic context, and explain why we use `/dev/urandom` instead of `/dev/random` -- `Rng::gen_iter()` which will return an infinite stream of random values -- `Rng::gen_ascii_chars()` which will return an infinite stream of random ascii characters - -### Changed -- Now only depends on libcore! -- Remove `Rng.choose()`, rename `Rng.choose_option()` to `.choose()` -- Rename OSRng to OsRng -- The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, - but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice - structure now has a lifetime associated with it. -- The `sample` method on `Rng` has been moved to a top-level function in the - `rand` module due to its dependence on `Vec`. - -### Removed -- `Rng::gen_vec()` was removed. Previous behavior can be regained with - `rng.gen_iter().take(n).collect()` -- `Rng::gen_ascii_str()` was removed. Previous behavior can be regained with - `rng.gen_ascii_chars().take(n).collect()` -- {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all - relied on being able to use an OSRng for seeding, but this is no longer - available in librand (where these types are defined). To retain the same - functionality, these types now implement the `Rand` trait so they can be - generated with a random seed from another random number generator. This allows - the stdlib to use an OSRng to create seeded instances of these RNGs. -- Rand implementations for `Box<T>` and `@T` were removed. These seemed to be - pretty rare in the codebase, and it allows for librand to not depend on - liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not - supported. -- Remove a slew of old deprecated functions - - -## [Rust 0.10] - 2014-04-03 -### Changed -- replace `Rng.shuffle's` functionality with `.shuffle_mut` -- bubble up IO errors when creating an OSRng - -### Fixed -- Use `fill()` instead of `read()` -- Rewrite OsRng in Rust for windows - -## [0.10-pre] - 2014-03-02 -### Added -- Seperate `rand` out of the standard library diff --git a/vendor/rand-8c5b0ac51d/Cargo.toml b/vendor/rand-8c5b0ac51d/Cargo.toml deleted file mode 100644 index 8dc9c3c..0000000 --- a/vendor/rand-8c5b0ac51d/Cargo.toml +++ /dev/null @@ -1,60 +0,0 @@ -[package] -name = "rand" -version = "0.5.0-pre.0" # NB: When modifying, also modify html_root_url in lib.rs -authors = ["The Rust Project Developers"] -license = "MIT/Apache-2.0" -readme = "README.md" -repository = "https://github.com/rust-lang-nursery/rand" -documentation = "https://docs.rs/rand" -homepage = "https://crates.io/crates/rand" -description = """ -Random number generators and other randomness functionality. -""" -keywords = ["random", "rng"] -categories = ["algorithms", "no-std"] - -[badges] -travis-ci = { repository = "rust-lang-nursery/rand" } -appveyor = { repository = "alexcrichton/rand" } - -[features] -default = ["std" ] # without "std" rand uses libcore -nightly = ["i128_support"] # enables all features requiring nightly rust -std = ["rand_core/std", "alloc", "libc", "winapi", "cloudabi", "fuchsia-zircon"] -alloc = ["rand_core/alloc"] # enables Vec and Box support (without std) -i128_support = [] # enables i128 and u128 support -serde1 = ["serde", "serde_derive", "rand_core/serde1"] # enables serialization for PRNGs - -[workspace] -members = ["rand_core"] - -[dependencies] -rand_core = { path = "rand_core", version = "0.1.0", default-features = false } -log = { version = "0.4", optional = true } -serde = { version = "1", optional = true } -serde_derive = { version = "1", optional = true } - -[target.'cfg(unix)'.dependencies] -libc = { version = "0.2", optional = true } - -[target.'cfg(windows)'.dependencies] -winapi = { version = "0.3", features = ["minwindef", "ntsecapi", "profileapi", "winnt"], optional = true } - -[target.'cfg(target_os = "cloudabi")'.dependencies] -cloudabi = { version = "0.0.3", optional = true } - -[target.'cfg(target_os = "fuchsia")'.dependencies] -fuchsia-zircon = { version = "0.3.2", optional = true } - -[target.wasm32-unknown-unknown.dependencies] -# use with `--target wasm32-unknown-unknown --features=stdweb` -stdweb = { version = "0.4", optional = true } - -[dev-dependencies] -# This is for testing serde, unfortunately we can't specify feature-gated dev -# deps yet, see: https://github.com/rust-lang/cargo/issues/1596 -bincode = "1.0" - -[package.metadata.docs.rs] -all-features = true -rustdoc-args = [ "--all" ] # also document rand_core diff --git a/vendor/rand-8c5b0ac51d/LICENSE-APACHE b/vendor/rand-8c5b0ac51d/LICENSE-APACHE deleted file mode 100644 index 17d7468..0000000 --- a/vendor/rand-8c5b0ac51d/LICENSE-APACHE +++ /dev/null @@ -1,201 +0,0 @@ - Apache License - Version 2.0, January 2004 - https://www.apache.org/licenses/ - -TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - -1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - -2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - -3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - -4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - -5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - -6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - -7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - -8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - -9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - -END OF TERMS AND CONDITIONS - -APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - -Copyright [yyyy] [name of copyright owner] - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - https://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. diff --git a/vendor/rand-8c5b0ac51d/LICENSE-MIT b/vendor/rand-8c5b0ac51d/LICENSE-MIT deleted file mode 100644 index 39d4bdb..0000000 --- a/vendor/rand-8c5b0ac51d/LICENSE-MIT +++ /dev/null @@ -1,25 +0,0 @@ -Copyright (c) 2014 The Rust Project Developers - -Permission is hereby granted, free of charge, to any -person obtaining a copy of this software and associated -documentation files (the "Software"), to deal in the -Software without restriction, including without -limitation the rights to use, copy, modify, merge, -publish, distribute, sublicense, and/or sell copies of -the Software, and to permit persons to whom the Software -is furnished to do so, subject to the following -conditions: - -The above copyright notice and this permission notice -shall be included in all copies or substantial portions -of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF -ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED -TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A -PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT -SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR -IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER -DEALINGS IN THE SOFTWARE. diff --git a/vendor/rand-8c5b0ac51d/README.md b/vendor/rand-8c5b0ac51d/README.md deleted file mode 100644 index 1f75787..0000000 --- a/vendor/rand-8c5b0ac51d/README.md +++ /dev/null @@ -1,152 +0,0 @@ -# Rand - -[![Build Status](https://travis-ci.org/rust-lang-nursery/rand.svg?branch=master)%5D(https://t...) -[![Build Status](https://ci.appveyor.com/api/projects/status/github/rust-lang-nursery/rand?sv...) -[![Latest version](https://img.shields.io/crates/v/rand.svg)%5D(https://crates.io/crates/rand) -[![Documentation](https://docs.rs/rand/badge.svg)%5D(https://docs.rs/rand) -[![Minimum rustc version](https://img.shields.io/badge/rustc-1.22+-yellow.svg)%5D(https://github.com/r...) - -A Rust library for random number generators and other randomness functionality. - -See also: - -* [rand_core](https://crates.io/crates/rand_core) - -Documentation: -[master branch](https://rust-lang-nursery.github.io/rand/rand/index.html), -[by release](https://docs.rs/rand) - -## Usage - -Add this to your `Cargo.toml`: - -```toml -[dependencies] -rand = "0.5.0-pre.0" -``` - -and this to your crate root: - -```rust -extern crate rand; - -// example usage: -use rand::{Rng, thread_rng}; -let x: f64 = thread_rng().gen(); -``` - -## Versions - -Version 0.5 is available as a pre-release and contains many breaking changes. -See [the Upgrade Guide](UPDATING.md) for guidance on updating from previous -versions. - -Version 0.4 was released in December 2017. It contains almost no breaking -changes since the 0.3 series. - -For more details, see the [changelog](CHANGELOG.md). - -### Compatibility shims - -**As of now there is no compatibility shim between Rand 0.4 and 0.5.** -It is also not entirely obvious how to make one due to the large differences -between the two versions, although it would be possible to implement the new -`RngCore` for any implementation of the old `Rng` (or vice-versa; unfortunately -not both as that would result in circular implementation). If we implement a -compatibility shim it will be optional (opt-in via a feature). - -There is a compatibility shim from 0.3 to 0.4 forcibly upgrading all Rand 0.3 -users; this is largely due to the small differences between the two versions. - -### Rust version requirements - -The 0.5 release of Rand will require **Rustc version 1.22 or greater**. -Rand 0.4 and 0.3 (since approx. June 2017) require Rustc version 1.15 or -greater. Subsets of the Rand code may work with older Rust versions, but this -is not supported. - -Travis CI always has a build with a pinned version of Rustc matching the oldest -supported Rust release. The current policy is that this can be updated in any -Rand release if required, but the change must be noted in the changelog. - -## Functionality - -The `rand_core` crate provides: - -- base random number generator traits -- error-reporting types -- functionality to aid implementation of RNGs - -The `rand` crate provides: - -- most content from `rand_core` (re-exported) -- fresh entropy: `EntropyRng`, `OsRng`, `JitterRng` -- pseudo-random number generators: `StdRng`, `SmallRng`, `prng` module -- convenient, auto-seeded crypto-grade thread-local generator: `thread_rng` -- `distributions` producing many different types of random values: - - a `Standard` distribution for integers, floats,and derived types - including tuples, arrays and `Option` - - unbiased sampling from specified `Range`s - - sampling from exponential/normal/gamma distributions - - sampling from binomial/poisson distributions - - `gen_bool` aka Bernoulli distribution -- `seq`-uence related functionality: - - sampling a subset of elements - - randomly shuffling a list - -## Crate Features - -By default, Rand is built with all stable features available. The following -optional features are available: - -- `alloc` can be used instead of `std` to provide `Vec` and `Box` -- `i128_support` enables support for generating `u128` and `i128` values -- `log` enables some logging via the `log` crate -- `nightly` enables all unstable features (`i128_support`) -- `serde1` enables serialization for some types, via Serde version 1 -- `stdweb` enables support for `OsRng` on WASM via stdweb. -- `std` enabled by default; by setting "default-features = false" `no_std` - mode is activated; this removes features depending on `std` functionality: - - `OsRng` is entirely unavailable - - `JitterRng` code is still present, but a nanosecond timer must be - provided via `JitterRng::new_with_timer` - - Since no external entropy is available, it is not possible to create - generators with fresh seeds (user must provide entropy) - - `thread_rng`, `weak_rng` and `random` are all disabled - - exponential, normal and gamma type distributions are unavailable - since `exp` and `log` functions are not provided in `core` - - any code requiring `Vec` or `Box` - -## Testing - -Unfortunately, `cargo test` does not test everything. The following tests are -recommended: - -``` -# Basic tests for Rand and sub-crates -cargo test --all - -# Test no_std support -cargo test --tests --no-default-features -# Test no_std+alloc support -cargo test --tests --no-default-features --features alloc - -# Test log and serde support -cargo test --features serde1,log - -# Test 128-bit support (requires nightly) -cargo test --all --features nightly - -# Benchmarks (requires nightly) -cargo bench -# or just to test the benchmark code: -cargo test --benches -``` - - -# License - -Rand is distributed under the terms of both the MIT -license and the Apache License (Version 2.0). - -See [LICENSE-APACHE](LICENSE-APACHE) and [LICENSE-MIT](LICENSE-MIT) for details. diff --git a/vendor/rand-8c5b0ac51d/UPDATING.md b/vendor/rand-8c5b0ac51d/UPDATING.md deleted file mode 100644 index 6e009b7..0000000 --- a/vendor/rand-8c5b0ac51d/UPDATING.md +++ /dev/null @@ -1,266 +0,0 @@ -# Update Guide - -This guide gives a few more details than the [changelog], in particular giving -guidance on how to use new features and migrate away from old ones. - -[changelog]: CHANGELOG.md - -## Rand 0.5 - -The 0.5 release has quite significant changes over the 0.4 release; as such, -it may be worth reading through the following coverage of breaking changes. -This release also contains many optimisations, which are not detailed below. - -### Crates - -We have a new crate: `rand_core`! This crate houses some important traits, -`RngCore`, `BlockRngCore`, `SeedableRng` and `CryptoRng`, the error types, as -well as two modules with helpers for implementations: `le` and `impls`. It is -recommended that implementations of generators use the `rand_core` crate while -other users use only the `rand` crate, which re-exports most parts of `rand_core`. - -The `rand_derive` crate has been deprecated due to very low usage and -deprecation of `Rand`. - -### Features - -Several new Cargo feature flags have been added: - -- `alloc`, used without `std`, allows use of `Box` and `Vec` -- `serde1` adds serialization support to some PRNGs -- `log` adds logging in a few places (primarily to `OsRng` and `JitterRng`) - -### `Rng` and friends (core traits) - -`Rng` trait has been split into two traits, a "back end" `RngCore` (implemented -by generators) and a "front end" `Rng` implementing all the convenient extension -methods. - -Implementations of generators must `impl RngCore` instead. Usage of `rand_core` -for implementations is encouraged; the `rand_core::{le, impls}` modules may -prove useful. - -Users of `Rng` *who don't need to implement it* won't need to make so many -changes; often users can forget about `RngCore` and only import `Rng`. Instead -of `RngCore::next_u32()` / `next_u64()` users should prefer `Rng::gen()`, and -instead of `RngCore::fill_bytes(dest)`, `Rng::fill(dest)` can be used. - -#### `Rng` / `RngCore` methods - -To allow error handling from fallible sources (e.g. `OsRng`), a new -`RngCore::try_fill_bytes` method has been added; for example `EntropyRng` uses -this mechanism to fall back to `JitterRng` if `OsRng` fails, and various -handlers produce better error messages. -As before, the other methods will panic on failure, but since these are usually -used with algorithmic generators which are usually infallible, this is -considered an appropriate compromise. - -A few methods from the old `Rng` have been removed or deprecated: - -- `next_f32` and `next_f64`; these are no longer implementable by generators; - use `gen` instead -- `gen_iter`; users may instead use standard iterators with closures: - `::std::iter::repeat(()).map(|()| rng.gen())` -- `gen_ascii_chars`; use `repeat` as above and `rng.sample(Alphanumeric)` -- `gen_weighted_bool(n)`; use `gen_bool(1.0 / n)` instead - -`Rng` has a few new methods: - -- `sample(distr)` is a shortcut for `distr.sample(rng)` for any `Distribution` -- `gen_bool(p)` generates a boolean with probability `p` of being true -- `fill` and `try_fill`, corresponding to `fill_bytes` and `try_fill_bytes` - respectively (i.e. the only difference is error handling); these can fill - and integer slice / array directly, and provide better performance - than `gen()` - -#### Constructing PRNGs - -##### New randomly-initialised PRNGs - -A new trait has been added: `FromEntropy`. This is automatically implemented for -any type supporting `SeedableRng`, and provides construction from fresh, strong -entropy: - -```rust -use rand::{ChaChaRng, FromEntropy}; - -let mut rng = ChaChaRng::from_entropy(); -``` - -##### Seeding PRNGs - -The `SeedableRng` trait has been modified to include the seed type via an -associated type (`SeedableRng::Seed`) instead of a template parameter -(`SeedableRng<Seed>`). Additionally, all PRNGs now seed from a byte-array -(`[u8; N]` for some fixed N). This allows generic handling of PRNG seeding -which was not previously possible. - -PRNGs are no longer constructed from other PRNGs via `Rand` support / `gen()`, -but through `SeedableRng::from_rng`, which allows error handling and is -intentionally explicit. - -`SeedableRng::reseed` has been removed since it has no utility over `from_seed` -and its performance advantage is questionable. - -Implementations of `SeedableRng` may need to change their `Seed` type to a -byte-array; this restriction has been made to ensure portable handling of -Endianness. Helper functions are available in `rand_core::le` to read `u32` and -`u64` values from byte arrays. - -#### Block-based PRNGs - -rand_core has a new helper trait, `BlockRngCore`, and implementation, -`BlockRng`. These are for use by generators which generate a block of random -data at a time instead of word-sized values. Using this trait and implementation -has two advantages: optimised `RngCore` methods are provided, and the PRNG can -be used with `ReseedingRng` with very low overhead. - -#### Cryptographic RNGs - -A new trait has been added: `CryptoRng`. This is purely a marker trait to -indicate which generators should be suitable for cryptography, e.g. -`fn foo<R: Rng + CryptoRng>(rng: &mut R)`. *Suitability for cryptographic -use cannot be guaranteed.* - -### Error handling - -A new `Error` type has been added, designed explicitly for no-std compatibility, -simplicity, and enough flexibility for our uses (carrying a `cause` when -possible): -```rust -pub struct Error { - pub kind: ErrorKind, - pub msg: &'static str, - // some fields omitted -} -``` -The associated `ErrorKind` allows broad classification of errors into permanent, -unexpected, transient and not-yet-ready kinds. - -The following use the new error type: - -- `RngCore::try_fill_bytes` -- `Rng::try_fill` -- `OsRng::new` -- `JitterRng::new` - -### External generators - -We have a new generator, `EntropyRng`, which wraps `OsRng` and `JitterRng` -(preferring to use the former, but falling back to the latter if necessary). -This allows easy construction with fallback via `SeedableRng::from_rng`, -e.g. `IsaacRng::from_rng(EntropyRng::new())?`. This is equivalent to using -`FromEntropy` except for error handling. - -It is recommended to use `EntropyRng` over `OsRng` to avoid errors on platforms -with broken system generator, but it should be noted that the `JitterRng` -fallback is very slow. - -### PRNGs - -*Pseudo-Random Number Generators* (i.e. deterministic algorithmic generators) -have had a few changes since 0.4, and are now housed in the `prng` module -(old names remain temporarily available for compatibility; eventually these -generators will likely be housed outside the `rand` crate). - -All PRNGs now do not implement `Copy` to prevent accidental copying of the -generator's state (and thus repetitions of generated values). Explicit cloning -via `Clone` is still available. All PRNGs now have a custom implementation of -`Debug` which does not print any internal state; this helps avoid accidentally -leaking cryptographic generator state in log files. External PRNG -implementations are advised to follow this pattern (see also doc on `RngCore`). - -`SmallRng` has been added as a wrapper, currently around `XorShiftRng` (but -likely another algorithm soon). This is for uses where small state and fast -initialisation are important but cryptographic strength is not required. -(Actual performance of generation varies by benchmark; dependending on usage -this may or may not be the fastest algorithm, but will always be fast.) - -#### `ReseedingRng` - -The `ReseedingRng` wrapper has been signficantly altered to reduce overhead. -Unfortunately the new `ReseedingRng` is not compatible with all RNGs, but only -those using `BlockRngCore`. - -#### ISAAC PRNGs - -The `IsaacRng` and `Isaac64Rng` PRNGs now have an additional construction -method: `new_from_u64(seed)`. 64 bits of state is insufficient for cryptography -but may be of use in simulations and games. This will likely be superceeded by -a method to construct any PRNG from any hashable object in the future. - -#### HC-128 - -This is a new cryptographic generator, selected as one of the "stream ciphers -suitable for widespread adoption" by eSTREAM. This is now the default -cryptographic generator, used by `StdRng` and `thread_rng()`. - -### Helper functions/traits - -The `Rand` trait has been deprecated. Instead, users are encouraged to use -`Standard` which is a real distribution and supports the same sampling as - `Rand`.`Rng::gen()` now uses `Standard` and should work exactly as before. - -The `random()` function has been removed; users may simply use -`thread_rng().gen()` instead or may choose to cache -`let mut rng = thread_rng();` locally, or even use a different generator. - -`weak_rng()` has been deprecated; use `SmallRng::from_entropy()` instead. - -### Distributions - -The `Sample` and `IndependentSample` traits have been replaced by a single -trait, `Distribution`. This is largely equivalent to `IndependentSample`, but -with `ind_sample` replaced by just `sample`. Support for mutable distributions -has been dropped; although it appears there may be a few genuine uses, these -are not used widely enough to justify the existance of two independent traits -or of having to provide mutable access to a distribution object. Both `Sample` -and `IndependentSample` are still available, but deprecated; they will be -removed in a future release. - -`Distribution::sample` (as well as several other functions) can now be called -directly on type-erased (unsized) RNGs. - -`RandSample` has been removed (see `Rand` deprecation and new `Standard` -distribution). - -The `Open01` and `Closed01` wrappers have been removed. `Rng::gen()` (via -`Standard`) now yields samples from `(0, 1)` for floats; i.e. the same as the -old `Open01`. This is considered sufficient for most uses. - -#### Uniform distributions - -Two new distributions are available: - -- `Standard` produces uniformly-distributed samples for many different types, - and acts as a replacement for `Rand` -- `Alphanumeric` samples `char`s from the ranges `a-z A-Z 0-9` - -##### Ranges - -The `Range` distribution has been heavily adapted, while remaining largely -backwards compatible: - -- `Range::new(low, high)` remains (half open `[low, high)`) -- `Range::new_inclusive(low, high)` has been added, including `high` in the sample range -- `Range::sample_single(low, high, rng)` is a faster variant for single usage sampling from `[low, high)` - -`Range` can now be implemented for user-defined types; see the `RangeImpl` type. -`SampleRange` has been adapted to suit the new `Range` model. - -#### Non-uniform distributions - -Two distributions have been added: - -- Poisson, modelling the number of events expected from a constant-rate - source within a fixed time interval (e.g. nuclear decay) -- Binomial, modelling the outcome of a fixed number of yes-no trials - -The sampling methods are based on those in "Numerical Recipes in C". - -##### Exponential and Normal distributions - -The main `Exp` and `Normal` distributions are unchanged, however the -"standard" versions, `Exp1` and `StandardNormal` are no longer wrapper types, -but full distributions. Instead of writing `let Exp1(x) = rng.gen();` you now -write `let x = rng.sample(Exp1);`. diff --git a/vendor/rand-8c5b0ac51d/appveyor.yml b/vendor/rand-8c5b0ac51d/appveyor.yml deleted file mode 100644 index d9b613e..0000000 --- a/vendor/rand-8c5b0ac51d/appveyor.yml +++ /dev/null @@ -1,39 +0,0 @@ -environment: - - # At the time this was added AppVeyor was having troubles with checking - # revocation of SSL certificates of sites like static.rust-lang.org and what - # we think is crates.io. The libcurl HTTP client by default checks for - # revocation on Windows and according to a mailing list [1] this can be - # disabled. - # - # The `CARGO_HTTP_CHECK_REVOKE` env var here tells cargo to disable SSL - # revocation checking on Windows in libcurl. Note, though, that rustup, which - # we're using to download Rust here, also uses libcurl as the default backend. - # Unlike Cargo, however, rustup doesn't have a mechanism to disable revocation - # checking. To get rustup working we set `RUSTUP_USE_HYPER` which forces it to - # use the Hyper instead of libcurl backend. Both Hyper and libcurl use - # schannel on Windows but it appears that Hyper configures it slightly - # differently such that revocation checking isn't turned on by default. - # - # [1]: https://curl.haxx.se/mail/lib-2016-03/0202.html - RUSTUP_USE_HYPER: 1 - CARGO_HTTP_CHECK_REVOKE: false - - matrix: - - TARGET: x86_64-pc-windows-msvc - - TARGET: i686-pc-windows-msvc -install: - - appveyor DownloadFile https://win.rustup.rs/ -FileName rustup-init.exe - - rustup-init.exe -y --default-host %TARGET% --default-toolchain nightly - - set PATH=%PATH%;C:\Users\appveyor.cargo\bin - - rustc -V - - cargo -V - -build: false - -test_script: - - cargo test --benches - - cargo test --all - - cargo test --features serde1,log,nightly - - cargo test --all --tests --no-default-features --features=alloc - - cargo test --tests --no-default-features --features=serde1 diff --git a/vendor/rand-8c5b0ac51d/benches/distributions.rs b/vendor/rand-8c5b0ac51d/benches/distributions.rs deleted file mode 100644 index 24e0e7f..0000000 --- a/vendor/rand-8c5b0ac51d/benches/distributions.rs +++ /dev/null @@ -1,152 +0,0 @@ -#![feature(test)] -#![cfg_attr(feature = "i128_support", feature(i128_type, i128))] - -extern crate test; -extern crate rand; - -const RAND_BENCH_N: u64 = 1000; - -use std::mem::size_of; -use test::{black_box, Bencher}; - -use rand::{Rng, FromEntropy, XorShiftRng}; -use rand::distributions::*; - -macro_rules! distr_int { - ($fnn:ident, $ty:ty, $distr:expr) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = XorShiftRng::from_entropy(); - let distr = $distr; - - b.iter(|| { - let mut accum = 0 as $ty; - for _ in 0..::RAND_BENCH_N { - let x: $ty = distr.sample(&mut rng); - accum = accum.wrapping_add(x); - } - black_box(accum); - }); - b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; - } - } -} - -macro_rules! distr_float { - ($fnn:ident, $ty:ty, $distr:expr) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = XorShiftRng::from_entropy(); - let distr = $distr; - - b.iter(|| { - let mut accum = 0.0; - for _ in 0..::RAND_BENCH_N { - let x: $ty = distr.sample(&mut rng); - accum += x; - } - black_box(accum); - }); - b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; - } - } -} - -macro_rules! distr { - ($fnn:ident, $ty:ty, $distr:expr) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = XorShiftRng::from_entropy(); - let distr = $distr; - - b.iter(|| { - for _ in 0..::RAND_BENCH_N { - let x: $ty = distr.sample(&mut rng); - black_box(x); - } - }); - b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; - } - } -} - -// uniform -distr_int!(distr_uniform_i8, i8, Uniform::new(20i8, 100)); -distr_int!(distr_uniform_i16, i16, Uniform::new(-500i16, 2000)); -distr_int!(distr_uniform_i32, i32, Uniform::new(-200_000_000i32, 800_000_000)); -distr_int!(distr_uniform_i64, i64, Uniform::new(3i64, 123_456_789_123)); -#[cfg(feature = "i128_support")] -distr_int!(distr_uniform_i128, i128, Uniform::new(-123_456_789_123i128, 123_456_789_123_456_789)); - -distr_float!(distr_uniform_f32, f32, Uniform::new(2.26f32, 2.319)); -distr_float!(distr_uniform_f64, f64, Uniform::new(2.26f64, 2.319)); - -// standard -distr_int!(distr_standard_i8, i8, Standard); -distr_int!(distr_standard_i16, i16, Standard); -distr_int!(distr_standard_i32, i32, Standard); -distr_int!(distr_standard_i64, i64, Standard); -#[cfg(feature = "i128_support")] -distr_int!(distr_standard_i128, i128, Standard); - -distr!(distr_standard_bool, bool, Standard); -distr!(distr_standard_alphanumeric, char, Alphanumeric); -distr!(distr_standard_codepoint, char, Standard); - -distr_float!(distr_standard_f32, f32, Standard); -distr_float!(distr_standard_f64, f64, Standard); - -// distributions -distr_float!(distr_exp, f64, Exp::new(1.23 * 4.56)); -distr_float!(distr_normal, f64, Normal::new(-1.23, 4.56)); -distr_float!(distr_log_normal, f64, LogNormal::new(-1.23, 4.56)); -distr_float!(distr_gamma_large_shape, f64, Gamma::new(10., 1.0)); -distr_float!(distr_gamma_small_shape, f64, Gamma::new(0.1, 1.0)); -distr_int!(distr_binomial, u64, Binomial::new(20, 0.7)); -distr_int!(distr_poisson, u64, Poisson::new(4.0)); - - -// construct and sample from a range -macro_rules! gen_range_int { - ($fnn:ident, $ty:ident, $low:expr, $high:expr) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = XorShiftRng::from_entropy(); - - b.iter(|| { - let mut high = $high; - let mut accum: $ty = 0; - for _ in 0..::RAND_BENCH_N { - accum = accum.wrapping_add(rng.gen_range($low, high)); - // force recalculation of range each time - high = high.wrapping_add(1) & std::$ty::MAX; - } - black_box(accum); - }); - b.bytes = size_of::<$ty>() as u64 * ::RAND_BENCH_N; - } - } -} - -gen_range_int!(gen_range_i8, i8, -20i8, 100); -gen_range_int!(gen_range_i16, i16, -500i16, 2000); -gen_range_int!(gen_range_i32, i32, -200_000_000i32, 800_000_000); -gen_range_int!(gen_range_i64, i64, 3i64, 123_456_789_123); -#[cfg(feature = "i128_support")] -gen_range_int!(gen_range_i128, i128, -12345678901234i128, 123_456_789_123_456_789); - -#[bench] -fn dist_iter(b: &mut Bencher) { - let mut rng = XorShiftRng::from_entropy(); - let distr = Normal::new(-2.71828, 3.14159); - let mut iter = distr.sample_iter(&mut rng); - - b.iter(|| { - let mut accum = 0.0; - for _ in 0..::RAND_BENCH_N { - accum += iter.next().unwrap(); - } - black_box(accum); - }); - b.bytes = size_of::<f64>() as u64 * ::RAND_BENCH_N; -} diff --git a/vendor/rand-8c5b0ac51d/benches/generators.rs b/vendor/rand-8c5b0ac51d/benches/generators.rs deleted file mode 100644 index a86798d..0000000 --- a/vendor/rand-8c5b0ac51d/benches/generators.rs +++ /dev/null @@ -1,224 +0,0 @@ -#![feature(test)] - -extern crate test; -extern crate rand; - -const RAND_BENCH_N: u64 = 1000; -const BYTES_LEN: usize = 1024; - -use std::mem::size_of; -use test::{black_box, Bencher}; - -use rand::{RngCore, Rng, SeedableRng, FromEntropy}; -use rand::{StdRng, SmallRng, OsRng, EntropyRng, ReseedingRng}; -use rand::prng::{XorShiftRng, Hc128Rng, IsaacRng, Isaac64Rng, ChaChaRng}; -use rand::prng::hc128::Hc128Core; -use rand::jitter::JitterRng; -use rand::thread_rng; - -macro_rules! gen_bytes { - ($fnn:ident, $gen:expr) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = $gen; - let mut buf = [0u8; BYTES_LEN]; - b.iter(|| { - for _ in 0..RAND_BENCH_N { - rng.fill_bytes(&mut buf); - black_box(buf); - } - }); - b.bytes = BYTES_LEN as u64 * RAND_BENCH_N; - } - } -} - -gen_bytes!(gen_bytes_xorshift, XorShiftRng::from_entropy()); -gen_bytes!(gen_bytes_hc128, Hc128Rng::from_entropy()); -gen_bytes!(gen_bytes_isaac, IsaacRng::from_entropy()); -gen_bytes!(gen_bytes_isaac64, Isaac64Rng::from_entropy()); -gen_bytes!(gen_bytes_std, StdRng::from_entropy()); -gen_bytes!(gen_bytes_small, SmallRng::from_entropy()); -gen_bytes!(gen_bytes_os, OsRng::new().unwrap()); - -macro_rules! gen_uint { - ($fnn:ident, $ty:ty, $gen:expr) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = $gen; - b.iter(|| { - let mut accum: $ty = 0; - for _ in 0..RAND_BENCH_N { - accum = accum.wrapping_add(rng.gen::<$ty>()); - } - black_box(accum); - }); - b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; - } - } -} - -gen_uint!(gen_u32_xorshift, u32, XorShiftRng::from_entropy()); -gen_uint!(gen_u32_hc128, u32, Hc128Rng::from_entropy()); -gen_uint!(gen_u32_isaac, u32, IsaacRng::from_entropy()); -gen_uint!(gen_u32_isaac64, u32, Isaac64Rng::from_entropy()); -gen_uint!(gen_u32_std, u32, StdRng::from_entropy()); -gen_uint!(gen_u32_small, u32, SmallRng::from_entropy()); -gen_uint!(gen_u32_os, u32, OsRng::new().unwrap()); - -gen_uint!(gen_u64_xorshift, u64, XorShiftRng::from_entropy()); -gen_uint!(gen_u64_hc128, u64, Hc128Rng::from_entropy()); -gen_uint!(gen_u64_isaac, u64, IsaacRng::from_entropy()); -gen_uint!(gen_u64_isaac64, u64, Isaac64Rng::from_entropy()); -gen_uint!(gen_u64_std, u64, StdRng::from_entropy()); -gen_uint!(gen_u64_small, u64, SmallRng::from_entropy()); -gen_uint!(gen_u64_os, u64, OsRng::new().unwrap()); - -// Do not test JitterRng like the others by running it RAND_BENCH_N times per, -// measurement, because it is way too slow. Only run it once. -#[bench] -fn gen_u64_jitter(b: &mut Bencher) { - let mut rng = JitterRng::new().unwrap(); - b.iter(|| { - black_box(rng.gen::<u64>()); - }); - b.bytes = size_of::<u64>() as u64; -} - -macro_rules! init_gen { - ($fnn:ident, $gen:ident) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = XorShiftRng::from_entropy(); - b.iter(|| { - let r2 = $gen::from_rng(&mut rng).unwrap(); - black_box(r2); - }); - } - } -} - -init_gen!(init_xorshift, XorShiftRng); -init_gen!(init_hc128, Hc128Rng); -init_gen!(init_isaac, IsaacRng); -init_gen!(init_isaac64, Isaac64Rng); -init_gen!(init_chacha, ChaChaRng); - -#[bench] -fn init_jitter(b: &mut Bencher) { - b.iter(|| { - black_box(JitterRng::new().unwrap()); - }); -} - -macro_rules! chacha_rounds { - ($fn1:ident, $fn2:ident, $fn3:ident, $rounds:expr) => { - #[bench] - fn $fn1(b: &mut Bencher) { - let mut rng = ChaChaRng::from_entropy(); - rng.set_rounds($rounds); - let mut buf = [0u8; BYTES_LEN]; - b.iter(|| { - for _ in 0..RAND_BENCH_N { - rng.fill_bytes(&mut buf); - black_box(buf); - } - }); - b.bytes = BYTES_LEN as u64 * RAND_BENCH_N; - } - - #[bench] - fn $fn2(b: &mut Bencher) { - let mut rng = ChaChaRng::from_entropy(); - rng.set_rounds($rounds); - b.iter(|| { - let mut accum: u32 = 0; - for _ in 0..RAND_BENCH_N { - accum = accum.wrapping_add(rng.gen::<u32>()); - } - black_box(accum); - }); - b.bytes = size_of::<u32>() as u64 * RAND_BENCH_N; - } - - #[bench] - fn $fn3(b: &mut Bencher) { - let mut rng = ChaChaRng::from_entropy(); - rng.set_rounds($rounds); - b.iter(|| { - let mut accum: u64 = 0; - for _ in 0..RAND_BENCH_N { - accum = accum.wrapping_add(rng.gen::<u64>()); - } - black_box(accum); - }); - b.bytes = size_of::<u64>() as u64 * RAND_BENCH_N; - } - } -} - -chacha_rounds!(gen_bytes_chacha8, gen_u32_chacha8, gen_u64_chacha8, 8); -chacha_rounds!(gen_bytes_chacha12, gen_u32_chacha12, gen_u64_chacha12, 12); -chacha_rounds!(gen_bytes_chacha20, gen_u32_chacha20, gen_u64_chacha20, 20); - - -const RESEEDING_THRESHOLD: u64 = 1024*1024*1024; // something high enough to get - // deterministic measurements - -#[bench] -fn reseeding_hc128_bytes(b: &mut Bencher) { - let mut rng = ReseedingRng::new(Hc128Core::from_entropy(), - RESEEDING_THRESHOLD, - EntropyRng::new()); - let mut buf = [0u8; BYTES_LEN]; - b.iter(|| { - for _ in 0..RAND_BENCH_N { - rng.fill_bytes(&mut buf); - black_box(buf); - } - }); - b.bytes = BYTES_LEN as u64 * RAND_BENCH_N; -} - -macro_rules! reseeding_uint { - ($fnn:ident, $ty:ty) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = ReseedingRng::new(Hc128Core::from_entropy(), - RESEEDING_THRESHOLD, - EntropyRng::new()); - b.iter(|| { - let mut accum: $ty = 0; - for _ in 0..RAND_BENCH_N { - accum = accum.wrapping_add(rng.gen::<$ty>()); - } - black_box(accum); - }); - b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; - } - } -} - -reseeding_uint!(reseeding_hc128_u32, u32); -reseeding_uint!(reseeding_hc128_u64, u64); - - -macro_rules! threadrng_uint { - ($fnn:ident, $ty:ty) => { - #[bench] - fn $fnn(b: &mut Bencher) { - let mut rng = thread_rng(); - b.iter(|| { - let mut accum: $ty = 0; - for _ in 0..RAND_BENCH_N { - accum = accum.wrapping_add(rng.gen::<$ty>()); - } - black_box(accum); - }); - b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; - } - } -} - -threadrng_uint!(thread_rng_u32, u32); -threadrng_uint!(thread_rng_u64, u64); diff --git a/vendor/rand-8c5b0ac51d/benches/misc.rs b/vendor/rand-8c5b0ac51d/benches/misc.rs deleted file mode 100644 index 258f082..0000000 --- a/vendor/rand-8c5b0ac51d/benches/misc.rs +++ /dev/null @@ -1,134 +0,0 @@ -#![feature(test)] - -extern crate test; -extern crate rand; - -const RAND_BENCH_N: u64 = 1000; - -use test::{black_box, Bencher}; - -use rand::{SeedableRng, SmallRng, Rng, thread_rng}; -use rand::seq::*; - -#[bench] -fn misc_gen_bool(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); - b.iter(|| { - let mut accum = true; - for _ in 0..::RAND_BENCH_N { - accum ^= rng.gen_bool(0.18); - } - black_box(accum); - }) -} - -#[bench] -fn misc_gen_bool_var(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); - b.iter(|| { - let mut p = 0.18; - let mut accum = true; - for _ in 0..::RAND_BENCH_N { - accum ^= rng.gen_bool(p); - p += 0.0001; - } - black_box(accum); - }) -} - -#[bench] -fn misc_shuffle_100(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); - let x : &mut [usize] = &mut [1; 100]; - b.iter(|| { - rng.shuffle(x); - black_box(&x); - }) -} - -#[bench] -fn misc_sample_iter_10_of_100(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); - let x : &[usize] = &[1; 100]; - b.iter(|| { - black_box(sample_iter(&mut rng, x, 10).unwrap_or_else(|e| e)); - }) -} - -#[bench] -fn misc_sample_slice_10_of_100(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); - let x : &[usize] = &[1; 100]; - b.iter(|| { - black_box(sample_slice(&mut rng, x, 10)); - }) -} - -#[bench] -fn misc_sample_slice_ref_10_of_100(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); - let x : &[usize] = &[1; 100]; - b.iter(|| { - black_box(sample_slice_ref(&mut rng, x, 10)); - }) -} - -macro_rules! sample_indices { - ($name:ident, $amount:expr, $length:expr) => { - #[bench] - fn $name(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); - b.iter(|| { - black_box(sample_indices(&mut rng, $length, $amount)); - }) - } - } -} - -sample_indices!(misc_sample_indices_10_of_1k, 10, 1000); -sample_indices!(misc_sample_indices_50_of_1k, 50, 1000); -sample_indices!(misc_sample_indices_100_of_1k, 100, 1000); - -#[bench] -fn gen_1k_iter_repeat(b: &mut Bencher) { - use std::iter; - let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); - b.iter(|| { - let v: Vec<u64> = iter::repeat(()).map(|()| rng.gen()).take(128).collect(); - black_box(v); - }); - b.bytes = 1024; -} - -#[bench] -#[allow(deprecated)] -fn gen_1k_gen_iter(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); - b.iter(|| { - let v: Vec<u64> = rng.gen_iter().take(128).collect(); - black_box(v); - }); - b.bytes = 1024; -} - -#[bench] -fn gen_1k_sample_iter(b: &mut Bencher) { - use rand::distributions::{Distribution, Standard}; - let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); - b.iter(|| { - let v: Vec<u64> = Standard.sample_iter(&mut rng).take(128).collect(); - black_box(v); - }); - b.bytes = 1024; -} - -#[bench] -fn gen_1k_fill(b: &mut Bencher) { - let mut rng = SmallRng::from_rng(&mut thread_rng()).unwrap(); - let mut buf = [0u64; 128]; - b.iter(|| { - rng.fill(&mut buf[..]); - black_box(buf); - }); - b.bytes = 1024; -} diff --git a/vendor/rand-8c5b0ac51d/examples/monte-carlo.rs b/vendor/rand-8c5b0ac51d/examples/monte-carlo.rs deleted file mode 100644 index c18108a..0000000 --- a/vendor/rand-8c5b0ac51d/examples/monte-carlo.rs +++ /dev/null @@ -1,52 +0,0 @@ -// Copyright 2013-2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! # Monte Carlo estimation of π -//! -//! Imagine that we have a square with sides of length 2 and a unit circle -//! (radius = 1), both centered at the origin. The areas are: -//! -//! ```text -//! area of circle = πr² = π * r * r = π -//! area of square = 2² = 4 -//! ``` -//! -//! The circle is entirely within the square, so if we sample many points -//! randomly from the square, roughly π / 4 of them should be inside the circle. -//! -//! We can use the above fact to estimate the value of π: pick many points in -//! the square at random, calculate the fraction that fall within the circle, -//! and multiply this fraction by 4. - -#![cfg(feature="std")] - - -extern crate rand; - -use rand::distributions::{Distribution, Uniform}; - -fn main() { - let range = Uniform::new(-1.0f64, 1.0); - let mut rng = rand::thread_rng(); - - let total = 1_000_000; - let mut in_circle = 0; - - for _ in 0..total { - let a = range.sample(&mut rng); - let b = range.sample(&mut rng); - if a*a + b*b <= 1.0 { - in_circle += 1; - } - } - - // prints something close to 3.14159... - println!("π is approximately {}", 4. * (in_circle as f64) / (total as f64)); -} diff --git a/vendor/rand-8c5b0ac51d/examples/monty-hall.rs b/vendor/rand-8c5b0ac51d/examples/monty-hall.rs deleted file mode 100644 index 3750f8f..0000000 --- a/vendor/rand-8c5b0ac51d/examples/monty-hall.rs +++ /dev/null @@ -1,117 +0,0 @@ -// Copyright 2013-2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! ## Monty Hall Problem -//! -//! This is a simulation of the [Monty Hall Problem][]: -//! -//! > Suppose you're on a game show, and you're given the choice of three doors: -//! > Behind one door is a car; behind the others, goats. You pick a door, say -//! > No. 1, and the host, who knows what's behind the doors, opens another -//! > door, say No. 3, which has a goat. He then says to you, "Do you want to -//! > pick door No. 2?" Is it to your advantage to switch your choice? -//! -//! The rather unintuitive answer is that you will have a 2/3 chance of winning -//! if you switch and a 1/3 chance of winning if you don't, so it's better to -//! switch. -//! -//! This program will simulate the game show and with large enough simulation -//! steps it will indeed confirm that it is better to switch. -//! -//! [Monty Hall Problem]: https://en.wikipedia.org/wiki/Monty_Hall_problem - -#![cfg(feature="std")] - - -extern crate rand; - -use rand::Rng; -use rand::distributions::{Distribution, Uniform}; - -struct SimulationResult { - win: bool, - switch: bool, -} - -// Run a single simulation of the Monty Hall problem. -fn simulate<R: Rng>(random_door: &Uniform<u32>, rng: &mut R) - -> SimulationResult { - let car = random_door.sample(rng); - - // This is our initial choice - let mut choice = random_door.sample(rng); - - // The game host opens a door - let open = game_host_open(car, choice, rng); - - // Shall we switch? - let switch = rng.gen(); - if switch { - choice = switch_door(choice, open); - } - - SimulationResult { win: choice == car, switch } -} - -// Returns the door the game host opens given our choice and knowledge of -// where the car is. The game host will never open the door with the car. -fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 { - let choices = free_doors(&[car, choice]); - rand::seq::sample_slice(rng, &choices, 1)[0] -} - -// Returns the door we switch to, given our current choice and -// the open door. There will only be one valid door. -fn switch_door(choice: u32, open: u32) -> u32 { - free_doors(&[choice, open])[0] -} - -fn free_doors(blocked: &[u32]) -> Vec<u32> { - (0..3).filter(|x| !blocked.contains(x)).collect() -} - -fn main() { - // The estimation will be more accurate with more simulations - let num_simulations = 10000; - - let mut rng = rand::thread_rng(); - let random_door = Uniform::new(0u32, 3); - - let (mut switch_wins, mut switch_losses) = (0, 0); - let (mut keep_wins, mut keep_losses) = (0, 0); - - println!("Running {} simulations...", num_simulations); - for _ in 0..num_simulations { - let result = simulate(&random_door, &mut rng); - - match (result.win, result.switch) { - (true, true) => switch_wins += 1, - (true, false) => keep_wins += 1, - (false, true) => switch_losses += 1, - (false, false) => keep_losses += 1, - } - } - - let total_switches = switch_wins + switch_losses; - let total_keeps = keep_wins + keep_losses; - - println!("Switched door {} times with {} wins and {} losses", - total_switches, switch_wins, switch_losses); - - println!("Kept our choice {} times with {} wins and {} losses", - total_keeps, keep_wins, keep_losses); - - // With a large number of simulations, the values should converge to - // 0.667 and 0.333 respectively. - println!("Estimated chance to win if we switch: {}", - switch_wins as f32 / total_switches as f32); - println!("Estimated chance to win if we don't: {}", - keep_wins as f32 / total_keeps as f32); -} diff --git a/vendor/rand-8c5b0ac51d/master.zip b/vendor/rand-8c5b0ac51d/master.zip deleted file mode 100644 index 1bf77e4..0000000 Binary files a/vendor/rand-8c5b0ac51d/master.zip and /dev/null differ diff --git a/vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md b/vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md deleted file mode 100644 index 0358bdc..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/CHANGELOG.md +++ /dev/null @@ -1,21 +0,0 @@ -# Changelog -All notable changes to this project will be documented in this file. - -The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) -and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). - - -## [0.1.0] - TODO - date -(Split out of the Rand crate, changes here are relative to rand 0.4.2) -- `RngCore` and `SeedableRng` are now part of `rand_core`. (#288) -- Add modules to help implementing RNGs `impl` and `le`. (#209, #228) -- Add `Error` and `ErrorKind`. (#225) -- Add `CryptoRng` marker trait. (#273) -- Add `BlockRngCore` trait. (#281) -- Add `BlockRng` and `BlockRng64` wrappers to help implementations. (#281, #325) -- Revise the `SeedableRng` trait. (#233) -- Remove default implementations for `RngCore::next_u64` and `RngCore::fill_bytes`. (#288) -- Add `RngCore::try_fill_bytes`. (#225) - -## [0.0.1] - 2017-09-14 (yanked) -Experimental version as part of the rand crate refactor. diff --git a/vendor/rand-8c5b0ac51d/rand_core/Cargo.toml b/vendor/rand-8c5b0ac51d/rand_core/Cargo.toml deleted file mode 100644 index e307f4d..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/Cargo.toml +++ /dev/null @@ -1,29 +0,0 @@ -[package] -name = "rand_core" -version = "0.1.0" # NB: When modifying, also modify html_root_url in lib.rs -authors = ["The Rust Project Developers"] -license = "MIT/Apache-2.0" -readme = "README.md" -repository = "https://github.com/rust-lang-nursery/rand" -documentation = "https://docs.rs/rand_core" -homepage = "https://crates.io/crates/rand_core" -description = """ -Core random number generator traits and tools for implementation. -""" -keywords = ["random", "rng"] -categories = ["algorithms", "no-std"] - -[badges] -travis-ci = { repository = "rust-lang-nursery/rand" } -appveyor = { repository = "alexcrichton/rand" } - -[features] -# Bug: https://github.com/rust-lang/cargo/issues/4361 -# default = ["std"] -std = ["alloc"] # use std library; should be default but for above bug -alloc = [] # enables Vec and Box support without std -serde1 = ["serde", "serde_derive"] # enables serde for BlockRng wrapper - -[dependencies] -serde = { version = "1", optional = true } -serde_derive = { version = "1", optional = true } diff --git a/vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE b/vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE deleted file mode 100644 index 17d7468..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/LICENSE-APACHE +++ /dev/null @@ -1,201 +0,0 @@ - Apache License - Version 2.0, January 2004 - https://www.apache.org/licenses/ - -TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - -1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - -2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - -3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - -4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - -5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - -6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - -7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - -8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - -9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - -END OF TERMS AND CONDITIONS - -APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - -Copyright [yyyy] [name of copyright owner] - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - https://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. diff --git a/vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT b/vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT deleted file mode 100644 index 39d4bdb..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/LICENSE-MIT +++ /dev/null @@ -1,25 +0,0 @@ -Copyright (c) 2014 The Rust Project Developers - -Permission is hereby granted, free of charge, to any -person obtaining a copy of this software and associated -documentation files (the "Software"), to deal in the -Software without restriction, including without -limitation the rights to use, copy, modify, merge, -publish, distribute, sublicense, and/or sell copies of -the Software, and to permit persons to whom the Software -is furnished to do so, subject to the following -conditions: - -The above copyright notice and this permission notice -shall be included in all copies or substantial portions -of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF -ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED -TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A -PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT -SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR -IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER -DEALINGS IN THE SOFTWARE. diff --git a/vendor/rand-8c5b0ac51d/rand_core/README.md b/vendor/rand-8c5b0ac51d/rand_core/README.md deleted file mode 100644 index 2949222..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/README.md +++ /dev/null @@ -1,62 +0,0 @@ -# rand_core - -[![Build Status](https://travis-ci.org/rust-lang-nursery/rand.svg)%5D(https://travis-ci.org/r...) -[![Build Status](https://ci.appveyor.com/api/projects/status/github/rust-lang-nursery/rand?sv...) -[![Latest version](https://img.shields.io/crates/v/rand_core.svg)%5D(https://crates.io/crates/r...) -[![Documentation](https://docs.rs/rand_core/badge.svg)%5D(https://docs.rs/rand_core) -[![Minimum rustc version](https://img.shields.io/badge/rustc-1.22+-yellow.svg)%5D(https://github.com/r...) - -Core traits and error types of the [rand] library, plus tools for implementing -RNGs. - -This crate is intended for use when implementing the core trait, `RngCore`; it -defines the core traits to be implemented as well as several small functions to -aid in their implementation and types required for error handling. - -The main [rand] crate re-exports most items defined in this crate, along with -tools to convert the integer samples generated by `RngCore` to many different -applications (including sampling from restricted ranges, conversion to floating -point, list permutations and secure initialisation of RNGs). Most users should -prefer to use the main [rand] crate. - -Documentation: -[master branch](https://rust-lang-nursery.github.io/rand/rand_core/index.html), -[by release](https://docs.rs/rand_core) - -[Changelog](CHANGELOG.md) - -[rand]: https://crates.io/crates/rand - - -## Functionality - -The `rand_core` crate provides: - -- base random number generator traits -- error-reporting types -- functionality to aid implementation of RNGs - -The traits and error types are also available via `rand`. - -## Crate Features - -`rand_core` supports `no_std` and `alloc`-only configurations, as well as full -`std` functionality. The differences between `no_std` and full `std` are small, -comprising `RngCore` support for `Box<R>` types where `R: RngCore`, as well as -extensions to the `Error` type's functionality. - -Due to [rust-lang/cargo#1596](https://github.com/rust-lang/cargo/issues/1596), -`rand_core` is built without `std` support by default. Since features are -unioned across the whole dependency tree, any crate using `rand` with its -default features will also enable `std` support in `rand_core`. - -The `serde1` feature can be used to derive `Serialize` and `Deserialize` for RNG -implementations that use the `BlockRng` or `BlockRng64` wrappers. - - -# License - -`rand_core` is distributed under the terms of both the MIT license and the -Apache License (Version 2.0). - -See [LICENSE-APACHE](LICENSE-APACHE) and [LICENSE-MIT](LICENSE-MIT) for details. diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/error.rs b/vendor/rand-8c5b0ac51d/rand_core/src/error.rs deleted file mode 100644 index 34cfbf8..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/src/error.rs +++ /dev/null @@ -1,163 +0,0 @@ -// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Error types - -use core::fmt; - -#[cfg(feature="std")] -use std::error::Error as stdError; - -/// Error kind which can be matched over. -#[derive(PartialEq, Eq, Debug, Copy, Clone)] -pub enum ErrorKind { - /// Feature is not available; not recoverable. - /// - /// This is the most permanent failure type and implies the error cannot be - /// resolved simply by retrying (e.g. the feature may not exist in this - /// build of the application or on the current platform). - Unavailable, - /// General failure; there may be a chance of recovery on retry. - /// - /// This is the catch-all kind for errors from known and unknown sources - /// which do not have a more specific kind / handling method. - /// - /// It is suggested to retry a couple of times or retry later when - /// handling; some error sources may be able to resolve themselves, - /// although this is not likely. - Unexpected, - /// A transient failure which likely can be resolved or worked around. - /// - /// This error kind exists for a few specific cases where it is known that - /// the error likely can be resolved internally, but is reported anyway. - Transient, - /// Not ready yet: recommended to try again a little later. - /// - /// This error kind implies the generator needs more time or needs some - /// other part of the application to do something else first before it is - /// ready for use; for example this may be used by external generators - /// which require time for initialization. - NotReady, - #[doc(hidden)] - __Nonexhaustive, -} - -impl ErrorKind { - /// True if this kind of error may resolve itself on retry. - /// - /// See also `should_wait()`. - pub fn should_retry(self) -> bool { - self != ErrorKind::Unavailable - } - - /// True if we should retry but wait before retrying - /// - /// This implies `should_retry()` is true. - pub fn should_wait(self) -> bool { - self == ErrorKind::NotReady - } - - /// A description of this error kind - pub fn description(self) -> &'static str { - match self { - ErrorKind::Unavailable => "permanently unavailable", - ErrorKind::Unexpected => "unexpected failure", - ErrorKind::Transient => "transient failure", - ErrorKind::NotReady => "not ready yet", - ErrorKind::__Nonexhaustive => unreachable!(), - } - } -} - - -/// Error type of random number generators -/// -/// This is a relatively simple error type, designed for compatibility with and -/// without the Rust `std` library. It embeds a "kind" code, a message (static -/// string only), and an optional chained cause (`std` only). The `kind` and -/// `msg` fields can be accessed directly; cause can be accessed via -/// `std::error::Error::cause` or `Error::take_cause`. Construction can only be -/// done via `Error::new` or `Error::with_cause`. -#[derive(Debug)] -pub struct Error { - /// The error kind - pub kind: ErrorKind, - /// The error message - pub msg: &'static str, - #[cfg(feature="std")] - cause: Option<Box<stdError + Send + Sync>>, -} - -impl Error { - /// Create a new instance, with specified kind and a message. - pub fn new(kind: ErrorKind, msg: &'static str) -> Self { - #[cfg(feature="std")] { - Error { kind, msg, cause: None } - } - #[cfg(not(feature="std"))] { - Error { kind, msg } - } - } - - /// Create a new instance, with specified kind, message, and a - /// chained cause. - /// - /// Note: `stdError` is an alias for `std::error::Error`. - /// - /// If not targetting `std` (i.e. `no_std`), this function is replaced by - /// another with the same prototype, except that there are no bounds on the - /// type `E` (because both `Box` and `stdError` are unavailable), and the - /// `cause` is ignored. - #[cfg(feature="std")] - pub fn with_cause<E>(kind: ErrorKind, msg: &'static str, cause: E) -> Self - where E: Into<Box<stdError + Send + Sync>> - { - Error { kind, msg, cause: Some(cause.into()) } - } - - /// Create a new instance, with specified kind, message, and a - /// chained cause. - /// - /// In `no_std` mode the *cause* is ignored. - #[cfg(not(feature="std"))] - pub fn with_cause<E>(kind: ErrorKind, msg: &'static str, _cause: E) -> Self { - Error { kind, msg } - } - - /// Take the cause, if any. This allows the embedded cause to be extracted. - /// This uses `Option::take`, leaving `self` with no cause. - #[cfg(feature="std")] - pub fn take_cause(&mut self) -> Option<Box<stdError + Send + Sync>> { - self.cause.take() - } -} - -impl fmt::Display for Error { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - #[cfg(feature="std")] { - if let Some(ref cause) = self.cause { - return write!(f, "{} ({}); cause: {}", - self.msg, self.kind.description(), cause); - } - } - write!(f, "{} ({})", self.msg, self.kind.description()) - } -} - -#[cfg(feature="std")] -impl stdError for Error { - fn description(&self) -> &str { - self.msg - } - - fn cause(&self) -> Option<&stdError> { - self.cause.as_ref().map(|e| e.as_ref() as &stdError) - } -} diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/impls.rs b/vendor/rand-8c5b0ac51d/rand_core/src/impls.rs deleted file mode 100644 index 530a2ed..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/src/impls.rs +++ /dev/null @@ -1,543 +0,0 @@ -// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Helper functions for implementing `RngCore` functions. -//! -//! For cross-platform reproducibility, these functions all use Little Endian: -//! least-significant part first. For example, `next_u64_via_u32` takes `u32` -//! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32` -//! from `next_u64` in little-endian order, one should use `next_u64() as u32`. -//! -//! Byte-swapping (like the std `to_le` functions) is only needed to convert -//! to/from byte sequences, and since its purpose is reproducibility, -//! non-reproducible sources (e.g. `OsRng`) need not bother with it. - -use core::convert::AsRef; -use core::intrinsics::transmute; -use core::ptr::copy_nonoverlapping; -use core::{fmt, slice}; -use core::cmp::min; -use core::mem::size_of; -use {RngCore, BlockRngCore, CryptoRng, SeedableRng, Error}; - -#[cfg(feature="serde1")] use serde::{Serialize, Deserialize}; - -/// Implement `next_u64` via `next_u32`, little-endian order. -pub fn next_u64_via_u32<R: RngCore + ?Sized>(rng: &mut R) -> u64 { - // Use LE; we explicitly generate one value before the next. - let x = u64::from(rng.next_u32()); - let y = u64::from(rng.next_u32()); - (y << 32) | x -} - -/// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order. -/// -/// The fastest way to fill a slice is usually to work as long as possible with -/// integers. That is why this method mostly uses `next_u64`, and only when -/// there are 4 or less bytes remaining at the end of the slice it uses -/// `next_u32` once. -pub fn fill_bytes_via_next<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) { - let mut left = dest; - while left.len() >= 8 { - let (l, r) = {left}.split_at_mut(8); - left = r; - let chunk: [u8; 8] = unsafe { - transmute(rng.next_u64().to_le()) - }; - l.copy_from_slice(&chunk); - } - let n = left.len(); - if n > 4 { - let chunk: [u8; 8] = unsafe { - transmute(rng.next_u64().to_le()) - }; - left.copy_from_slice(&chunk[..n]); - } else if n > 0 { - let chunk: [u8; 4] = unsafe { - transmute(rng.next_u32().to_le()) - }; - left.copy_from_slice(&chunk[..n]); - } -} - -macro_rules! impl_uint_from_fill { - ($rng:expr, $ty:ty, $N:expr) => ({ - debug_assert!($N == size_of::<$ty>()); - - let mut int: $ty = 0; - unsafe { - let ptr = &mut int as *mut $ty as *mut u8; - let slice = slice::from_raw_parts_mut(ptr, $N); - $rng.fill_bytes(slice); - } - int - }); -} - -macro_rules! fill_via_chunks { - ($src:expr, $dst:expr, $ty:ty, $size:expr) => ({ - let chunk_size_u8 = min($src.len() * $size, $dst.len()); - let chunk_size = (chunk_size_u8 + $size - 1) / $size; - if cfg!(target_endian="little") { - unsafe { - copy_nonoverlapping( - $src.as_ptr() as *const u8, - $dst.as_mut_ptr(), - chunk_size_u8); - } - } else { - for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) { - let tmp = n.to_le(); - let src_ptr = &tmp as *const $ty as *const u8; - unsafe { - copy_nonoverlapping(src_ptr, - chunk.as_mut_ptr(), - chunk.len()); - } - } - } - - (chunk_size, chunk_size_u8) - }); -} - -/// Implement `fill_bytes` by reading chunks from the output buffer of a block -/// based RNG. -/// -/// The return values are `(consumed_u32, filled_u8)`. -/// -/// `filled_u8` is the number of filled bytes in `dest`, which may be less than -/// the length of `dest`. -/// `consumed_u32` is the number of words consumed from `src`, which is the same -/// as `filled_u8 / 4` rounded up. -/// -/// # Example -/// (from `IsaacRng`) -/// -/// ```rust,ignore -/// fn fill_bytes(&mut self, dest: &mut [u8]) { -/// let mut read_len = 0; -/// while read_len < dest.len() { -/// if self.index >= self.rsl.len() { -/// self.isaac(); -/// } -/// -/// let (consumed_u32, filled_u8) = -/// impls::fill_via_u32_chunks(&mut self.rsl[self.index..], -/// &mut dest[read_len..]); -/// -/// self.index += consumed_u32; -/// read_len += filled_u8; -/// } -/// } -/// ``` -pub fn fill_via_u32_chunks(src: &[u32], dest: &mut [u8]) -> (usize, usize) { - fill_via_chunks!(src, dest, u32, 4) -} - -/// Implement `fill_bytes` by reading chunks from the output buffer of a block -/// based RNG. -/// -/// The return values are `(consumed_u64, filled_u8)`. -/// `filled_u8` is the number of filled bytes in `dest`, which may be less than -/// the length of `dest`. -/// `consumed_u64` is the number of words consumed from `src`, which is the same -/// as `filled_u8 / 8` rounded up. -/// -/// See `fill_via_u32_chunks` for an example. -pub fn fill_via_u64_chunks(src: &[u64], dest: &mut [u8]) -> (usize, usize) { - fill_via_chunks!(src, dest, u64, 8) -} - -/// Implement `next_u32` via `fill_bytes`, little-endian order. -pub fn next_u32_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u32 { - impl_uint_from_fill!(rng, u32, 4) -} - -/// Implement `next_u64` via `fill_bytes`, little-endian order. -pub fn next_u64_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u64 { - impl_uint_from_fill!(rng, u64, 8) -} - -/// Wrapper around PRNGs that implement [`BlockRngCore`] to keep a results -/// buffer and offer the methods from [`RngCore`]. -/// -/// `BlockRng` has heavily optimized implementations of the [`RngCore`] methods -/// reading values from the results buffer, as well as -/// calling `BlockRngCore::generate` directly on the output array when -/// `fill_bytes` / `try_fill_bytes` is called on a large array. These methods -/// also handle the bookkeeping of when to generate a new batch of values. -/// No generated values are ever thown away. -/// -/// Currently `BlockRng` only implements `RngCore` for buffers which are slices -/// of `u32` elements; this may be extended to other types in the future. -/// -/// For easy initialization `BlockRng` also implements [`SeedableRng`]. -/// -/// [`BlockRngCore`]: ../BlockRngCore.t.html -/// [`RngCore`]: ../RngCore.t.html -/// [`SeedableRng`]: ../SeedableRng.t.html -#[derive(Clone)] -#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] -pub struct BlockRng<R: BlockRngCore + ?Sized> { - #[cfg_attr(feature="serde1", serde(bound( - serialize = "R::Results: Serialize", - deserialize = "R::Results: Deserialize<'de>")))] - results: R::Results, - index: usize, - core: R, -} - -// Custom Debug implementation that does not expose the contents of `results`. -impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng<R> { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - fmt.debug_struct("BlockRng") - .field("core", &self.core) - .field("result_len", &self.results.as_ref().len()) - .field("index", &self.index) - .finish() - } -} - -impl<R: BlockRngCore> BlockRng<R> { - /// Create a new `BlockRng` from an existing RNG implementing - /// `BlockRngCore`. Results will be generated on first use. - pub fn new(core: R) -> BlockRng<R>{ - let results_empty = R::Results::default(); - BlockRng { - core, - index: results_empty.as_ref().len(), - results: results_empty, - } - } - - /// Return a reference the wrapped `BlockRngCore`. - pub fn inner(&self) -> &R { - &self.core - } - - /// Return a mutable reference the wrapped `BlockRngCore`. - pub fn inner_mut(&mut self) -> &mut R { - &mut self.core - } - - // Reset the number of available results. - // This will force a new set of results to be generated on next use. - pub fn reset(&mut self) { - self.index = self.results.as_ref().len(); - } -} - -impl<R: BlockRngCore<Item=u32>> RngCore for BlockRng<R> -where <R as BlockRngCore>::Results: AsRef<[u32]> -{ - #[inline(always)] - fn next_u32(&mut self) -> u32 { - if self.index >= self.results.as_ref().len() { - self.core.generate(&mut self.results); - self.index = 0; - } - - let value = self.results.as_ref()[self.index]; - self.index += 1; - value - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - let read_u64 = |results: &[u32], index| { - if cfg!(any(target_arch = "x86", target_arch = "x86_64")) { - // requires little-endian CPU supporting unaligned reads: - unsafe { *(&results[index] as *const u32 as *const u64) } - } else { - let x = u64::from(results[index]); - let y = u64::from(results[index + 1]); - (y << 32) | x - } - }; - - let len = self.results.as_ref().len(); - - let index = self.index; - if index < len-1 { - self.index += 2; - // Read an u64 from the current index - read_u64(self.results.as_ref(), index) - } else if index >= len { - self.core.generate(&mut self.results); - self.index = 2; - read_u64(self.results.as_ref(), 0) - } else { - let x = u64::from(self.results.as_ref()[len-1]); - self.core.generate(&mut self.results); - self.index = 1; - let y = u64::from(self.results.as_ref()[0]); - (y << 32) | x - } - } - - // As an optimization we try to write directly into the output buffer. - // This is only enabled for little-endian platforms where unaligned writes - // are known to be safe and fast. - #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] - fn fill_bytes(&mut self, dest: &mut [u8]) { - let mut filled = 0; - - // Continue filling from the current set of results - if self.index < self.results.as_ref().len() { - let (consumed_u32, filled_u8) = - fill_via_u32_chunks(&self.results.as_ref()[self.index..], - dest); - - self.index += consumed_u32; - filled += filled_u8; - } - - let len_remainder = - (dest.len() - filled) % (self.results.as_ref().len() * 4); - let end_direct = dest.len() - len_remainder; - - while filled < end_direct { - let dest_u32: &mut R::Results = unsafe { - &mut *(dest[filled..].as_mut_ptr() as - *mut <R as BlockRngCore>::Results) - }; - self.core.generate(dest_u32); - filled += self.results.as_ref().len() * 4; - } - self.index = self.results.as_ref().len(); - - if len_remainder > 0 { - self.core.generate(&mut self.results); - let (consumed_u32, _) = - fill_via_u32_chunks(self.results.as_ref(), - &mut dest[filled..]); - - self.index = consumed_u32; - } - } - - #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] - fn fill_bytes(&mut self, dest: &mut [u8]) { - let mut read_len = 0; - while read_len < dest.len() { - if self.index >= self.results.as_ref().len() { - self.core.generate(&mut self.results); - self.index = 0; - } - let (consumed_u32, filled_u8) = - fill_via_u32_chunks(&self.results.as_ref()[self.index..], - &mut dest[read_len..]); - - self.index += consumed_u32; - read_len += filled_u8; - } - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.fill_bytes(dest); - Ok(()) - } -} - -impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng<R> { - type Seed = R::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - Self::new(R::from_seed(seed)) - } - - fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { - Ok(Self::new(R::from_rng(rng)?)) - } -} - - - -/// Wrapper around PRNGs that implement [`BlockRngCore`] to keep a results -/// buffer and offer the methods from [`RngCore`]. -/// -/// This is similar to [`BlockRng`], but specialized for algorithms that operate -/// on `u64` values. -/// -/// [`BlockRngCore`]: ../BlockRngCore.t.html -/// [`RngCore`]: ../RngCore.t.html -/// [`BlockRng`]: struct.BlockRng.html -#[derive(Clone)] -#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] -pub struct BlockRng64<R: BlockRngCore + ?Sized> { - #[cfg_attr(feature="serde1", serde(bound( - serialize = "R::Results: Serialize", - deserialize = "R::Results: Deserialize<'de>")))] - results: R::Results, - index: usize, - half_used: bool, // true if only half of the previous result is used - core: R, -} - -// Custom Debug implementation that does not expose the contents of `results`. -impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng64<R> { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - fmt.debug_struct("BlockRng64") - .field("core", &self.core) - .field("result_len", &self.results.as_ref().len()) - .field("index", &self.index) - .field("half_used", &self.half_used) - .finish() - } -} - -impl<R: BlockRngCore> BlockRng64<R> { - /// Create a new `BlockRng` from an existing RNG implementing - /// `BlockRngCore`. Results will be generated on first use. - pub fn new(core: R) -> BlockRng64<R>{ - let results_empty = R::Results::default(); - BlockRng64 { - core, - index: results_empty.as_ref().len(), - half_used: false, - results: results_empty, - } - } - - /// Return a mutable reference the wrapped `BlockRngCore`. - pub fn inner(&mut self) -> &mut R { - &mut self.core - } - - // Reset the number of available results. - // This will force a new set of results to be generated on next use. - pub fn reset(&mut self) { - self.index = self.results.as_ref().len(); - } -} - -impl<R: BlockRngCore<Item=u64>> RngCore for BlockRng64<R> -where <R as BlockRngCore>::Results: AsRef<[u64]> -{ - #[inline(always)] - fn next_u32(&mut self) -> u32 { - let mut index = self.index * 2 - self.half_used as usize; - if index >= self.results.as_ref().len() * 2 { - self.core.generate(&mut self.results); - self.index = 0; - // `self.half_used` is by definition `false` - self.half_used = false; - index = 0; - } - - self.half_used = !self.half_used; - self.index += self.half_used as usize; - - // Index as if this is a u32 slice. - unsafe { - let results = - &*(self.results.as_ref() as *const [u64] as *const [u32]); - if cfg!(target_endian = "little") { - *results.get_unchecked(index) - } else { - *results.get_unchecked(index ^ 1) - } - } - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - if self.index >= self.results.as_ref().len() { - self.core.generate(&mut self.results); - self.index = 0; - } - - let value = self.results.as_ref()[self.index]; - self.index += 1; - self.half_used = false; - value - } - - // As an optimization we try to write directly into the output buffer. - // This is only enabled for little-endian platforms where unaligned writes - // are known to be safe and fast. - #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] - fn fill_bytes(&mut self, dest: &mut [u8]) { - let mut filled = 0; - self.half_used = false; - - // Continue filling from the current set of results - if self.index < self.results.as_ref().len() { - let (consumed_u64, filled_u8) = - fill_via_u64_chunks(&self.results.as_ref()[self.index..], - dest); - - self.index += consumed_u64; - filled += filled_u8; - } - - let len_remainder = - (dest.len() - filled) % (self.results.as_ref().len() * 8); - let end_direct = dest.len() - len_remainder; - - while filled < end_direct { - let dest_u64: &mut R::Results = unsafe { - ::core::mem::transmute(dest[filled..].as_mut_ptr()) - }; - self.core.generate(dest_u64); - filled += self.results.as_ref().len() * 8; - } - self.index = self.results.as_ref().len(); - - if len_remainder > 0 { - self.core.generate(&mut self.results); - let (consumed_u64, _) = - fill_via_u64_chunks(&mut self.results.as_ref(), - &mut dest[filled..]); - - self.index = consumed_u64; - } - } - - #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] - fn fill_bytes(&mut self, dest: &mut [u8]) { - let mut read_len = 0; - self.half_used = false; - while read_len < dest.len() { - if self.index as usize >= self.results.as_ref().len() { - self.core.generate(&mut self.results); - self.index = 0; - } - - let (consumed_u64, filled_u8) = - fill_via_u64_chunks(&self.results.as_ref()[self.index as usize..], - &mut dest[read_len..]); - - self.index += consumed_u64; - read_len += filled_u8; - } - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - Ok(self.fill_bytes(dest)) - } -} - -impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng64<R> { - type Seed = R::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - Self::new(R::from_seed(seed)) - } - - fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { - Ok(Self::new(R::from_rng(rng)?)) - } -} - -impl<R: BlockRngCore + CryptoRng> CryptoRng for BlockRng<R> {} - -// TODO: implement tests for the above diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/le.rs b/vendor/rand-8c5b0ac51d/rand_core/src/le.rs deleted file mode 100644 index bcc560e..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/src/le.rs +++ /dev/null @@ -1,70 +0,0 @@ -// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Little-Endian utilities -//! -//! Little-Endian order has been chosen for internal usage; this makes some -//! useful functions available. - -use core::ptr; - -macro_rules! read_slice { - ($src:expr, $dst:expr, $size:expr, $which:ident) => {{ - assert_eq!($src.len(), $size * $dst.len()); - - unsafe { - ptr::copy_nonoverlapping( - $src.as_ptr(), - $dst.as_mut_ptr() as *mut u8, - $src.len()); - } - for v in $dst.iter_mut() { - *v = v.$which(); - } - }}; -} - -/// Reads unsigned 32 bit integers from `src` into `dst`. -/// Borrowed from the `byteorder` crate. -#[inline] -pub fn read_u32_into(src: &[u8], dst: &mut [u32]) { - read_slice!(src, dst, 4, to_le); -} - -/// Reads unsigned 64 bit integers from `src` into `dst`. -/// Borrowed from the `byteorder` crate. -#[inline] -pub fn read_u64_into(src: &[u8], dst: &mut [u64]) { - read_slice!(src, dst, 8, to_le); -} - -#[test] -fn test_read() { - let bytes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; - - let mut buf = [0u32; 4]; - read_u32_into(&bytes, &mut buf); - assert_eq!(buf[0], 0x04030201); - assert_eq!(buf[3], 0x100F0E0D); - - let mut buf = [0u32; 3]; - read_u32_into(&bytes[1..13], &mut buf); // unaligned - assert_eq!(buf[0], 0x05040302); - assert_eq!(buf[2], 0x0D0C0B0A); - - let mut buf = [0u64; 2]; - read_u64_into(&bytes, &mut buf); - assert_eq!(buf[0], 0x0807060504030201); - assert_eq!(buf[1], 0x100F0E0D0C0B0A09); - - let mut buf = [0u64; 1]; - read_u64_into(&bytes[7..15], &mut buf); // unaligned - assert_eq!(buf[0], 0x0F0E0D0C0B0A0908); -} diff --git a/vendor/rand-8c5b0ac51d/rand_core/src/lib.rs b/vendor/rand-8c5b0ac51d/rand_core/src/lib.rs deleted file mode 100644 index 74d4e59..0000000 --- a/vendor/rand-8c5b0ac51d/rand_core/src/lib.rs +++ /dev/null @@ -1,438 +0,0 @@ -// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Random number generation traits -//! -//! This crate is mainly of interest to crates publishing implementations of -//! [`RngCore`]. Other users are encouraged to use the [rand] crate instead -//! which re-exports the main traits and error types. -//! -//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number -//! generators and external random-number sources. -//! -//! [`SeedableRng`] is an extension trait for construction from fixed seeds and -//! other random number generators. -//! -//! [`Error`] is provided for error-handling. It is safe to use in `no_std` -//! environments. -//! -//! The [`impls`] and [`le`] sub-modules include a few small functions to assist -//! implementation of [`RngCore`]. -//! -//! [rand]: https://crates.io/crates/rand -//! [`RngCore`]: trait.RngCore.html -//! [`SeedableRng`]: trait.SeedableRng.html -//! [`Error`]: struct.Error.html -//! [`impls`]: impls/index.html -//! [`le`]: le/index.html - -#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", - html_favicon_url = "https://www.rust-lang.org/favicon.ico", - html_root_url = "https://docs.rs/rand_core/0.1.0")] - -#![deny(missing_debug_implementations)] - -#![cfg_attr(not(feature="std"), no_std)] -#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] - -#[cfg(feature="std")] extern crate core; -#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc; -#[cfg(feature="serde1")] extern crate serde; -#[cfg(feature="serde1")] #[macro_use] extern crate serde_derive; - - -use core::default::Default; -use core::convert::AsMut; - -#[cfg(all(feature="alloc", not(feature="std")))] use alloc::boxed::Box; - -pub use error::{ErrorKind, Error}; - - -mod error; -pub mod impls; -pub mod le; - - -/// The core of a random number generator. -/// -/// This trait encapsulates the low-level functionality common to all -/// generators, and is the "back end", to be implemented by generators. -/// End users should normally use [`Rng`] from the [rand] crate, which is -/// automatically implemented for every type implementing `RngCore`. -/// -/// Three different methods for generating random data are provided since the -/// optimal implementation of each is dependent on the type of generator. There -/// is no required relationship between the output of each; e.g. many -/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64` -/// values and drop any remaining unused bytes. -/// -/// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error -/// handling; it is not deemed sufficiently useful to add equivalents for -/// [`next_u32`] or [`next_u64`] since the latter methods are almost always used -/// with algorithmic generators (PRNGs), which are normally infallible. -/// -/// Algorithmic generators implementing [`SeedableRng`] should normally have -/// *portable, reproducible* output, i.e. fix Endianness when converting values -/// to avoid platform differences, and avoid making any changes which affect -/// output (except by communicating that the release has breaking changes). -/// -/// Typically implementators will implement only one of the methods available -/// in this trait directly, then use the helper functions from the -/// [`rand_core::impls`] module to implement the other methods. -/// -/// It is recommended that implementations also implement: -/// -/// - `Debug` with a custom implementation which *does not* print any internal -/// state (at least, [`CryptoRng`]s should not risk leaking state through -/// `Debug`). -/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde -/// support optional at the crate level in PRNG libs. -/// - `Clone`, if possible. -/// - *never* implement `Copy` (accidental copies may cause repeated values). -/// - *do not* implement `Default` for pseudorandom generators, but instead -/// implement [`SeedableRng`], to guide users towards proper seeding. -/// External / hardware RNGs can choose to implement `Default`. -/// - `Eq` and `PartialEq` could be implemented, but are probably not useful. -/// -/// # Example -/// -/// A simple example, obviously not generating very *random* output: -/// -/// ```rust -/// use rand_core::{RngCore, Error, impls}; -/// -/// struct CountingRng(u64); -/// -/// impl RngCore for CountingRng { -/// fn next_u32(&mut self) -> u32 { -/// self.next_u64() as u32 -/// } -/// -/// fn next_u64(&mut self) -> u64 { -/// self.0 += 1; -/// self.0 -/// } -/// -/// fn fill_bytes(&mut self, dest: &mut [u8]) { -/// impls::fill_bytes_via_next(self, dest) -/// } -/// -/// fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { -/// Ok(self.fill_bytes(dest)) -/// } -/// } -/// ``` -/// -/// [rand]: https://crates.io/crates/rand -/// [`Rng`]: ../rand/trait.Rng.html -/// [`SeedableRng`]: trait.SeedableRng.html -/// [`rand_core::impls`]: ../rand_core/impls/index.html -/// [`try_fill_bytes`]: trait.RngCore.html#tymethod.try_fill_bytes -/// [`fill_bytes`]: trait.RngCore.html#tymethod.fill_bytes -/// [`next_u32`]: trait.RngCore.html#tymethod.next_u32 -/// [`next_u64`]: trait.RngCore.html#tymethod.next_u64 -/// [`CryptoRng`]: trait.CryptoRng.html -pub trait RngCore { - /// Return the next random `u32`. - /// - /// RNGs must implement at least one method from this trait directly. In - /// the case this method is not implemented directly, it can be implemented - /// using `self.next_u64() as u32` or - /// [via `fill_bytes`](../rand_core/impls/fn.next_u32_via_fill.html). - fn next_u32(&mut self) -> u32; - - /// Return the next random `u64`. - /// - /// RNGs must implement at least one method from this trait directly. In - /// the case this method is not implemented directly, it can be implemented - /// [via `next_u32`](../rand_core/impls/fn.next_u64_via_u32.html) or - /// [via `fill_bytes`](../rand_core/impls/fn.next_u64_via_fill.html). - fn next_u64(&mut self) -> u64; - - /// Fill `dest` with random data. - /// - /// RNGs must implement at least one method from this trait directly. In - /// the case this method is not implemented directly, it can be implemented - /// [via `next_u*`](../rand_core/impls/fn.fill_bytes_via_next.html) or - /// via `try_fill_bytes`; if this generator can fail the implementation - /// must choose how best to handle errors here (e.g. panic with a - /// descriptive message or log a warning and retry a few times). - /// - /// This method should guarantee that `dest` is entirely filled - /// with new data, and may panic if this is impossible - /// (e.g. reading past the end of a file that is being used as the - /// source of randomness). - fn fill_bytes(&mut self, dest: &mut [u8]); - - /// Fill `dest` entirely with random data. - /// - /// This is the only method which allows an RNG to report errors while - /// generating random data thus making this the primary method implemented - /// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used - /// directly to generate keys and to seed (infallible) PRNGs. - /// - /// Other than error handling, this method is identical to [`fill_bytes`]; - /// thus this may be implemented using `Ok(self.fill_bytes(dest))` or - /// `fill_bytes` may be implemented with - /// `self.try_fill_bytes(dest).unwrap()` or more specific error handling. - /// - /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>; -} - -/// A trait for RNGs which do not generate random numbers individually, but in -/// blocks (typically `[u32; N]`). This technique is commonly used by -/// cryptographic RNGs to improve performance. -/// -/// Usage of this trait is optional, but provides two advantages: -/// implementations only need to concern themselves with generation of the -/// block, not the various [`RngCore`] methods (especially [`fill_bytes`], where the -/// optimal implementations are not trivial), and this allows `ReseedingRng` to -/// perform periodic reseeding with very low overhead. -/// -/// # Example -/// -/// ```norun -/// use rand_core::BlockRngCore; -/// use rand_core::impls::BlockRng; -/// -/// struct MyRngCore; -/// -/// impl BlockRngCore for MyRngCore { -/// type Results = [u32; 16]; -/// -/// fn generate(&mut self, results: &mut Self::Results) { -/// unimplemented!() -/// } -/// } -/// -/// impl SeedableRng for MyRngCore { -/// type Seed = unimplemented!(); -/// fn from_seed(seed: Self::Seed) -> Self { -/// unimplemented!() -/// } -/// } -/// -/// // optionally, also implement CryptoRng for MyRngCore -/// -/// // Final RNG. -/// type MyRng = BlockRng<u32, MyRngCore>; -/// ``` -/// -/// [`RngCore`]: trait.RngCore.html -/// [`fill_bytes`]: trait.RngCore.html#tymethod.fill_bytes -pub trait BlockRngCore { - /// Results element type, e.g. `u32`. - type Item; - - /// Results type. This is the 'block' an RNG implementing `BlockRngCore` - /// generates, which will usually be an array like `[u32; 16]`. - type Results: AsRef<[Self::Item]> + Default; - - /// Generate a new block of results. - fn generate(&mut self, results: &mut Self::Results); -} - -/// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`] -/// implementation is supposed to be cryptographically secure. -/// -/// *Cryptographically secure generators*, also known as *CSPRNGs*, should -/// satisfy an additional properties over other generators: given the first -/// *k* bits of an algorithm's output -/// sequence, it should not be possible using polynomial-time algorithms to -/// predict the next bit with probability significantly greater than 50%. -/// -/// Some generators may satisfy an additional property, however this is not -/// required by this trait: if the CSPRNG's state is revealed, it should not be -/// computationally-feasible to reconstruct output prior to this. Some other -/// generators allow backwards-computation and are consided *reversible*. -/// -/// Note that this trait is provided for guidance only and cannot guarantee -/// suitability for cryptographic applications. In general it should only be -/// implemented for well-reviewed code implementing well-regarded algorithms. -/// -/// Note also that use of a `CryptoRng` does not protect against other -/// weaknesses such as seeding from a weak entropy source or leaking state. -/// -/// [`RngCore`]: trait.RngCore.html -/// [`BlockRngCore`]: trait.BlockRngCore.html -pub trait CryptoRng {} - -/// A random number generator that can be explicitly seeded. -/// -/// This trait encapsulates the low-level functionality common to all -/// pseudo-random number generators (PRNGs, or algorithmic generators). -/// -/// The [`rand::FromEntropy`] trait is automatically implemented for every type -/// implementing `SeedableRng`, providing a convenient `from_entropy()` -/// constructor. -/// -/// [`rand::FromEntropy`]: ../rand/trait.FromEntropy.html -pub trait SeedableRng: Sized { - /// Seed type, which is restricted to types mutably-dereferencable as `u8` - /// arrays (we recommend `[u8; N]` for some `N`). - /// - /// It is recommended to seed PRNGs with a seed of at least circa 100 bits, - /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with - /// partially overlapping periods. - /// - /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`. - /// - /// - /// # Implementing `SeedableRng` for RNGs with large seeds - /// - /// Note that the required traits `core::default::Default` and - /// `core::convert::AsMut<u8>` are not implemented for large arrays - /// `[u8; N]` with `N` > 32. To be able to implement the traits required by - /// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be - /// used: - /// - /// ``` - /// use rand_core::SeedableRng; - /// - /// const N: usize = 64; - /// pub struct MyRngSeed(pub [u8; N]); - /// pub struct MyRng(MyRngSeed); - /// - /// impl Default for MyRngSeed { - /// fn default() -> MyRngSeed { - /// MyRngSeed([0; N]) - /// } - /// } - /// - /// impl AsMut<[u8]> for MyRngSeed { - /// fn as_mut(&mut self) -> &mut [u8] { - /// &mut self.0 - /// } - /// } - /// - /// impl SeedableRng for MyRng { - /// type Seed = MyRngSeed; - /// - /// fn from_seed(seed: MyRngSeed) -> MyRng { - /// MyRng(seed) - /// } - /// } - /// ``` - type Seed: Sized + Default + AsMut<[u8]>; - - /// Create a new PRNG using the given seed. - /// - /// PRNG implementations are allowed to assume that bits in the seed are - /// well distributed. That means usually that the number of one and zero - /// bits are about equal, and values like 0, 1 and (size - 1) are unlikely. - /// - /// PRNG implementations are recommended to be reproducible. A PRNG seeded - /// using this function with a fixed seed should produce the same sequence - /// of output in the future and on different architectures (with for example - /// different endianness). - /// - /// It is however not required that this function yield the same state as a - /// reference implementation of the PRNG given equivalent seed; if necessary - /// another constructor replicating behaviour from a reference - /// implementation can be added. - /// - /// PRNG implementations should make sure `from_seed` never panics. In the - /// case that some special values (like an all zero seed) are not viable - /// seeds it is preferable to map these to alternative constant value(s), - /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad - /// seed"). This is assuming only a small number of values must be rejected. - fn from_seed(seed: Self::Seed) -> Self; - - /// Create a new PRNG seeded from another `Rng`. - /// - /// This is the recommended way to initialize PRNGs with fresh entropy. The - /// [`FromEntropy`] trait provides a convenient `from_entropy` method - /// based on `from_rng`. - /// - /// Usage of this method is not recommended when reproducibility is required - /// since implementing PRNGs are not required to fix Endianness and are - /// allowed to modify implementations in new releases. - /// - /// It is important to use a good source of randomness to initialize the - /// PRNG. Cryptographic PRNG may be rendered insecure when seeded from a - /// non-cryptographic PRNG or with insufficient entropy. - /// Many non-cryptographic PRNGs will show statistical bias in their first - /// results if their seed numbers are small or if there is a simple pattern - /// between them. - /// - /// Prefer to seed from a strong external entropy source like [`OsRng`] or - /// from a cryptographic PRNG; if creating a new generator for cryptographic - /// uses you *must* seed from a strong source. - /// - /// Seeding a small PRNG from another small PRNG is possible, but - /// something to be careful with. An extreme example of how this can go - /// wrong is seeding an Xorshift RNG from another Xorshift RNG, which - /// will effectively clone the generator. In general seeding from a - /// generator which is hard to predict is probably okay. - /// - /// PRNG implementations are allowed to assume that a good RNG is provided - /// for seeding, and that it is cryptographically secure when appropriate. - /// - /// [`FromEntropy`]: ../rand/trait.FromEntropy.html - /// [`OsRng`]: ../rand/os/struct.OsRng.html - fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { - let mut seed = Self::Seed::default(); - rng.try_fill_bytes(seed.as_mut())?; - Ok(Self::from_seed(seed)) - } -} - -// Implement `RngCore` for references to an `RngCore`. -// Force inlining all functions, so that it is up to the `RngCore` -// implementation and the optimizer to decide on inlining. -impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - (**self).next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - (**self).next_u64() - } - - #[inline(always)] - fn fill_bytes(&mut self, dest: &mut [u8]) { - (**self).fill_bytes(dest) - } - - #[inline(always)] - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - (**self).try_fill_bytes(dest) - } -} - -// Implement `RngCore` for boxed references to an `RngCore`. -// Force inlining all functions, so that it is up to the `RngCore` -// implementation and the optimizer to decide on inlining. -#[cfg(feature="alloc")] -impl<R: RngCore + ?Sized> RngCore for Box<R> { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - (**self).next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - (**self).next_u64() - } - - #[inline(always)] - fn fill_bytes(&mut self, dest: &mut [u8]) { - (**self).fill_bytes(dest) - } - - #[inline(always)] - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - (**self).try_fill_bytes(dest) - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/binomial.rs b/vendor/rand-8c5b0ac51d/src/distributions/binomial.rs deleted file mode 100644 index 8a03e1d..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/binomial.rs +++ /dev/null @@ -1,172 +0,0 @@ -// Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The binomial distribution. - -use Rng; -use distributions::Distribution; -use distributions::log_gamma::log_gamma; -use std::f64::consts::PI; - -/// The binomial distribution `Binomial(n, p)`. -/// -/// This distribution has density function: -/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Binomial, Distribution}; -/// -/// let bin = Binomial::new(20, 0.3); -/// let v = bin.sample(&mut rand::thread_rng()); -/// println!("{} is from a binomial distribution", v); -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct Binomial { - n: u64, // number of trials - p: f64, // probability of success -} - -impl Binomial { - /// Construct a new `Binomial` with the given shape parameters - /// `n`, `p`. Panics if `p <= 0` or `p >= 1`. - pub fn new(n: u64, p: f64) -> Binomial { - assert!(p > 0.0, "Binomial::new called with p <= 0"); - assert!(p < 1.0, "Binomial::new called with p >= 1"); - Binomial { n, p } - } -} - -impl Distribution<u64> for Binomial { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { - // binomial distribution is symmetrical with respect to p -> 1-p, k -> n-k - // switch p so that it is less than 0.5 - this allows for lower expected values - // we will just invert the result at the end - let p = if self.p <= 0.5 { - self.p - } else { - 1.0 - self.p - }; - - // expected value of the sample - let expected = self.n as f64 * p; - - let result = - // for low expected values we just simulate n drawings - if expected < 25.0 { - let mut lresult = 0.0; - for _ in 0 .. self.n { - if rng.gen_bool(p) { - lresult += 1.0; - } - } - lresult - } - // high expected value - do the rejection method - else { - // prepare some cached values - let float_n = self.n as f64; - let ln_fact_n = log_gamma(float_n + 1.0); - let pc = 1.0 - p; - let log_p = p.ln(); - let log_pc = pc.ln(); - let sq = (expected * (2.0 * pc)).sqrt(); - - let mut lresult; - - loop { - let mut comp_dev: f64; - // we use the lorentzian distribution as the comparison distribution - // f(x) ~ 1/(1+x/^2) - loop { - // draw from the lorentzian distribution - comp_dev = (PI*rng.gen::<f64>()).tan(); - // shift the peak of the comparison ditribution - lresult = expected + sq * comp_dev; - // repeat the drawing until we are in the range of possible values - if lresult >= 0.0 && lresult < float_n + 1.0 { - break; - } - } - - // the result should be discrete - lresult = lresult.floor(); - - let log_binomial_dist = ln_fact_n - log_gamma(lresult+1.0) - - log_gamma(float_n - lresult + 1.0) + lresult*log_p + (float_n - lresult)*log_pc; - // this is the binomial probability divided by the comparison probability - // we will generate a uniform random value and if it is larger than this, - // we interpret it as a value falling out of the distribution and repeat - let comparison_coeff = (log_binomial_dist.exp() * sq) * (1.2 * (1.0 + comp_dev*comp_dev)); - - if comparison_coeff >= rng.gen() { - break; - } - } - - lresult - }; - - // invert the result for p < 0.5 - if p != self.p { - self.n - result as u64 - } else { - result as u64 - } - } -} - -#[cfg(test)] -mod test { - use Rng; - use distributions::Distribution; - use super::Binomial; - - fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) { - let binomial = Binomial::new(n, p); - - let expected_mean = n as f64 * p; - let expected_variance = n as f64 * p * (1.0 - p); - - let mut results = [0.0; 1000]; - for i in results.iter_mut() { *i = binomial.sample(rng) as f64; } - - let mean = results.iter().sum::<f64>() / results.len() as f64; - assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0); - - let variance = - results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() - / results.len() as f64; - assert!((variance - expected_variance).abs() < expected_variance / 10.0); - } - - #[test] - fn test_binomial() { - let mut rng = ::test::rng(123); - test_binomial_mean_and_variance(150, 0.1, &mut rng); - test_binomial_mean_and_variance(70, 0.6, &mut rng); - test_binomial_mean_and_variance(40, 0.5, &mut rng); - test_binomial_mean_and_variance(20, 0.7, &mut rng); - test_binomial_mean_and_variance(20, 0.5, &mut rng); - } - - #[test] - #[should_panic] - fn test_binomial_invalid_lambda_zero() { - Binomial::new(20, 0.0); - } - - #[test] - #[should_panic] - fn test_binomial_invalid_lambda_neg() { - Binomial::new(20, -10.0); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/exponential.rs b/vendor/rand-8c5b0ac51d/src/distributions/exponential.rs deleted file mode 100644 index 915e02a..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/exponential.rs +++ /dev/null @@ -1,122 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The exponential distribution. - -use {Rng}; -use distributions::{ziggurat, ziggurat_tables, Distribution}; - -/// Samples floating-point numbers according to the exponential distribution, -/// with rate parameter `λ = 1`. This is equivalent to `Exp::new(1.0)` or -/// sampling with `-rng.gen::<f64>().ln()`, but faster. -/// -/// See `Exp` for the general exponential distribution. -/// -/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. The -/// exact description in the paper was adjusted to use tables for the -/// exponential distribution rather than normal. -/// -/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to -/// Generate Normal Random -/// Samples*](https://www.doornik.com/research/ziggurat.pdf). Nuffield -/// College, Oxford -/// -/// # Example -/// ```rust -/// use rand::{FromEntropy, SmallRng, Rng}; -/// use rand::distributions::Exp1; -/// -/// let val: f64 = SmallRng::from_entropy().sample(Exp1); -/// println!("{}", val); -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct Exp1; - -// This could be done via `-rng.gen::<f64>().ln()` but that is slower. -impl Distribution<f64> for Exp1 { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - #[inline] - fn pdf(x: f64) -> f64 { - (-x).exp() - } - #[inline] - fn zero_case<R: Rng + ?Sized>(rng: &mut R, _u: f64) -> f64 { - ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln() - } - - ziggurat(rng, false, - &ziggurat_tables::ZIG_EXP_X, - &ziggurat_tables::ZIG_EXP_F, - pdf, zero_case) - } -} - -/// The exponential distribution `Exp(lambda)`. -/// -/// This distribution has density function: `f(x) = lambda * -/// exp(-lambda * x)` for `x > 0`. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Exp, Distribution}; -/// -/// let exp = Exp::new(2.0); -/// let v = exp.sample(&mut rand::thread_rng()); -/// println!("{} is from a Exp(2) distribution", v); -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct Exp { - /// `lambda` stored as `1/lambda`, since this is what we scale by. - lambda_inverse: f64 -} - -impl Exp { - /// Construct a new `Exp` with the given shape parameter - /// `lambda`. Panics if `lambda <= 0`. - #[inline] - pub fn new(lambda: f64) -> Exp { - assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0"); - Exp { lambda_inverse: 1.0 / lambda } - } -} - -impl Distribution<f64> for Exp { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - let n: f64 = rng.sample(Exp1); - n * self.lambda_inverse - } -} - -#[cfg(test)] -mod test { - use distributions::Distribution; - use super::Exp; - - #[test] - fn test_exp() { - let exp = Exp::new(10.0); - let mut rng = ::test::rng(221); - for _ in 0..1000 { - assert!(exp.sample(&mut rng) >= 0.0); - } - } - #[test] - #[should_panic] - fn test_exp_invalid_lambda_zero() { - Exp::new(0.0); - } - #[test] - #[should_panic] - fn test_exp_invalid_lambda_neg() { - Exp::new(-10.0); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/float.rs b/vendor/rand-8c5b0ac51d/src/distributions/float.rs deleted file mode 100644 index b1b7685..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/float.rs +++ /dev/null @@ -1,89 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Basic floating-point number distributions - -use core::mem; -use Rng; -use distributions::{Distribution, Standard}; - -pub(crate) trait IntoFloat { - type F; - - /// Helper method to combine the fraction and a contant exponent into a - /// float. - /// - /// Only the least significant bits of `self` may be set, 23 for `f32` and - /// 52 for `f64`. - /// The resulting value will fall in a range that depends on the exponent. - /// As an example the range with exponent 0 will be - /// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2). - fn into_float_with_exponent(self, exponent: i32) -> Self::F; -} - -macro_rules! float_impls { - ($ty:ty, $uty:ty, $fraction_bits:expr, $exponent_bias:expr, - $next_u:ident) => { - impl IntoFloat for $uty { - type F = $ty; - #[inline(always)] - fn into_float_with_exponent(self, exponent: i32) -> $ty { - // The exponent is encoded using an offset-binary representation - let exponent_bits = - (($exponent_bias + exponent) as $uty) << $fraction_bits; - unsafe { mem::transmute(self | exponent_bits) } - } - } - - impl Distribution<$ty> for Standard { - /// Generate a floating point number in the open interval `(0, 1)` - /// (not including either endpoint) with a uniform distribution. - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { - const EPSILON: $ty = 1.0 / (1u64 << $fraction_bits) as $ty; - let float_size = mem::size_of::<$ty>() * 8; - - let value = rng.$next_u(); - let fraction = value >> (float_size - $fraction_bits); - fraction.into_float_with_exponent(0) - (1.0 - EPSILON / 2.0) - } - } - } -} -float_impls! { f32, u32, 23, 127, next_u32 } -float_impls! { f64, u64, 52, 1023, next_u64 } - - -#[cfg(test)] -mod tests { - use Rng; - use mock::StepRng; - - const EPSILON32: f32 = ::core::f32::EPSILON; - const EPSILON64: f64 = ::core::f64::EPSILON; - - #[test] - fn floating_point_edge_cases() { - let mut zeros = StepRng::new(0, 0); - assert_eq!(zeros.gen::<f32>(), 0.0 + EPSILON32 / 2.0); - assert_eq!(zeros.gen::<f64>(), 0.0 + EPSILON64 / 2.0); - - let mut one = StepRng::new(1 << 9, 0); - let one32 = one.gen::<f32>(); - assert!(EPSILON32 < one32 && one32 < EPSILON32 * 2.0); - - let mut one = StepRng::new(1 << 12, 0); - let one64 = one.gen::<f64>(); - assert!(EPSILON64 < one64 && one64 < EPSILON64 * 2.0); - - let mut max = StepRng::new(!0, 0); - assert_eq!(max.gen::<f32>(), 1.0 - EPSILON32 / 2.0); - assert_eq!(max.gen::<f64>(), 1.0 - EPSILON64 / 2.0); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/gamma.rs b/vendor/rand-8c5b0ac51d/src/distributions/gamma.rs deleted file mode 100644 index 4d68e57..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/gamma.rs +++ /dev/null @@ -1,360 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The Gamma and derived distributions. - -use self::GammaRepr::*; -use self::ChiSquaredRepr::*; - -use Rng; -use distributions::normal::StandardNormal; -use distributions::{Distribution, Exp}; - -/// The Gamma distribution `Gamma(shape, scale)` distribution. -/// -/// The density function of this distribution is -/// -/// ```text -/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k) -/// ``` -/// -/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the -/// scale and both `k` and `θ` are strictly positive. -/// -/// The algorithm used is that described by Marsaglia & Tsang 2000[1], -/// falling back to directly sampling from an Exponential for `shape -/// == 1`, and using the boosting technique described in [1] for -/// `shape < 1`. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Distribution, Gamma}; -/// -/// let gamma = Gamma::new(2.0, 5.0); -/// let v = gamma.sample(&mut rand::thread_rng()); -/// println!("{} is from a Gamma(2, 5) distribution", v); -/// ``` -/// -/// [1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method -/// for Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3 -/// (September 2000), -/// 363-372. DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414) -#[derive(Clone, Copy, Debug)] -pub struct Gamma { - repr: GammaRepr, -} - -#[derive(Clone, Copy, Debug)] -enum GammaRepr { - Large(GammaLargeShape), - One(Exp), - Small(GammaSmallShape) -} - -// These two helpers could be made public, but saving the -// match-on-Gamma-enum branch from using them directly (e.g. if one -// knows that the shape is always > 1) doesn't appear to be much -// faster. - -/// Gamma distribution where the shape parameter is less than 1. -/// -/// Note, samples from this require a compulsory floating-point `pow` -/// call, which makes it significantly slower than sampling from a -/// gamma distribution where the shape parameter is greater than or -/// equal to 1. -/// -/// See `Gamma` for sampling from a Gamma distribution with general -/// shape parameters. -#[derive(Clone, Copy, Debug)] -struct GammaSmallShape { - inv_shape: f64, - large_shape: GammaLargeShape -} - -/// Gamma distribution where the shape parameter is larger than 1. -/// -/// See `Gamma` for sampling from a Gamma distribution with general -/// shape parameters. -#[derive(Clone, Copy, Debug)] -struct GammaLargeShape { - scale: f64, - c: f64, - d: f64 -} - -impl Gamma { - /// Construct an object representing the `Gamma(shape, scale)` - /// distribution. - /// - /// Panics if `shape <= 0` or `scale <= 0`. - #[inline] - pub fn new(shape: f64, scale: f64) -> Gamma { - assert!(shape > 0.0, "Gamma::new called with shape <= 0"); - assert!(scale > 0.0, "Gamma::new called with scale <= 0"); - - let repr = if shape == 1.0 { - One(Exp::new(1.0 / scale)) - } else if shape < 1.0 { - Small(GammaSmallShape::new_raw(shape, scale)) - } else { - Large(GammaLargeShape::new_raw(shape, scale)) - }; - Gamma { repr } - } -} - -impl GammaSmallShape { - fn new_raw(shape: f64, scale: f64) -> GammaSmallShape { - GammaSmallShape { - inv_shape: 1. / shape, - large_shape: GammaLargeShape::new_raw(shape + 1.0, scale) - } - } -} - -impl GammaLargeShape { - fn new_raw(shape: f64, scale: f64) -> GammaLargeShape { - let d = shape - 1. / 3.; - GammaLargeShape { - scale, - c: 1. / (9. * d).sqrt(), - d - } - } -} - -impl Distribution<f64> for Gamma { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - match self.repr { - Small(ref g) => g.sample(rng), - One(ref g) => g.sample(rng), - Large(ref g) => g.sample(rng), - } - } -} -impl Distribution<f64> for GammaSmallShape { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - let u: f64 = rng.gen(); - - self.large_shape.sample(rng) * u.powf(self.inv_shape) - } -} -impl Distribution<f64> for GammaLargeShape { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - loop { - let x = rng.sample(StandardNormal); - let v_cbrt = 1.0 + self.c * x; - if v_cbrt <= 0.0 { // a^3 <= 0 iff a <= 0 - continue - } - - let v = v_cbrt * v_cbrt * v_cbrt; - let u: f64 = rng.gen(); - - let x_sqr = x * x; - if u < 1.0 - 0.0331 * x_sqr * x_sqr || - u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) { - return self.d * v * self.scale - } - } - } -} - -/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of -/// freedom. -/// -/// For `k > 0` integral, this distribution is the sum of the squares -/// of `k` independent standard normal random variables. For other -/// `k`, this uses the equivalent characterisation -/// `χ²(k) = Gamma(k/2, 2)`. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{ChiSquared, Distribution}; -/// -/// let chi = ChiSquared::new(11.0); -/// let v = chi.sample(&mut rand::thread_rng()); -/// println!("{} is from a χ²(11) distribution", v) -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct ChiSquared { - repr: ChiSquaredRepr, -} - -#[derive(Clone, Copy, Debug)] -enum ChiSquaredRepr { - // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1, - // e.g. when alpha = 1/2 as it would be for this case, so special- - // casing and using the definition of N(0,1)^2 is faster. - DoFExactlyOne, - DoFAnythingElse(Gamma), -} - -impl ChiSquared { - /// Create a new chi-squared distribution with degrees-of-freedom - /// `k`. Panics if `k < 0`. - pub fn new(k: f64) -> ChiSquared { - let repr = if k == 1.0 { - DoFExactlyOne - } else { - assert!(k > 0.0, "ChiSquared::new called with `k` < 0"); - DoFAnythingElse(Gamma::new(0.5 * k, 2.0)) - }; - ChiSquared { repr } - } -} -impl Distribution<f64> for ChiSquared { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - match self.repr { - DoFExactlyOne => { - // k == 1 => N(0,1)^2 - let norm = rng.sample(StandardNormal); - norm * norm - } - DoFAnythingElse(ref g) => g.sample(rng) - } - } -} - -/// The Fisher F distribution `F(m, n)`. -/// -/// This distribution is equivalent to the ratio of two normalised -/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) / -/// (χ²(n)/n)`. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{FisherF, Distribution}; -/// -/// let f = FisherF::new(2.0, 32.0); -/// let v = f.sample(&mut rand::thread_rng()); -/// println!("{} is from an F(2, 32) distribution", v) -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct FisherF { - numer: ChiSquared, - denom: ChiSquared, - // denom_dof / numer_dof so that this can just be a straight - // multiplication, rather than a division. - dof_ratio: f64, -} - -impl FisherF { - /// Create a new `FisherF` distribution, with the given - /// parameter. Panics if either `m` or `n` are not positive. - pub fn new(m: f64, n: f64) -> FisherF { - assert!(m > 0.0, "FisherF::new called with `m < 0`"); - assert!(n > 0.0, "FisherF::new called with `n < 0`"); - - FisherF { - numer: ChiSquared::new(m), - denom: ChiSquared::new(n), - dof_ratio: n / m - } - } -} -impl Distribution<f64> for FisherF { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio - } -} - -/// The Student t distribution, `t(nu)`, where `nu` is the degrees of -/// freedom. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{StudentT, Distribution}; -/// -/// let t = StudentT::new(11.0); -/// let v = t.sample(&mut rand::thread_rng()); -/// println!("{} is from a t(11) distribution", v) -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct StudentT { - chi: ChiSquared, - dof: f64 -} - -impl StudentT { - /// Create a new Student t distribution with `n` degrees of - /// freedom. Panics if `n <= 0`. - pub fn new(n: f64) -> StudentT { - assert!(n > 0.0, "StudentT::new called with `n <= 0`"); - StudentT { - chi: ChiSquared::new(n), - dof: n - } - } -} -impl Distribution<f64> for StudentT { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - let norm = rng.sample(StandardNormal); - norm * (self.dof / self.chi.sample(rng)).sqrt() - } -} - -#[cfg(test)] -mod test { - use distributions::Distribution; - use super::{ChiSquared, StudentT, FisherF}; - - #[test] - fn test_chi_squared_one() { - let chi = ChiSquared::new(1.0); - let mut rng = ::test::rng(201); - for _ in 0..1000 { - chi.sample(&mut rng); - } - } - #[test] - fn test_chi_squared_small() { - let chi = ChiSquared::new(0.5); - let mut rng = ::test::rng(202); - for _ in 0..1000 { - chi.sample(&mut rng); - } - } - #[test] - fn test_chi_squared_large() { - let chi = ChiSquared::new(30.0); - let mut rng = ::test::rng(203); - for _ in 0..1000 { - chi.sample(&mut rng); - } - } - #[test] - #[should_panic] - fn test_chi_squared_invalid_dof() { - ChiSquared::new(-1.0); - } - - #[test] - fn test_f() { - let f = FisherF::new(2.0, 32.0); - let mut rng = ::test::rng(204); - for _ in 0..1000 { - f.sample(&mut rng); - } - } - - #[test] - fn test_t() { - let t = StudentT::new(11.0); - let mut rng = ::test::rng(205); - for _ in 0..1000 { - t.sample(&mut rng); - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/integer.rs b/vendor/rand-8c5b0ac51d/src/distributions/integer.rs deleted file mode 100644 index 04bf166..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/integer.rs +++ /dev/null @@ -1,138 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The implementations of the `Standard` distribution for integer types. - -use {Rng}; -use distributions::{Distribution, Standard}; - -impl Distribution<isize> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> isize { - rng.gen::<usize>() as isize - } -} - -impl Distribution<i8> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i8 { - rng.next_u32() as i8 - } -} - -impl Distribution<i16> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i16 { - rng.next_u32() as i16 - } -} - -impl Distribution<i32> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i32 { - rng.next_u32() as i32 - } -} - -impl Distribution<i64> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i64 { - rng.next_u64() as i64 - } -} - -#[cfg(feature = "i128_support")] -impl Distribution<i128> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> i128 { - rng.gen::<u128>() as i128 - } -} - -impl Distribution<usize> for Standard { - #[inline] - #[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { - rng.next_u32() as usize - } - - #[inline] - #[cfg(target_pointer_width = "64")] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { - rng.next_u64() as usize - } -} - -impl Distribution<u8> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 { - rng.next_u32() as u8 - } -} - -impl Distribution<u16> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u16 { - rng.next_u32() as u16 - } -} - -impl Distribution<u32> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u32 { - rng.next_u32() - } -} - -impl Distribution<u64> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { - rng.next_u64() - } -} - -#[cfg(feature = "i128_support")] -impl Distribution<u128> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u128 { - // Use LE; we explicitly generate one value before the next. - let x = rng.next_u64() as u128; - let y = rng.next_u64() as u128; - (y << 64) | x - } -} - - -#[cfg(test)] -mod tests { - use Rng; - use distributions::{Standard}; - - #[test] - fn test_integers() { - let mut rng = ::test::rng(806); - - rng.sample::<isize, _>(Standard); - rng.sample::<i8, _>(Standard); - rng.sample::<i16, _>(Standard); - rng.sample::<i32, _>(Standard); - rng.sample::<i64, _>(Standard); - #[cfg(feature = "i128_support")] - rng.sample::<i128, _>(Standard); - - rng.sample::<usize, _>(Standard); - rng.sample::<u8, _>(Standard); - rng.sample::<u16, _>(Standard); - rng.sample::<u32, _>(Standard); - rng.sample::<u64, _>(Standard); - #[cfg(feature = "i128_support")] - rng.sample::<u128, _>(Standard); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/log_gamma.rs b/vendor/rand-8c5b0ac51d/src/distributions/log_gamma.rs deleted file mode 100644 index f1fa383..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/log_gamma.rs +++ /dev/null @@ -1,51 +0,0 @@ -// Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -/// Calculates ln(gamma(x)) (natural logarithm of the gamma -/// function) using the Lanczos approximation. -/// -/// The approximation expresses the gamma function as: -/// `gamma(z+1) = sqrt(2*pi)*(z+g+0.5)^(z+0.5)*exp(-z-g-0.5)*Ag(z)` -/// `g` is an arbitrary constant; we use the approximation with `g=5`. -/// -/// Noting that `gamma(z+1) = z*gamma(z)` and applying `ln` to both sides: -/// `ln(gamma(z)) = (z+0.5)*ln(z+g+0.5)-(z+g+0.5) + ln(sqrt(2*pi)*Ag(z)/z)` -/// -/// `Ag(z)` is an infinite series with coefficients that can be calculated -/// ahead of time - we use just the first 6 terms, which is good enough -/// for most purposes. -pub fn log_gamma(x: f64) -> f64 { - // precalculated 6 coefficients for the first 6 terms of the series - let coefficients: [f64; 6] = [ - 76.18009172947146, - -86.50532032941677, - 24.01409824083091, - -1.231739572450155, - 0.1208650973866179e-2, - -0.5395239384953e-5, - ]; - - // (x+0.5)*ln(x+g+0.5)-(x+g+0.5) - let tmp = x + 5.5; - let log = (x + 0.5) * tmp.ln() - tmp; - - // the first few terms of the series for Ag(x) - let mut a = 1.000000000190015; - let mut denom = x; - for coeff in &coefficients { - denom += 1.0; - a += coeff / denom; - } - - // get everything together - // a is Ag(x) - // 2.5066... is sqrt(2pi) - log + (2.5066282746310005 * a / x).ln() -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/mod.rs b/vendor/rand-8c5b0ac51d/src/distributions/mod.rs deleted file mode 100644 index e036229..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/mod.rs +++ /dev/null @@ -1,643 +0,0 @@ -// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Sampling from random distributions. -//! -//! Distributions are stateless (i.e. immutable) objects controlling the -//! production of values of some type `T` from a presumed uniform randomness -//! source. These objects may have internal parameters set at contruction time -//! (e.g. [`Uniform`], which has configurable bounds) or may have no internal -//! parameters (e.g. [`Standard`]). -//! -//! All distributions support the [`Distribution`] trait, and support usage -//! via `distr.sample(&mut rng)` as well as via `rng.sample(distr)`. -//! -//! [`Distribution`]: trait.Distribution.html -//! [`Uniform`]: uniform/struct.Uniform.html -//! [`Standard`]: struct.Standard.html - -use Rng; - -pub use self::other::Alphanumeric; -pub use self::uniform::Uniform; -#[deprecated(since="0.5.0", note="use Uniform instead")] -pub use self::uniform::Uniform as Range; -#[cfg(feature="std")] -pub use self::gamma::{Gamma, ChiSquared, FisherF, StudentT}; -#[cfg(feature="std")] -pub use self::normal::{Normal, LogNormal, StandardNormal}; -#[cfg(feature="std")] -pub use self::exponential::{Exp, Exp1}; -#[cfg(feature = "std")] -pub use self::poisson::Poisson; -#[cfg(feature = "std")] -pub use self::binomial::Binomial; - -pub mod uniform; -#[cfg(feature="std")] -pub mod gamma; -#[cfg(feature="std")] -pub mod normal; -#[cfg(feature="std")] -pub mod exponential; -#[cfg(feature = "std")] -pub mod poisson; -#[cfg(feature = "std")] -pub mod binomial; - -mod float; -mod integer; -#[cfg(feature="std")] -mod log_gamma; -mod other; -#[cfg(feature="std")] -mod ziggurat_tables; -#[cfg(feature="std")] -use distributions::float::IntoFloat; - -/// Types that can be used to create a random instance of `Support`. -#[deprecated(since="0.5.0", note="use Distribution instead")] -pub trait Sample<Support> { - /// Generate a random value of `Support`, using `rng` as the - /// source of randomness. - fn sample<R: Rng>(&mut self, rng: &mut R) -> Support; -} - -/// `Sample`s that do not require keeping track of state. -/// -/// Since no state is recorded, each sample is (statistically) -/// independent of all others, assuming the `Rng` used has this -/// property. -#[allow(deprecated)] -#[deprecated(since="0.5.0", note="use Distribution instead")] -pub trait IndependentSample<Support>: Sample<Support> { - /// Generate a random value. - fn ind_sample<R: Rng>(&self, &mut R) -> Support; -} - -/// DEPRECATED: Use `distributions::uniform` instead. -#[deprecated(since="0.5.0", note="use uniform instead")] -pub mod range { - pub use distributions::uniform::Uniform as Range; - pub use distributions::uniform::SampleUniform as SampleRange; -} - -#[allow(deprecated)] -mod impls { - use Rng; - use distributions::{Distribution, Sample, IndependentSample, - WeightedChoice}; - #[cfg(feature="std")] - use distributions::exponential::Exp; - #[cfg(feature="std")] - use distributions::gamma::{Gamma, ChiSquared, FisherF, StudentT}; - #[cfg(feature="std")] - use distributions::normal::{Normal, LogNormal}; - use distributions::range::{Range, SampleRange}; - - impl<'a, T: Clone> Sample<T> for WeightedChoice<'a, T> { - fn sample<R: Rng>(&mut self, rng: &mut R) -> T { - Distribution::sample(self, rng) - } - } - impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { - Distribution::sample(self, rng) - } - } - - impl<T: SampleRange> Sample<T> for Range<T> { - fn sample<R: Rng>(&mut self, rng: &mut R) -> T { - Distribution::sample(self, rng) - } - } - impl<T: SampleRange> IndependentSample<T> for Range<T> { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { - Distribution::sample(self, rng) - } - } - - #[cfg(feature="std")] - macro_rules! impl_f64 { - ($($name: ident), *) => { - $( - impl Sample<f64> for $name { - fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { - Distribution::sample(self, rng) - } - } - impl IndependentSample<f64> for $name { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { - Distribution::sample(self, rng) - } - } - )* - } - } - #[cfg(feature="std")] - impl_f64!(Exp, Gamma, ChiSquared, FisherF, StudentT, Normal, LogNormal); -} - -/// Types (distributions) that can be used to create a random instance of `T`. -/// -/// All implementations are expected to be immutable; this has the significant -/// advantage of not needing to consider thread safety, and for most -/// distributions efficient state-less sampling algorithms are available. -pub trait Distribution<T> { - /// Generate a random value of `T`, using `rng` as the source of randomness. - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; - - /// Create an iterator that generates random values of `T`, using `rng` as - /// the source of randomness. - /// - /// # Example - /// - /// ```rust - /// use rand::thread_rng; - /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; - /// - /// let mut rng = thread_rng(); - /// - /// // Vec of 16 x f32: - /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect(); - /// - /// // String: - /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect(); - /// - /// // Dice-rolling: - /// let die_range = Uniform::new_inclusive(1, 6); - /// let mut roll_die = die_range.sample_iter(&mut rng); - /// while roll_die.next().unwrap() != 6 { - /// println!("Not a 6; rolling again!"); - /// } - /// ``` - fn sample_iter<'a, R: Rng>(&'a self, rng: &'a mut R) - -> DistIter<'a, Self, R, T> where Self: Sized - { - DistIter { - distr: self, - rng: rng, - phantom: ::core::marker::PhantomData, - } - } -} - -/// An iterator that generates random values of `T` with distribution `D`, -/// using `R` as the source of randomness. -/// -/// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. -/// See its documentation for more. -/// -/// [`Distribution`]: trait.Distribution.html -/// [`sample_iter`]: trait.Distribution.html#method.sample_iter -#[derive(Debug)] -pub struct DistIter<'a, D, R, T> where D: Distribution<T> + 'a, R: Rng + 'a { - distr: &'a D, - rng: &'a mut R, - phantom: ::core::marker::PhantomData<T>, -} - -impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T> - where D: Distribution<T>, R: Rng + 'a -{ - type Item = T; - - #[inline(always)] - fn next(&mut self) -> Option<T> { - Some(self.distr.sample(self.rng)) - } -} - -impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { - (*self).sample(rng) - } -} - -/// A generic random value distribution. Generates values for various types -/// with numerically uniform distribution. -/// -/// For floating-point numbers, this generates values from the open range -/// `(0, 1)` (i.e. excluding 0.0 and 1.0). -/// -/// ## Built-in Implementations -/// -/// This crate implements the distribution `Standard` for various primitive -/// types. Assuming the provided `Rng` is well-behaved, these implementations -/// generate values with the following ranges and distributions: -/// -/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed -/// over all values of the type. -/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all -/// code points in the range `0...0x10_FFFF`, except for the range -/// `0xD800...0xDFFF` (the surrogate code points). This includes -/// unassigned/reserved code points. -/// * `bool`: Generates `false` or `true`, each with probability 0.5. -/// * Floating point types (`f32` and `f64`): Uniformly distributed in the -/// open range `(0, 1)`. -/// -/// The following aggregate types also implement the distribution `Standard` as -/// long as their component types implement it: -/// -/// * Tuples and arrays: Each element of the tuple or array is generated -/// independently, using the `Standard` distribution recursively. -/// * `Option<T>`: Returns `None` with probability 0.5; otherwise generates a -/// random `T` and returns `Some(T)`. -/// -/// # Example -/// ```rust -/// use rand::{FromEntropy, SmallRng, Rng}; -/// use rand::distributions::Standard; -/// -/// let val: f32 = SmallRng::from_entropy().sample(Standard); -/// println!("f32 from (0,1): {}", val); -/// ``` -/// -/// With dynamic dispatch (type erasure of `Rng`): -/// -/// ```rust -/// use rand::{thread_rng, Rng, RngCore}; -/// use rand::distributions::Standard; -/// -/// let mut rng = thread_rng(); -/// let erased_rng: &mut RngCore = &mut rng; -/// let val: f32 = erased_rng.sample(Standard); -/// println!("f32 from (0, 1): {}", val); -/// ``` -/// -/// # Open interval for floats -/// In theory it is possible to choose between an open interval `(0, 1)`, and -/// the half-open intervals `[0, 1)` and `(0, 1]`. All can give a distribution -/// with perfectly uniform intervals. Many libraries in other programming -/// languages default to the closed-open interval `[0, 1)`. We choose here to go -/// with *open*, with the arguments: -/// -/// - The chance to generate a specific value, like exactly 0.0, is *tiny*. No -/// (or almost no) sensible code relies on an exact floating-point value to be -/// generated with a very small chance (1 in 2<sup>23</sup> (approx. 8 -/// million) for `f32`, and 1 in 2<sup>52</sup> for `f64`). What is relied on -/// is having a uniform distribution and a mean of `0.5`. -/// - Several common algorithms rely on never seeing the value `0.0` generated, -/// i.e. they rely on an open interval. For example when the logarithm of the -/// value is taken, or used as a devisor. -/// -/// In other words, the guarantee some value *could* be generated is less useful -/// than the guarantee some value (`0.0`) is never generated. That makes an open -/// interval a nicer choice. -/// -/// Consider using `Rng::gen_range` if you really need a half-open interval (as -/// the ranges use a half-open interval). It has the same performance. Example: -/// -/// ``` -/// use rand::{thread_rng, Rng}; -/// -/// let mut rng = thread_rng(); -/// let val = rng.gen_range(0.0f32, 1.0); -/// println!("f32 from [0, 1): {}", val); -/// ``` -/// -/// [`Exp1`]: struct.Exp1.html -/// [`StandardNormal`]: struct.StandardNormal.html -#[derive(Debug)] -pub struct Standard; - -#[allow(deprecated)] -impl<T> ::Rand for T where Standard: Distribution<T> { - fn rand<R: Rng>(rng: &mut R) -> Self { - Standard.sample(rng) - } -} - - -/// A value with a particular weight for use with `WeightedChoice`. -#[derive(Copy, Clone, Debug)] -pub struct Weighted<T> { - /// The numerical weight of this item - pub weight: u32, - /// The actual item which is being weighted - pub item: T, -} - -/// A distribution that selects from a finite collection of weighted items. -/// -/// Each item has an associated weight that influences how likely it -/// is to be chosen: higher weight is more likely. -/// -/// The `Clone` restriction is a limitation of the `Distribution` trait. -/// Note that `&T` is (cheaply) `Clone` for all `T`, as is `u32`, so one can -/// store references or indices into another vector. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Weighted, WeightedChoice, Distribution}; -/// -/// let mut items = vec!(Weighted { weight: 2, item: 'a' }, -/// Weighted { weight: 4, item: 'b' }, -/// Weighted { weight: 1, item: 'c' }); -/// let wc = WeightedChoice::new(&mut items); -/// let mut rng = rand::thread_rng(); -/// for _ in 0..16 { -/// // on average prints 'a' 4 times, 'b' 8 and 'c' twice. -/// println!("{}", wc.sample(&mut rng)); -/// } -/// ``` -#[derive(Debug)] -pub struct WeightedChoice<'a, T:'a> { - items: &'a mut [Weighted<T>], - weight_range: Uniform<u32>, -} - -impl<'a, T: Clone> WeightedChoice<'a, T> { - /// Create a new `WeightedChoice`. - /// - /// Panics if: - /// - /// - `items` is empty - /// - the total weight is 0 - /// - the total weight is larger than a `u32` can contain. - pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> { - // strictly speaking, this is subsumed by the total weight == 0 case - assert!(!items.is_empty(), "WeightedChoice::new called with no items"); - - let mut running_total: u32 = 0; - - // we convert the list from individual weights to cumulative - // weights so we can binary search. This *could* drop elements - // with weight == 0 as an optimisation. - for item in items.iter_mut() { - running_total = match running_total.checked_add(item.weight) { - Some(n) => n, - None => panic!("WeightedChoice::new called with a total weight \ - larger than a u32 can contain") - }; - - item.weight = running_total; - } - assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0"); - - WeightedChoice { - items, - // we're likely to be generating numbers in this range - // relatively often, so might as well cache it - weight_range: Uniform::new(0, running_total) - } - } -} - -impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { - // we want to find the first element that has cumulative - // weight > sample_weight, which we do by binary since the - // cumulative weights of self.items are sorted. - - // choose a weight in [0, total_weight) - let sample_weight = self.weight_range.sample(rng); - - // short circuit when it's the first item - if sample_weight < self.items[0].weight { - return self.items[0].item.clone(); - } - - let mut idx = 0; - let mut modifier = self.items.len(); - - // now we know that every possibility has an element to the - // left, so we can just search for the last element that has - // cumulative weight <= sample_weight, then the next one will - // be "it". (Note that this greatest element will never be the - // last element of the vector, since sample_weight is chosen - // in [0, total_weight) and the cumulative weight of the last - // one is exactly the total weight.) - while modifier > 1 { - let i = idx + modifier / 2; - if self.items[i].weight <= sample_weight { - // we're small, so look to the right, but allow this - // exact element still. - idx = i; - // we need the `/ 2` to round up otherwise we'll drop - // the trailing elements when `modifier` is odd. - modifier += 1; - } else { - // otherwise we're too big, so go left. (i.e. do - // nothing) - } - modifier /= 2; - } - self.items[idx + 1].item.clone() - } -} - -/// Sample a random number using the Ziggurat method (specifically the -/// ZIGNOR variant from Doornik 2005). Most of the arguments are -/// directly from the paper: -/// -/// * `rng`: source of randomness -/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0. -/// * `X`: the $x_i$ abscissae. -/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$) -/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$ -/// * `pdf`: the probability density function -/// * `zero_case`: manual sampling from the tail when we chose the -/// bottom box (i.e. i == 0) - -// the perf improvement (25-50%) is definitely worth the extra code -// size from force-inlining. -#[cfg(feature="std")] -#[inline(always)] -fn ziggurat<R: Rng + ?Sized, P, Z>( - rng: &mut R, - symmetric: bool, - x_tab: ziggurat_tables::ZigTable, - f_tab: ziggurat_tables::ZigTable, - mut pdf: P, - mut zero_case: Z) - -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 { - loop { - // As an optimisation we re-implement the conversion to a f64. - // From the remaining 12 most significant bits we use 8 to construct `i`. - // This saves us generating a whole extra random number, while the added - // precision of using 64 bits for f64 does not buy us much. - let bits = rng.next_u64(); - let i = bits as usize & 0xff; - - let u = if symmetric { - // Convert to a value in the range [2,4) and substract to get [-1,1) - // We can't convert to an open range directly, that would require - // substracting `3.0 - EPSILON`, which is not representable. - // It is possible with an extra step, but an open range does not - // seem neccesary for the ziggurat algorithm anyway. - (bits >> 12).into_float_with_exponent(1) - 3.0 - } else { - // Convert to a value in the range [1,2) and substract to get (0,1) - (bits >> 12).into_float_with_exponent(0) - - (1.0 - ::core::f64::EPSILON / 2.0) - }; - let x = u * x_tab[i]; - - let test_x = if symmetric { x.abs() } else {x}; - - // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i]) - if test_x < x_tab[i + 1] { - return x; - } - if i == 0 { - return zero_case(rng, u); - } - // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1 - if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) { - return x; - } - } -} - -#[cfg(test)] -mod tests { - use Rng; - use mock::StepRng; - use super::{WeightedChoice, Weighted, Distribution}; - - #[test] - fn test_weighted_choice() { - // this makes assumptions about the internal implementation of - // WeightedChoice. It may fail when the implementation in - // `distributions::uniform::UniformInt` changes. - - macro_rules! t { - ($items:expr, $expected:expr) => {{ - let mut items = $items; - let mut total_weight = 0; - for item in &items { total_weight += item.weight; } - - let wc = WeightedChoice::new(&mut items); - let expected = $expected; - - // Use extremely large steps between the random numbers, because - // we test with small ranges and `UniformInt` is designed to prefer - // the most significant bits. - let mut rng = StepRng::new(0, !0 / (total_weight as u64)); - - for &val in expected.iter() { - assert_eq!(wc.sample(&mut rng), val) - } - }} - } - - t!([Weighted { weight: 1, item: 10}], [10]); - - // skip some - t!([Weighted { weight: 0, item: 20}, - Weighted { weight: 2, item: 21}, - Weighted { weight: 0, item: 22}, - Weighted { weight: 1, item: 23}], - [21, 21, 23]); - - // different weights - t!([Weighted { weight: 4, item: 30}, - Weighted { weight: 3, item: 31}], - [30, 31, 30, 31, 30, 31, 30]); - - // check that we're binary searching - // correctly with some vectors of odd - // length. - t!([Weighted { weight: 1, item: 40}, - Weighted { weight: 1, item: 41}, - Weighted { weight: 1, item: 42}, - Weighted { weight: 1, item: 43}, - Weighted { weight: 1, item: 44}], - [40, 41, 42, 43, 44]); - t!([Weighted { weight: 1, item: 50}, - Weighted { weight: 1, item: 51}, - Weighted { weight: 1, item: 52}, - Weighted { weight: 1, item: 53}, - Weighted { weight: 1, item: 54}, - Weighted { weight: 1, item: 55}, - Weighted { weight: 1, item: 56}], - [50, 54, 51, 55, 52, 56, 53]); - } - - #[test] - fn test_weighted_clone_initialization() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let clone = initial.clone(); - assert_eq!(initial.weight, clone.weight); - assert_eq!(initial.item, clone.item); - } - - #[test] #[should_panic] - fn test_weighted_clone_change_weight() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let mut clone = initial.clone(); - clone.weight = 5; - assert_eq!(initial.weight, clone.weight); - } - - #[test] #[should_panic] - fn test_weighted_clone_change_item() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let mut clone = initial.clone(); - clone.item = 5; - assert_eq!(initial.item, clone.item); - - } - - #[test] #[should_panic] - fn test_weighted_choice_no_items() { - WeightedChoice::<isize>::new(&mut []); - } - #[test] #[should_panic] - fn test_weighted_choice_zero_weight() { - WeightedChoice::new(&mut [Weighted { weight: 0, item: 0}, - Weighted { weight: 0, item: 1}]); - } - #[test] #[should_panic] - fn test_weighted_choice_weight_overflows() { - let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow - WeightedChoice::new(&mut [Weighted { weight: x, item: 0 }, - Weighted { weight: 1, item: 1 }, - Weighted { weight: x, item: 2 }, - Weighted { weight: 1, item: 3 }]); - } - - #[test] #[allow(deprecated)] - fn test_backwards_compat_sample() { - use distributions::{Sample, IndependentSample}; - - struct Constant<T> { val: T } - impl<T: Copy> Sample<T> for Constant<T> { - fn sample<R: Rng>(&mut self, _: &mut R) -> T { self.val } - } - impl<T: Copy> IndependentSample<T> for Constant<T> { - fn ind_sample<R: Rng>(&self, _: &mut R) -> T { self.val } - } - - let mut sampler = Constant{ val: 293 }; - assert_eq!(sampler.sample(&mut ::test::rng(233)), 293); - assert_eq!(sampler.ind_sample(&mut ::test::rng(234)), 293); - } - - #[cfg(feature="std")] - #[test] #[allow(deprecated)] - fn test_backwards_compat_exp() { - use distributions::{IndependentSample, Exp}; - let sampler = Exp::new(1.0); - sampler.ind_sample(&mut ::test::rng(235)); - } - - #[cfg(feature="std")] - #[test] - fn test_distributions_iter() { - use distributions::Normal; - let mut rng = ::test::rng(210); - let distr = Normal::new(10.0, 10.0); - let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect(); - println!("{:?}", results); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/normal.rs b/vendor/rand-8c5b0ac51d/src/distributions/normal.rs deleted file mode 100644 index a1adafb..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/normal.rs +++ /dev/null @@ -1,192 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The normal and derived distributions. - -use Rng; -use distributions::{ziggurat, ziggurat_tables, Distribution}; - -/// Samples floating-point numbers according to the normal distribution -/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to -/// `Normal::new(0.0, 1.0)` but faster. -/// -/// See `Normal` for the general normal distribution. -/// -/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. -/// -/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to -/// Generate Normal Random -/// Samples*](https://www.doornik.com/research/ziggurat.pdf). Nuffield -/// College, Oxford -/// -/// # Example -/// ```rust -/// use rand::{FromEntropy, SmallRng, Rng}; -/// use rand::distributions::StandardNormal; -/// -/// let val: f64 = SmallRng::from_entropy().sample(StandardNormal); -/// println!("{}", val); -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct StandardNormal; - -impl Distribution<f64> for StandardNormal { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - #[inline] - fn pdf(x: f64) -> f64 { - (-x*x/2.0).exp() - } - #[inline] - fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 { - // compute a random number in the tail by hand - - // strange initial conditions, because the loop is not - // do-while, so the condition should be true on the first - // run, they get overwritten anyway (0 < 1, so these are - // good). - let mut x = 1.0f64; - let mut y = 0.0f64; - - while -2.0 * y < x * x { - let x_: f64 = rng.gen(); - let y_: f64 = rng.gen(); - - x = x_.ln() / ziggurat_tables::ZIG_NORM_R; - y = y_.ln(); - } - - if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x } - } - - ziggurat(rng, true, // this is symmetric - &ziggurat_tables::ZIG_NORM_X, - &ziggurat_tables::ZIG_NORM_F, - pdf, zero_case) - } -} - -/// The normal distribution `N(mean, std_dev**2)`. -/// -/// This uses the ZIGNOR variant of the Ziggurat method, see -/// `StandardNormal` for more details. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Normal, Distribution}; -/// -/// // mean 2, standard deviation 3 -/// let normal = Normal::new(2.0, 3.0); -/// let v = normal.sample(&mut rand::thread_rng()); -/// println!("{} is from a N(2, 9) distribution", v) -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct Normal { - mean: f64, - std_dev: f64, -} - -impl Normal { - /// Construct a new `Normal` distribution with the given mean and - /// standard deviation. - /// - /// # Panics - /// - /// Panics if `std_dev < 0`. - #[inline] - pub fn new(mean: f64, std_dev: f64) -> Normal { - assert!(std_dev >= 0.0, "Normal::new called with `std_dev` < 0"); - Normal { - mean, - std_dev - } - } -} -impl Distribution<f64> for Normal { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - let n = rng.sample(StandardNormal); - self.mean + self.std_dev * n - } -} - - -/// The log-normal distribution `ln N(mean, std_dev**2)`. -/// -/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, -/// std_dev**2)` distributed. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{LogNormal, Distribution}; -/// -/// // mean 2, standard deviation 3 -/// let log_normal = LogNormal::new(2.0, 3.0); -/// let v = log_normal.sample(&mut rand::thread_rng()); -/// println!("{} is from an ln N(2, 9) distribution", v) -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct LogNormal { - norm: Normal -} - -impl LogNormal { - /// Construct a new `LogNormal` distribution with the given mean - /// and standard deviation. - /// - /// # Panics - /// - /// Panics if `std_dev < 0`. - #[inline] - pub fn new(mean: f64, std_dev: f64) -> LogNormal { - assert!(std_dev >= 0.0, "LogNormal::new called with `std_dev` < 0"); - LogNormal { norm: Normal::new(mean, std_dev) } - } -} -impl Distribution<f64> for LogNormal { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - self.norm.sample(rng).exp() - } -} - -#[cfg(test)] -mod tests { - use distributions::Distribution; - use super::{Normal, LogNormal}; - - #[test] - fn test_normal() { - let norm = Normal::new(10.0, 10.0); - let mut rng = ::test::rng(210); - for _ in 0..1000 { - norm.sample(&mut rng); - } - } - #[test] - #[should_panic] - fn test_normal_invalid_sd() { - Normal::new(10.0, -1.0); - } - - - #[test] - fn test_log_normal() { - let lnorm = LogNormal::new(10.0, 10.0); - let mut rng = ::test::rng(211); - for _ in 0..1000 { - lnorm.sample(&mut rng); - } - } - #[test] - #[should_panic] - fn test_log_normal_invalid_sd() { - LogNormal::new(10.0, -1.0); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/other.rs b/vendor/rand-8c5b0ac51d/src/distributions/other.rs deleted file mode 100644 index 1f74341..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/other.rs +++ /dev/null @@ -1,207 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The implementations of the `Standard` distribution for other built-in types. - -use core::char; - -use {Rng}; -use distributions::{Distribution, Standard, Uniform}; - -// ----- Sampling distributions ----- - -/// Sample a `char`, uniformly distributed over ASCII letters and numbers: -/// a-z, A-Z and 0-9. -/// -/// # Example -/// -/// ```rust -/// use std::iter; -/// use rand::{Rng, thread_rng}; -/// use rand::distributions::Alphanumeric; -/// -/// let mut rng = thread_rng(); -/// let chars: String = iter::repeat(()) -/// .map(|()| rng.sample(Alphanumeric)) -/// .take(7) -/// .collect(); -/// println!("Random chars: {}", chars); -/// ``` -#[derive(Debug)] -pub struct Alphanumeric; - - -// ----- Implementations of distributions ----- - -impl Distribution<char> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char { - let range = Uniform::new(0u32, 0x11_0000); - loop { - match char::from_u32(range.sample(rng)) { - Some(c) => return c, - // About 0.2% of numbers in the range 0..0x110000 are invalid - // codepoints (surrogates). - None => {} - } - } - } -} - -impl Distribution<char> for Alphanumeric { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char { - const RANGE: u32 = 26 + 26 + 10; - const GEN_ASCII_STR_CHARSET: &[u8] = - b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ - abcdefghijklmnopqrstuvwxyz\ - 0123456789"; - // We can pick from 62 characters. This is so close to a power of 2, 64, - // that we can do better than `Uniform`. Use a simple bitshift and - // rejection sampling. We do not use a bitmask, because for small RNGs - // the most significant bits are usually of higher quality. - loop { - let var = rng.next_u32() >> (32 - 6); - if var < RANGE { - return GEN_ASCII_STR_CHARSET[var as usize] as char - } - } - } -} - -impl Distribution<bool> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { - // We can compare against an arbitrary bit of an u32 to get a bool. - // Because the least significant bits of a lower quality RNG can have - // simple patterns, we compare against the most significant bit. This is - // easiest done using a sign test. - (rng.next_u32() as i32) < 0 - } -} - -macro_rules! tuple_impl { - // use variables to indicate the arity of the tuple - ($($tyvar:ident),* ) => { - // the trailing commas are for the 1 tuple - impl< $( $tyvar ),* > - Distribution<( $( $tyvar ),* , )> - for Standard - where $( Standard: Distribution<$tyvar> ),* - { - #[inline] - fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) { - ( - // use the $tyvar's to get the appropriate number of - // repeats (they're not actually needed) - $( - _rng.gen::<$tyvar>() - ),* - , - ) - } - } - } -} - -impl Distribution<()> for Standard { - #[inline] - fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () { () } -} -tuple_impl!{A} -tuple_impl!{A, B} -tuple_impl!{A, B, C} -tuple_impl!{A, B, C, D} -tuple_impl!{A, B, C, D, E} -tuple_impl!{A, B, C, D, E, F} -tuple_impl!{A, B, C, D, E, F, G} -tuple_impl!{A, B, C, D, E, F, G, H} -tuple_impl!{A, B, C, D, E, F, G, H, I} -tuple_impl!{A, B, C, D, E, F, G, H, I, J} -tuple_impl!{A, B, C, D, E, F, G, H, I, J, K} -tuple_impl!{A, B, C, D, E, F, G, H, I, J, K, L} - -macro_rules! array_impl { - // recursive, given at least one type parameter: - {$n:expr, $t:ident, $($ts:ident,)*} => { - array_impl!{($n - 1), $($ts,)*} - - impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> { - #[inline] - fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { - [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*] - } - } - }; - // empty case: - {$n:expr,} => { - impl<T> Distribution<[T; $n]> for Standard { - fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] } - } - }; -} - -array_impl!{32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,} - -impl<T> Distribution<Option<T>> for Standard where Standard: Distribution<T> { - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> { - // UFCS is needed here: https://github.com/rust-lang/rust/issues/24066 - if rng.gen::<bool>() { - Some(rng.gen()) - } else { - None - } - } -} - - -#[cfg(test)] -mod tests { - use {Rng, RngCore, Standard}; - use distributions::Alphanumeric; - #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::String; - - #[test] - fn test_misc() { - let rng: &mut RngCore = &mut ::test::rng(820); - - rng.sample::<char, _>(Standard); - rng.sample::<bool, _>(Standard); - } - - #[cfg(feature="alloc")] - #[test] - fn test_chars() { - use core::iter; - let mut rng = ::test::rng(805); - - // Test by generating a relatively large number of chars, so we also - // take the rejection sampling path. - let word: String = iter::repeat(()) - .map(|()| rng.gen::<char>()).take(1000).collect(); - assert!(word.len() != 0); - } - - #[test] - fn test_alphanumeric() { - let mut rng = ::test::rng(806); - - // Test by generating a relatively large number of chars, so we also - // take the rejection sampling path. - let mut incorrect = false; - for _ in 0..100 { - let c = rng.sample(Alphanumeric); - incorrect |= !((c >= '0' && c <= '9') || - (c >= 'A' && c <= 'Z') || - (c >= 'a' && c <= 'z') ); - } - assert!(incorrect == false); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/poisson.rs b/vendor/rand-8c5b0ac51d/src/distributions/poisson.rs deleted file mode 100644 index d1fa901..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/poisson.rs +++ /dev/null @@ -1,157 +0,0 @@ -// Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The Poisson distribution. - -use Rng; -use distributions::Distribution; -use distributions::log_gamma::log_gamma; -use std::f64::consts::PI; - -/// The Poisson distribution `Poisson(lambda)`. -/// -/// This distribution has a density function: -/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Poisson, Distribution}; -/// -/// let poi = Poisson::new(2.0); -/// let v = poi.sample(&mut rand::thread_rng()); -/// println!("{} is from a Poisson(2) distribution", v); -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct Poisson { - lambda: f64, - // precalculated values - exp_lambda: f64, - log_lambda: f64, - sqrt_2lambda: f64, - magic_val: f64, -} - -impl Poisson { - /// Construct a new `Poisson` with the given shape parameter - /// `lambda`. Panics if `lambda <= 0`. - pub fn new(lambda: f64) -> Poisson { - assert!(lambda > 0.0, "Poisson::new called with lambda <= 0"); - let log_lambda = lambda.ln(); - Poisson { - lambda, - exp_lambda: (-lambda).exp(), - log_lambda, - sqrt_2lambda: (2.0 * lambda).sqrt(), - magic_val: lambda * log_lambda - log_gamma(1.0 + lambda), - } - } -} - -impl Distribution<u64> for Poisson { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { - // using the algorithm from Numerical Recipes in C - - // for low expected values use the Knuth method - if self.lambda < 12.0 { - let mut result = 0; - let mut p = 1.0; - while p > self.exp_lambda { - p *= rng.gen::<f64>(); - result += 1; - } - result - 1 - } - // high expected values - rejection method - else { - let mut int_result: u64; - - loop { - let mut result; - let mut comp_dev; - - // we use the lorentzian distribution as the comparison distribution - // f(x) ~ 1/(1+x/^2) - loop { - // draw from the lorentzian distribution - comp_dev = (PI * rng.gen::<f64>()).tan(); - // shift the peak of the comparison ditribution - result = self.sqrt_2lambda * comp_dev + self.lambda; - // repeat the drawing until we are in the range of possible values - if result >= 0.0 { - break; - } - } - // now the result is a random variable greater than 0 with Lorentzian distribution - // the result should be an integer value - result = result.floor(); - int_result = result as u64; - - // this is the ratio of the Poisson distribution to the comparison distribution - // the magic value scales the distribution function to a range of approximately 0-1 - // since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1 - // this doesn't change the resulting distribution, only increases the rate of failed drawings - let check = 0.9 * (1.0 + comp_dev * comp_dev) - * (result * self.log_lambda - log_gamma(1.0 + result) - self.magic_val).exp(); - - // check with uniform random value - if below the threshold, we are within the target distribution - if rng.gen::<f64>() <= check { - break; - } - } - int_result - } - } -} - -#[cfg(test)] -mod test { - use distributions::Distribution; - use super::Poisson; - - #[test] - fn test_poisson_10() { - let poisson = Poisson::new(10.0); - let mut rng = ::test::rng(123); - let mut sum = 0; - for _ in 0..1000 { - sum += poisson.sample(&mut rng); - } - let avg = (sum as f64) / 1000.0; - println!("Poisson average: {}", avg); - assert!((avg - 10.0).abs() < 0.5); // not 100% certain, but probable enough - } - - #[test] - fn test_poisson_15() { - // Take the 'high expected values' path - let poisson = Poisson::new(15.0); - let mut rng = ::test::rng(123); - let mut sum = 0; - for _ in 0..1000 { - sum += poisson.sample(&mut rng); - } - let avg = (sum as f64) / 1000.0; - println!("Poisson average: {}", avg); - assert!((avg - 15.0).abs() < 0.5); // not 100% certain, but probable enough - } - - #[test] - #[should_panic] - fn test_poisson_invalid_lambda_zero() { - Poisson::new(0.0); - } - - #[test] - #[should_panic] - fn test_poisson_invalid_lambda_neg() { - Poisson::new(-10.0); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/uniform.rs b/vendor/rand-8c5b0ac51d/src/distributions/uniform.rs deleted file mode 100644 index 50e7bfe..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/uniform.rs +++ /dev/null @@ -1,650 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! A distribution uniformly generating numbers within a given range. - -use Rng; -use distributions::Distribution; -use distributions::float::IntoFloat; - -/// Sample values uniformly between two bounds. -/// -/// `Uniform::new` and `Uniform::new_inclusive` construct a `Uniform` -/// distribution sampling from the closed-open and the closed (inclusive) range. -/// Some preparations are performed up front to make sampling values faster. -/// `Uniform::sample_single` is optimized for sampling values once or only a -/// limited number of times from a range. -/// -/// If you need to sample many values from a range, consider using `new` or -/// `new_inclusive`. This is also the best choice if the range is constant, -/// because then the preparations can be evaluated at compile-time. -/// Otherwise `sample_single` may be the best choice. -/// -/// Sampling uniformly from a range can be surprisingly complicated to be both -/// generic and correct. Consider for example edge cases like `low = 0u8`, -/// `high = 170u8`, for which a naive modulo operation would return numbers less -/// than 85 with double the probability to those greater than 85. -/// -/// Types should attempt to sample in `[low, high)` for `Uniform::new(low, high)`, -/// i.e., excluding `high`, but this may be very difficult. All the primitive -/// integer types satisfy this property, and the float types normally satisfy -/// it, but rounding may mean `high` can occur. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Distribution, Uniform}; -/// -/// fn main() { -/// let between = Uniform::from(10..10000); -/// let mut rng = rand::thread_rng(); -/// let mut sum = 0; -/// for _ in 0..1000 { -/// sum += between.sample(&mut rng); -/// } -/// println!("{}", sum); -/// } -/// ``` -#[derive(Clone, Copy, Debug)] -pub struct Uniform<X: SampleUniform> { - inner: X::Impl, -} - -impl<X: SampleUniform> Uniform<X> { - /// Create a new `Uniform` instance which samples uniformly from the half - /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. - pub fn new(low: X, high: X) -> Uniform<X> { - assert!(low < high, "Uniform::new called with `low >= high`"); - Uniform { inner: X::Impl::new(low, high) } - } - - /// Create a new `Uniform` instance which samples uniformly from the closed - /// range `[low, high]` (inclusive). Panics if `low > high`. - pub fn new_inclusive(low: X, high: X) -> Uniform<X> { - assert!(low <= high, "Uniform::new_inclusive called with `low > high`"); - Uniform { inner: X::Impl::new_inclusive(low, high) } - } - - /// Sample a single value uniformly from `[low, high)`. - /// Panics if `low >= high`. - pub fn sample_single<R: Rng + ?Sized>(low: X, high: X, rng: &mut R) -> X { - assert!(low < high, "Uniform::sample_single called with low >= high"); - X::Impl::sample_single(low, high, rng) - } -} - -impl<X: SampleUniform> Distribution<X> for Uniform<X> { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { - self.inner.sample(rng) - } -} - -/// Helper trait for creating objects using the correct implementation of -/// `UniformImpl` for the sampling type; this enables `Uniform::new(a, b)` to work. -pub trait SampleUniform: PartialOrd+Sized { - /// The `UniformImpl` implementation supporting type `X`. - type Impl: UniformImpl<X = Self>; -} - -/// Helper trait handling actual uniform sampling. -/// -/// If you want to implement `Uniform` sampling for your own type, then -/// implement both this trait and `SampleUniform`: -/// -/// ```rust -/// use rand::{Rng, thread_rng}; -/// use rand::distributions::Distribution; -/// use rand::distributions::uniform::{Uniform, SampleUniform, UniformImpl, UniformFloat}; -/// -/// #[derive(Clone, Copy, PartialEq, PartialOrd)] -/// struct MyF32(f32); -/// -/// #[derive(Clone, Copy, Debug)] -/// struct UniformMyF32 { -/// inner: UniformFloat<f32>, -/// } -/// impl UniformImpl for UniformMyF32 { -/// type X = MyF32; -/// fn new(low: Self::X, high: Self::X) -> Self { -/// UniformMyF32 { -/// inner: UniformFloat::<f32>::new(low.0, high.0), -/// } -/// } -/// fn new_inclusive(low: Self::X, high: Self::X) -> Self { -/// UniformImpl::new(low, high) -/// } -/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { -/// MyF32(self.inner.sample(rng)) -/// } -/// } -/// -/// impl SampleUniform for MyF32 { -/// type Impl = UniformMyF32; -/// } -/// -/// let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); -/// let uniform = Uniform::new(low, high); -/// let x = uniform.sample(&mut thread_rng()); -/// ``` -pub trait UniformImpl: Sized { - /// The type sampled by this implementation. - type X: PartialOrd; - - /// Construct self, with inclusive lower bound and exclusive upper bound - /// `[low, high)`. - /// - /// Usually users should not call this directly but instead use - /// `Uniform::new`, which asserts that `low < high` before calling this. - fn new(low: Self::X, high: Self::X) -> Self; - - /// Construct self, with inclusive bounds `[low, high]`. - /// - /// Usually users should not call this directly but instead use - /// `Uniform::new_inclusive`, which asserts that `low < high` before calling - /// this. - fn new_inclusive(low: Self::X, high: Self::X) -> Self; - - /// Sample a value. - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; - - /// Sample a single value uniformly from a range with inclusive lower bound - /// and exclusive upper bound `[low, high)`. - /// - /// Usually users should not call this directly but instead use - /// `Uniform::sample_single`, which asserts that `low < high` before calling - /// this. - /// - /// Via this method, implementations can provide a method optimized for - /// sampling only a single value from the specified range. The default - /// implementation simply calls `UniformImpl::new` then `sample` on the - /// result. - fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) - -> Self::X - { - let uniform: Self = UniformImpl::new(low, high); - uniform.sample(rng) - } -} - -/// Implementation of `UniformImpl` for integer types. -/// -/// Unless you are implementing `UniformImpl` for your own type, this type should -/// not be used directly, use `Uniform` instead. -#[derive(Clone, Copy, Debug)] -pub struct UniformInt<X> { - low: X, - range: X, - zone: X, -} - -macro_rules! uniform_int_impl { - ($ty:ty, $signed:ty, $unsigned:ident, - $i_large:ident, $u_large:ident) => { - impl SampleUniform for $ty { - type Impl = UniformInt<$ty>; - } - - impl UniformImpl for UniformInt<$ty> { - // We play free and fast with unsigned vs signed here - // (when $ty is signed), but that's fine, since the - // contract of this macro is for $ty and $unsigned to be - // "bit-equal", so casting between them is a no-op. - - type X = $ty; - - #[inline] // if the range is constant, this helps LLVM to do the - // calculations at compile-time. - fn new(low: Self::X, high: Self::X) -> Self { - UniformImpl::new_inclusive(low, high - 1) - } - - #[inline] // if the range is constant, this helps LLVM to do the - // calculations at compile-time. - fn new_inclusive(low: Self::X, high: Self::X) -> Self { - // For a closed range, the number of possible numbers we should - // generate is `range = (high - low + 1)`. It is not possible to - // end up with a uniform distribution if we map _all_ the random - // integers that can be generated to this range. We have to map - // integers from a `zone` that is a multiple of the range. The - // rest of the integers, that cause a bias, are rejected. - // - // The problem with `range` is that to cover the full range of - // the type, it has to store `unsigned_max + 1`, which can't be - // represented. But if the range covers the full range of the - // type, no modulus is needed. A range of size 0 can't exist, so - // we use that to represent this special case. Wrapping - // arithmetic even makes representing `unsigned_max + 1` as 0 - // simple. - // - // We don't calculate `zone` directly, but first calculate the - // number of integers to reject. To handle `unsigned_max + 1` - // not fitting in the type, we use: - // ints_to_reject = (unsigned_max + 1) % range; - // ints_to_reject = (unsigned_max - range + 1) % range; - // - // The smallest integer prngs generate is u32. That is why for - // small integer sizes (i8/u8 and i16/u16) there is an - // optimisation: don't pick the largest zone that can fit in the - // small type, but pick the largest zone that can fit in an u32. - // This improves the chance to get a random integer that fits in - // the zone to 998 in 1000 in the worst case. - // - // There is a problem however: we can't store such a large range - // in `UniformInt`, that can only hold values of the size of $ty. - // `ints_to_reject` is always less than half the size of the - // small integer. For an u8 it only ever uses 7 bits. This means - // that all but the last 7 bits of `zone` are always 1's (or 15 - // in the case of u16). So nothing is lost by trucating `zone`. - // - // An alternative to using a modulus is widening multiply: - // After a widening multiply by `range`, the result is in the - // high word. Then comparing the low word against `zone` makes - // sure our distribution is uniform. - let unsigned_max: $u_large = ::core::$u_large::MAX; - - let range = (high as $u_large) - .wrapping_sub(low as $u_large) - .wrapping_add(1); - let ints_to_reject = - if range > 0 { - (unsigned_max - range + 1) % range - } else { - 0 - }; - let zone = unsigned_max - ints_to_reject; - - UniformInt { - low: low, - // These are really $unsigned values, but store as $ty: - range: range as $ty, - zone: zone as $ty - } - } - - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { - let range = self.range as $unsigned as $u_large; - if range > 0 { - // Some casting to recover the trucated bits of `zone`: - // First bit-cast to a signed int. Next sign-extend to the - // larger type. Then bit-cast to unsigned. - // For types that already have the right size, all the - // casting is a no-op. - let zone = self.zone as $signed as $i_large as $u_large; - loop { - let v: $u_large = rng.gen(); - let (hi, lo) = v.wmul(range); - if lo <= zone { - return self.low.wrapping_add(hi as $ty); - } - } - } else { - // Sample from the entire integer range. - rng.gen() - } - } - - fn sample_single<R: Rng + ?Sized>(low: Self::X, - high: Self::X, - rng: &mut R) -> Self::X - { - let range = (high as $u_large) - .wrapping_sub(low as $u_large); - let zone = - if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { - // Using a modulus is faster than the approximation for - // i8 and i16. I suppose we trade the cost of one - // modulus for near-perfect branch prediction. - let unsigned_max: $u_large = ::core::$u_large::MAX; - let ints_to_reject = (unsigned_max - range + 1) % range; - unsigned_max - ints_to_reject - } else { - // conservative but fast approximation - range << range.leading_zeros() - }; - - loop { - let v: $u_large = rng.gen(); - let (hi, lo) = v.wmul(range); - if lo <= zone { - return low.wrapping_add(hi as $ty); - } - } - } - } - } -} - -impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> { - fn from(r: ::core::ops::Range<X>) -> Uniform<X> { - Uniform::new(r.start, r.end) - } -} - -uniform_int_impl! { i8, i8, u8, i32, u32 } -uniform_int_impl! { i16, i16, u16, i32, u32 } -uniform_int_impl! { i32, i32, u32, i32, u32 } -uniform_int_impl! { i64, i64, u64, i64, u64 } -#[cfg(feature = "i128_support")] -uniform_int_impl! { i128, i128, u128, u128, u128 } -uniform_int_impl! { isize, isize, usize, isize, usize } -uniform_int_impl! { u8, i8, u8, i32, u32 } -uniform_int_impl! { u16, i16, u16, i32, u32 } -uniform_int_impl! { u32, i32, u32, i32, u32 } -uniform_int_impl! { u64, i64, u64, i64, u64 } -uniform_int_impl! { usize, isize, usize, isize, usize } -#[cfg(feature = "i128_support")] -uniform_int_impl! { u128, u128, u128, i128, u128 } - - -trait WideningMultiply<RHS = Self> { - type Output; - - fn wmul(self, x: RHS) -> Self::Output; -} - -macro_rules! wmul_impl { - ($ty:ty, $wide:ty, $shift:expr) => { - impl WideningMultiply for $ty { - type Output = ($ty, $ty); - - #[inline(always)] - fn wmul(self, x: $ty) -> Self::Output { - let tmp = (self as $wide) * (x as $wide); - ((tmp >> $shift) as $ty, tmp as $ty) - } - } - } -} - -wmul_impl! { u8, u16, 8 } -wmul_impl! { u16, u32, 16 } -wmul_impl! { u32, u64, 32 } -#[cfg(feature = "i128_support")] -wmul_impl! { u64, u128, 64 } - -// This code is a translation of the __mulddi3 function in LLVM's -// compiler-rt. It is an optimised variant of the common method -// `(a + b) * (c + d) = ac + ad + bc + bd`. -// -// For some reason LLVM can optimise the C version very well, but -// keeps shuffeling registers in this Rust translation. -macro_rules! wmul_impl_large { - ($ty:ty, $half:expr) => { - impl WideningMultiply for $ty { - type Output = ($ty, $ty); - - #[inline(always)] - fn wmul(self, b: $ty) -> Self::Output { - const LOWER_MASK: $ty = !0 >> $half; - let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK); - let mut t = low >> $half; - low &= LOWER_MASK; - t += (self >> $half).wrapping_mul(b & LOWER_MASK); - low += (t & LOWER_MASK) << $half; - let mut high = t >> $half; - t = low >> $half; - low &= LOWER_MASK; - t += (b >> $half).wrapping_mul(self & LOWER_MASK); - low += (t & LOWER_MASK) << $half; - high += t >> $half; - high += (self >> $half).wrapping_mul(b >> $half); - - (high, low) - } - } - } -} - -#[cfg(not(feature = "i128_support"))] -wmul_impl_large! { u64, 32 } -#[cfg(feature = "i128_support")] -wmul_impl_large! { u128, 64 } - - -macro_rules! wmul_impl_usize { - ($ty:ty) => { - impl WideningMultiply for usize { - type Output = (usize, usize); - - #[inline(always)] - fn wmul(self, x: usize) -> Self::Output { - let (high, low) = (self as $ty).wmul(x as $ty); - (high as usize, low as usize) - } - } - } -} - -#[cfg(target_pointer_width = "32")] -wmul_impl_usize! { u32 } -#[cfg(target_pointer_width = "64")] -wmul_impl_usize! { u64 } - - - -/// Implementation of `UniformImpl` for float types. -/// -/// Unless you are implementing `UniformImpl` for your own type, this type should -/// not be used directly, use `Uniform` instead. -#[derive(Clone, Copy, Debug)] -pub struct UniformFloat<X> { - scale: X, - offset: X, -} - -macro_rules! uniform_float_impl { - ($ty:ty, $bits_to_discard:expr, $next_u:ident) => { - impl SampleUniform for $ty { - type Impl = UniformFloat<$ty>; - } - - impl UniformImpl for UniformFloat<$ty> { - type X = $ty; - - fn new(low: Self::X, high: Self::X) -> Self { - let scale = high - low; - let offset = low - scale; - UniformFloat { - scale: scale, - offset: offset, - } - } - - fn new_inclusive(low: Self::X, high: Self::X) -> Self { - // Same as `new`, because the boundaries of a floats range are - // (at least currently) not exact due to rounding errors. - UniformImpl::new(low, high) - } - - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { - // Generate a value in the range [1, 2) - let value1_2 = (rng.$next_u() >> $bits_to_discard) - .into_float_with_exponent(0); - // We don't use `f64::mul_add`, because it is not available with - // `no_std`. Furthermore, it is slower for some targets (but - // faster for others). However, the order of multiplication and - // addition is important, because on some platforms (e.g. ARM) - // it will be optimized to a single (non-FMA) instruction. - value1_2 * self.scale + self.offset - } - - fn sample_single<R: Rng + ?Sized>(low: Self::X, - high: Self::X, - rng: &mut R) -> Self::X { - let scale = high - low; - let offset = low - scale; - // Generate a value in the range [1, 2) - let value1_2 = (rng.$next_u() >> $bits_to_discard) - .into_float_with_exponent(0); - // Doing multiply before addition allows some architectures to - // use a single instruction. - value1_2 * scale + offset - } - } - } -} - -uniform_float_impl! { f32, 32 - 23, next_u32 } -uniform_float_impl! { f64, 64 - 52, next_u64 } - - -#[cfg(test)] -mod tests { - use Rng; - use distributions::uniform::{Uniform, UniformImpl, UniformFloat, SampleUniform}; - - #[should_panic] - #[test] - fn test_uniform_bad_limits_equal_int() { - Uniform::new(10, 10); - } - - #[should_panic] - #[test] - fn test_uniform_bad_limits_equal_float() { - Uniform::new(10., 10.); - } - - #[test] - fn test_uniform_good_limits_equal_int() { - let mut rng = ::test::rng(804); - let dist = Uniform::new_inclusive(10, 10); - for _ in 0..20 { - assert_eq!(rng.sample(dist), 10); - } - } - - #[test] - fn test_uniform_good_limits_equal_float() { - let mut rng = ::test::rng(805); - let dist = Uniform::new_inclusive(10., 10.); - for _ in 0..20 { - assert_eq!(rng.sample(dist), 10.); - } - } - - #[should_panic] - #[test] - fn test_uniform_bad_limits_flipped_int() { - Uniform::new(10, 5); - } - - #[should_panic] - #[test] - fn test_uniform_bad_limits_flipped_float() { - Uniform::new(10., 5.); - } - - #[test] - fn test_integers() { - let mut rng = ::test::rng(251); - macro_rules! t { - ($($ty:ident),*) => {{ - $( - let v: &[($ty, $ty)] = &[(0, 10), - (10, 127), - (::core::$ty::MIN, ::core::$ty::MAX)]; - for &(low, high) in v.iter() { - let my_uniform = Uniform::new(low, high); - for _ in 0..1000 { - let v: $ty = rng.sample(my_uniform); - assert!(low <= v && v < high); - } - - let my_uniform = Uniform::new_inclusive(low, high); - for _ in 0..1000 { - let v: $ty = rng.sample(my_uniform); - assert!(low <= v && v <= high); - } - - for _ in 0..1000 { - let v: $ty = Uniform::sample_single(low, high, &mut rng); - assert!(low <= v && v < high); - } - } - )* - }} - } - t!(i8, i16, i32, i64, isize, - u8, u16, u32, u64, usize); - #[cfg(feature = "i128_support")] - t!(i128, u128) - } - - #[test] - fn test_floats() { - let mut rng = ::test::rng(252); - macro_rules! t { - ($($ty:ty),*) => {{ - $( - let v: &[($ty, $ty)] = &[(0.0, 100.0), - (-1e35, -1e25), - (1e-35, 1e-25), - (-1e35, 1e35)]; - for &(low, high) in v.iter() { - let my_uniform = Uniform::new(low, high); - for _ in 0..1000 { - let v: $ty = rng.sample(my_uniform); - assert!(low <= v && v < high); - } - } - )* - }} - } - - t!(f32, f64) - } - #[test] - fn test_custom_uniform() { - #[derive(Clone, Copy, PartialEq, PartialOrd)] - struct MyF32 { - x: f32, - } - #[derive(Clone, Copy, Debug)] - struct UniformMyF32 { - inner: UniformFloat<f32>, - } - impl UniformImpl for UniformMyF32 { - type X = MyF32; - fn new(low: Self::X, high: Self::X) -> Self { - UniformMyF32 { - inner: UniformFloat::<f32>::new(low.x, high.x), - } - } - fn new_inclusive(low: Self::X, high: Self::X) -> Self { - UniformImpl::new(low, high) - } - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { - MyF32 { x: self.inner.sample(rng) } - } - } - impl SampleUniform for MyF32 { - type Impl = UniformMyF32; - } - - let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 }); - let uniform = Uniform::new(low, high); - let mut rng = ::test::rng(804); - for _ in 0..100 { - let x: MyF32 = rng.sample(uniform); - assert!(low <= x && x < high); - } - } - - #[test] - fn test_uniform_from_std_range() { - let r = Uniform::from(2u32..7); - assert_eq!(r.inner.low, 2); - assert_eq!(r.inner.range, 5); - let r = Uniform::from(2.0f64..7.0); - assert_eq!(r.inner.offset, -3.0); - assert_eq!(r.inner.scale, 5.0); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/distributions/ziggurat_tables.rs b/vendor/rand-8c5b0ac51d/src/distributions/ziggurat_tables.rs deleted file mode 100644 index 11a2172..0000000 --- a/vendor/rand-8c5b0ac51d/src/distributions/ziggurat_tables.rs +++ /dev/null @@ -1,280 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -// Tables for distributions which are sampled using the ziggurat -// algorithm. Autogenerated by `ziggurat_tables.py`. - -pub type ZigTable = &'static [f64; 257]; -pub const ZIG_NORM_R: f64 = 3.654152885361008796; -pub static ZIG_NORM_X: [f64; 257] = - [3.910757959537090045, 3.654152885361008796, 3.449278298560964462, 3.320244733839166074, - 3.224575052047029100, 3.147889289517149969, 3.083526132001233044, 3.027837791768635434, - 2.978603279880844834, 2.934366867207854224, 2.894121053612348060, 2.857138730872132548, - 2.822877396825325125, 2.790921174000785765, 2.760944005278822555, 2.732685359042827056, - 2.705933656121858100, 2.680514643284522158, 2.656283037575502437, 2.633116393630324570, - 2.610910518487548515, 2.589575986706995181, 2.569035452680536569, 2.549221550323460761, - 2.530075232158516929, 2.511544441625342294, 2.493583041269680667, 2.476149939669143318, - 2.459208374333311298, 2.442725318198956774, 2.426670984935725972, 2.411018413899685520, - 2.395743119780480601, 2.380822795170626005, 2.366237056715818632, 2.351967227377659952, - 2.337996148795031370, 2.324308018869623016, 2.310888250599850036, 2.297723348901329565, - 2.284800802722946056, 2.272108990226823888, 2.259637095172217780, 2.247375032945807760, - 2.235313384928327984, 2.223443340090905718, 2.211756642882544366, 2.200245546609647995, - 2.188902771624720689, 2.177721467738641614, 2.166695180352645966, 2.155817819875063268, - 2.145083634046203613, 2.134487182844320152, 2.124023315687815661, 2.113687150684933957, - 2.103474055713146829, 2.093379631137050279, 2.083399693996551783, 2.073530263516978778, - 2.063767547809956415, 2.054107931648864849, 2.044547965215732788, 2.035084353727808715, - 2.025713947862032960, 2.016433734904371722, 2.007240830558684852, 1.998132471356564244, - 1.989106007615571325, 1.980158896898598364, 1.971288697931769640, 1.962493064942461896, - 1.953769742382734043, 1.945116560006753925, 1.936531428273758904, 1.928012334050718257, - 1.919557336591228847, 1.911164563769282232, 1.902832208548446369, 1.894558525668710081, - 1.886341828534776388, 1.878180486290977669, 1.870072921069236838, 1.862017605397632281, - 1.854013059758148119, 1.846057850283119750, 1.838150586580728607, 1.830289919680666566, - 1.822474540091783224, 1.814703175964167636, 1.806974591348693426, 1.799287584547580199, - 1.791640986550010028, 1.784033659547276329, 1.776464495522344977, 1.768932414909077933, - 1.761436365316706665, 1.753975320315455111, 1.746548278279492994, 1.739154261283669012, - 1.731792314050707216, 1.724461502945775715, 1.717160915015540690, 1.709889657069006086, - 1.702646854797613907, 1.695431651932238548, 1.688243209434858727, 1.681080704722823338, - 1.673943330923760353, 1.666830296159286684, 1.659740822855789499, 1.652674147080648526, - 1.645629517902360339, 1.638606196773111146, 1.631603456932422036, 1.624620582830568427, - 1.617656869570534228, 1.610711622367333673, 1.603784156023583041, 1.596873794420261339, - 1.589979870021648534, 1.583101723393471438, 1.576238702733332886, 1.569390163412534456, - 1.562555467528439657, 1.555733983466554893, 1.548925085471535512, 1.542128153226347553, - 1.535342571438843118, 1.528567729435024614, 1.521803020758293101, 1.515047842773992404, - 1.508301596278571965, 1.501563685112706548, 1.494833515777718391, 1.488110497054654369, - 1.481394039625375747, 1.474683555695025516, 1.467978458615230908, 1.461278162507407830, - 1.454582081885523293, 1.447889631277669675, 1.441200224845798017, 1.434513276002946425, - 1.427828197027290358, 1.421144398672323117, 1.414461289772464658, 1.407778276843371534, - 1.401094763676202559, 1.394410150925071257, 1.387723835686884621, 1.381035211072741964, - 1.374343665770030531, 1.367648583594317957, 1.360949343030101844, 1.354245316759430606, - 1.347535871177359290, 1.340820365893152122, 1.334098153216083604, 1.327368577624624679, - 1.320630975217730096, 1.313884673146868964, 1.307128989027353860, 1.300363230327433728, - 1.293586693733517645, 1.286798664489786415, 1.279998415710333237, 1.273185207661843732, - 1.266358287014688333, 1.259516886060144225, 1.252660221891297887, 1.245787495544997903, - 1.238897891102027415, 1.231990574742445110, 1.225064693752808020, 1.218119375481726552, - 1.211153726239911244, 1.204166830140560140, 1.197157747875585931, 1.190125515422801650, - 1.183069142678760732, 1.175987612011489825, 1.168879876726833800, 1.161744859441574240, - 1.154581450355851802, 1.147388505416733873, 1.140164844363995789, 1.132909248648336975, - 1.125620459211294389, 1.118297174115062909, 1.110938046009249502, 1.103541679420268151, - 1.096106627847603487, 1.088631390649514197, 1.081114409698889389, 1.073554065787871714, - 1.065948674757506653, 1.058296483326006454, 1.050595664586207123, 1.042844313139370538, - 1.035040439828605274, 1.027181966030751292, 1.019266717460529215, 1.011292417434978441, - 1.003256679539591412, 0.995156999629943084, 0.986990747093846266, 0.978755155288937750, - 0.970447311058864615, 0.962064143217605250, 0.953602409875572654, 0.945058684462571130, - 0.936429340280896860, 0.927710533396234771, 0.918898183643734989, 0.909987953490768997, - 0.900975224455174528, 0.891855070726792376, 0.882622229578910122, 0.873271068082494550, - 0.863795545546826915, 0.854189171001560554, 0.844444954902423661, 0.834555354079518752, - 0.824512208745288633, 0.814306670128064347, 0.803929116982664893, 0.793369058833152785, - 0.782615023299588763, 0.771654424216739354, 0.760473406422083165, 0.749056662009581653, - 0.737387211425838629, 0.725446140901303549, 0.713212285182022732, 0.700661841097584448, - 0.687767892786257717, 0.674499822827436479, 0.660822574234205984, 0.646695714884388928, - 0.632072236375024632, 0.616896989996235545, 0.601104617743940417, 0.584616766093722262, - 0.567338257040473026, 0.549151702313026790, 0.529909720646495108, 0.509423329585933393, - 0.487443966121754335, 0.463634336771763245, 0.437518402186662658, 0.408389134588000746, - 0.375121332850465727, 0.335737519180459465, 0.286174591747260509, 0.215241895913273806, - 0.000000000000000000]; -pub static ZIG_NORM_F: [f64; 257] = - [0.000477467764586655, 0.001260285930498598, 0.002609072746106363, 0.004037972593371872, - 0.005522403299264754, 0.007050875471392110, 0.008616582769422917, 0.010214971439731100, - 0.011842757857943104, 0.013497450601780807, 0.015177088307982072, 0.016880083152595839, - 0.018605121275783350, 0.020351096230109354, 0.022117062707379922, 0.023902203305873237, - 0.025705804008632656, 0.027527235669693315, 0.029365939758230111, 0.031221417192023690, - 0.033093219458688698, 0.034980941461833073, 0.036884215688691151, 0.038802707404656918, - 0.040736110656078753, 0.042684144916619378, 0.044646552251446536, 0.046623094902089664, - 0.048613553216035145, 0.050617723861121788, 0.052635418276973649, 0.054666461325077916, - 0.056710690106399467, 0.058767952921137984, 0.060838108349751806, 0.062921024437977854, - 0.065016577971470438, 0.067124653828023989, 0.069245144397250269, 0.071377949059141965, - 0.073522973714240991, 0.075680130359194964, 0.077849336702372207, 0.080030515814947509, - 0.082223595813495684, 0.084428509570654661, 0.086645194450867782, 0.088873592068594229, - 0.091113648066700734, 0.093365311913026619, 0.095628536713353335, 0.097903279039215627, - 0.100189498769172020, 0.102487158942306270, 0.104796225622867056, 0.107116667775072880, - 0.109448457147210021, 0.111791568164245583, 0.114145977828255210, 0.116511665626037014, - 0.118888613443345698, 0.121276805485235437, 0.123676228202051403, 0.126086870220650349, - 0.128508722280473636, 0.130941777174128166, 0.133386029692162844, 0.135841476571757352, - 0.138308116449064322, 0.140785949814968309, 0.143274978974047118, 0.145775208006537926, - 0.148286642733128721, 0.150809290682410169, 0.153343161060837674, 0.155888264725064563, - 0.158444614156520225, 0.161012223438117663, 0.163591108232982951, 0.166181285765110071, - 0.168782774801850333, 0.171395595638155623, 0.174019770082499359, 0.176655321444406654, - 0.179302274523530397, 0.181960655600216487, 0.184630492427504539, 0.187311814224516926, - 0.190004651671193070, 0.192709036904328807, 0.195425003514885592, 0.198152586546538112, - 0.200891822495431333, 0.203642749311121501, 0.206405406398679298, 0.209179834621935651, - 0.211966076307852941, 0.214764175252008499, 0.217574176725178370, 0.220396127481011589, - 0.223230075764789593, 0.226076071323264877, 0.228934165415577484, 0.231804410825248525, - 0.234686861873252689, 0.237581574432173676, 0.240488605941449107, 0.243408015423711988, - 0.246339863502238771, 0.249284212419516704, 0.252241126056943765, 0.255210669955677150, - 0.258192911338648023, 0.261187919133763713, 0.264195763998317568, 0.267216518344631837, - 0.270250256366959984, 0.273297054069675804, 0.276356989296781264, 0.279430141762765316, - 0.282516593084849388, 0.285616426816658109, 0.288729728483353931, 0.291856585618280984, - 0.294997087801162572, 0.298151326697901342, 0.301319396102034120, 0.304501391977896274, - 0.307697412505553769, 0.310907558127563710, 0.314131931597630143, 0.317370638031222396, - 0.320623784958230129, 0.323891482377732021, 0.327173842814958593, 0.330470981380537099, - 0.333783015832108509, 0.337110066638412809, 0.340452257045945450, 0.343809713148291340, - 0.347182563958251478, 0.350570941482881204, 0.353974980801569250, 0.357394820147290515, - 0.360830600991175754, 0.364282468130549597, 0.367750569780596226, 0.371235057669821344, - 0.374736087139491414, 0.378253817247238111, 0.381788410875031348, 0.385340034841733958, - 0.388908860020464597, 0.392495061461010764, 0.396098818517547080, 0.399720314981931668, - 0.403359739222868885, 0.407017284331247953, 0.410693148271983222, 0.414387534042706784, - 0.418100649839684591, 0.421832709231353298, 0.425583931339900579, 0.429354541031341519, - 0.433144769114574058, 0.436954852549929273, 0.440785034667769915, 0.444635565397727750, - 0.448506701509214067, 0.452398706863882505, 0.456311852680773566, 0.460246417814923481, - 0.464202689050278838, 0.468180961407822172, 0.472181538469883255, 0.476204732721683788, - 0.480250865911249714, 0.484320269428911598, 0.488413284707712059, 0.492530263646148658, - 0.496671569054796314, 0.500837575128482149, 0.505028667945828791, 0.509245245998136142, - 0.513487720749743026, 0.517756517232200619, 0.522052074674794864, 0.526374847174186700, - 0.530725304406193921, 0.535103932383019565, 0.539511234259544614, 0.543947731192649941, - 0.548413963257921133, 0.552910490428519918, 0.557437893621486324, 0.561996775817277916, - 0.566587763258951771, 0.571211506738074970, 0.575868682975210544, 0.580559996103683473, - 0.585286179266300333, 0.590047996335791969, 0.594846243770991268, 0.599681752622167719, - 0.604555390700549533, 0.609468064928895381, 0.614420723892076803, 0.619414360609039205, - 0.624450015550274240, 0.629528779928128279, 0.634651799290960050, 0.639820277456438991, - 0.645035480824251883, 0.650298743114294586, 0.655611470583224665, 0.660975147780241357, - 0.666391343912380640, 0.671861719900766374, 0.677388036222513090, 0.682972161648791376, - 0.688616083008527058, 0.694321916130032579, 0.700091918140490099, 0.705928501336797409, - 0.711834248882358467, 0.717811932634901395, 0.723864533472881599, 0.729995264565802437, - 0.736207598131266683, 0.742505296344636245, 0.748892447223726720, 0.755373506511754500, - 0.761953346841546475, 0.768637315803334831, 0.775431304986138326, 0.782341832659861902, - 0.789376143571198563, 0.796542330428254619, 0.803849483176389490, 0.811307874318219935, - 0.818929191609414797, 0.826726833952094231, 0.834716292992930375, 0.842915653118441077, - 0.851346258465123684, 0.860033621203008636, 0.869008688043793165, 0.878309655816146839, - 0.887984660763399880, 0.898095921906304051, 0.908726440060562912, 0.919991505048360247, - 0.932060075968990209, 0.945198953453078028, 0.959879091812415930, 0.977101701282731328, - 1.000000000000000000]; -pub const ZIG_EXP_R: f64 = 7.697117470131050077; -pub static ZIG_EXP_X: [f64; 257] = - [8.697117470131052741, 7.697117470131050077, 6.941033629377212577, 6.478378493832569696, - 6.144164665772472667, 5.882144315795399869, 5.666410167454033697, 5.482890627526062488, - 5.323090505754398016, 5.181487281301500047, 5.054288489981304089, 4.938777085901250530, - 4.832939741025112035, 4.735242996601741083, 4.644491885420085175, 4.559737061707351380, - 4.480211746528421912, 4.405287693473573185, 4.334443680317273007, 4.267242480277365857, - 4.203313713735184365, 4.142340865664051464, 4.084051310408297830, 4.028208544647936762, - 3.974606066673788796, 3.923062500135489739, 3.873417670399509127, 3.825529418522336744, - 3.779270992411667862, 3.734528894039797375, 3.691201090237418825, 3.649195515760853770, - 3.608428813128909507, 3.568825265648337020, 3.530315889129343354, 3.492837654774059608, - 3.456332821132760191, 3.420748357251119920, 3.386035442460300970, 3.352149030900109405, - 3.319047470970748037, 3.286692171599068679, 3.255047308570449882, 3.224079565286264160, - 3.193757903212240290, 3.164053358025972873, 3.134938858084440394, 3.106389062339824481, - 3.078380215254090224, 3.050890016615455114, 3.023897504455676621, 2.997382949516130601, - 2.971327759921089662, 2.945714394895045718, 2.920526286512740821, 2.895747768600141825, - 2.871364012015536371, 2.847360965635188812, 2.823725302450035279, 2.800444370250737780, - 2.777506146439756574, 2.754899196562344610, 2.732612636194700073, 2.710636095867928752, - 2.688959688741803689, 2.667573980773266573, 2.646469963151809157, 2.625639026797788489, - 2.605072938740835564, 2.584763820214140750, 2.564704126316905253, 2.544886627111869970, - 2.525304390037828028, 2.505950763528594027, 2.486819361740209455, 2.467904050297364815, - 2.449198932978249754, 2.430698339264419694, 2.412396812688870629, 2.394289099921457886, - 2.376370140536140596, 2.358635057409337321, 2.341079147703034380, 2.323697874390196372, - 2.306486858283579799, 2.289441870532269441, 2.272558825553154804, 2.255833774367219213, - 2.239262898312909034, 2.222842503111036816, 2.206569013257663858, 2.190438966723220027, - 2.174449009937774679, 2.158595893043885994, 2.142876465399842001, 2.127287671317368289, - 2.111826546019042183, 2.096490211801715020, 2.081275874393225145, 2.066180819490575526, - 2.051202409468584786, 2.036338080248769611, 2.021585338318926173, 2.006941757894518563, - 1.992404978213576650, 1.977972700957360441, 1.963642687789548313, 1.949412758007184943, - 1.935280786297051359, 1.921244700591528076, 1.907302480018387536, 1.893452152939308242, - 1.879691795072211180, 1.866019527692827973, 1.852433515911175554, 1.838931967018879954, - 1.825513128903519799, 1.812175288526390649, 1.798916770460290859, 1.785735935484126014, - 1.772631179231305643, 1.759600930889074766, 1.746643651946074405, 1.733757834985571566, - 1.720942002521935299, 1.708194705878057773, 1.695514524101537912, 1.682900062917553896, - 1.670349953716452118, 1.657862852574172763, 1.645437439303723659, 1.633072416535991334, - 1.620766508828257901, 1.608518461798858379, 1.596327041286483395, 1.584191032532688892, - 1.572109239386229707, 1.560080483527888084, 1.548103603714513499, 1.536177455041032092, - 1.524300908219226258, 1.512472848872117082, 1.500692176842816750, 1.488957805516746058, - 1.477268661156133867, 1.465623682245745352, 1.454021818848793446, 1.442462031972012504, - 1.430943292938879674, 1.419464582769983219, 1.408024891569535697, 1.396623217917042137, - 1.385258568263121992, 1.373929956328490576, 1.362636402505086775, 1.351376933258335189, - 1.340150580529504643, 1.328956381137116560, 1.317793376176324749, 1.306660610415174117, - 1.295557131686601027, 1.284481990275012642, 1.273434238296241139, 1.262412929069615330, - 1.251417116480852521, 1.240445854334406572, 1.229498195693849105, 1.218573192208790124, - 1.207669893426761121, 1.196787346088403092, 1.185924593404202199, 1.175080674310911677, - 1.164254622705678921, 1.153445466655774743, 1.142652227581672841, 1.131873919411078511, - 1.121109547701330200, 1.110358108727411031, 1.099618588532597308, 1.088889961938546813, - 1.078171191511372307, 1.067461226479967662, 1.056759001602551429, 1.046063435977044209, - 1.035373431790528542, 1.024687873002617211, 1.014005623957096480, 1.003325527915696735, - 0.992646405507275897, 0.981967053085062602, 0.971286240983903260, 0.960602711668666509, - 0.949915177764075969, 0.939222319955262286, 0.928522784747210395, 0.917815182070044311, - 0.907098082715690257, 0.896370015589889935, 0.885629464761751528, 0.874874866291025066, - 0.864104604811004484, 0.853317009842373353, 0.842510351810368485, 0.831682837734273206, - 0.820832606554411814, 0.809957724057418282, 0.799056177355487174, 0.788125868869492430, - 0.777164609759129710, 0.766170112735434672, 0.755139984181982249, 0.744071715500508102, - 0.732962673584365398, 0.721810090308756203, 0.710611050909655040, 0.699362481103231959, - 0.688061132773747808, 0.676703568029522584, 0.665286141392677943, 0.653804979847664947, - 0.642255960424536365, 0.630634684933490286, 0.618936451394876075, 0.607156221620300030, - 0.595288584291502887, 0.583327712748769489, 0.571267316532588332, 0.559100585511540626, - 0.546820125163310577, 0.534417881237165604, 0.521885051592135052, 0.509211982443654398, - 0.496388045518671162, 0.483401491653461857, 0.470239275082169006, 0.456886840931420235, - 0.443327866073552401, 0.429543940225410703, 0.415514169600356364, 0.401214678896277765, - 0.386617977941119573, 0.371692145329917234, 0.356399760258393816, 0.340696481064849122, - 0.324529117016909452, 0.307832954674932158, 0.290527955491230394, 0.272513185478464703, - 0.253658363385912022, 0.233790483059674731, 0.212671510630966620, 0.189958689622431842, - 0.165127622564187282, 0.137304980940012589, 0.104838507565818778, 0.063852163815001570, - 0.000000000000000000]; -pub static ZIG_EXP_F: [f64; 257] = - [0.000167066692307963, 0.000454134353841497, 0.000967269282327174, 0.001536299780301573, - 0.002145967743718907, 0.002788798793574076, 0.003460264777836904, 0.004157295120833797, - 0.004877655983542396, 0.005619642207205489, 0.006381905937319183, 0.007163353183634991, - 0.007963077438017043, 0.008780314985808977, 0.009614413642502212, 0.010464810181029981, - 0.011331013597834600, 0.012212592426255378, 0.013109164931254991, 0.014020391403181943, - 0.014945968011691148, 0.015885621839973156, 0.016839106826039941, 0.017806200410911355, - 0.018786700744696024, 0.019780424338009740, 0.020787204072578114, 0.021806887504283581, - 0.022839335406385240, 0.023884420511558174, 0.024942026419731787, 0.026012046645134221, - 0.027094383780955803, 0.028188948763978646, 0.029295660224637411, 0.030414443910466622, - 0.031545232172893622, 0.032687963508959555, 0.033842582150874358, 0.035009037697397431, - 0.036187284781931443, 0.037377282772959382, 0.038578995503074871, 0.039792391023374139, - 0.041017441380414840, 0.042254122413316254, 0.043502413568888197, 0.044762297732943289, - 0.046033761076175184, 0.047316792913181561, 0.048611385573379504, 0.049917534282706379, - 0.051235237055126281, 0.052564494593071685, 0.053905310196046080, 0.055257689676697030, - 0.056621641283742870, 0.057997175631200659, 0.059384305633420280, 0.060783046445479660, - 0.062193415408541036, 0.063615431999807376, 0.065049117786753805, 0.066494496385339816, - 0.067951593421936643, 0.069420436498728783, 0.070901055162371843, 0.072393480875708752, - 0.073897746992364746, 0.075413888734058410, 0.076941943170480517, 0.078481949201606435, - 0.080033947542319905, 0.081597980709237419, 0.083174093009632397, 0.084762330532368146, - 0.086362741140756927, 0.087975374467270231, 0.089600281910032886, 0.091237516631040197, - 0.092887133556043569, 0.094549189376055873, 0.096223742550432825, 0.097910853311492213, - 0.099610583670637132, 0.101322997425953631, 0.103048160171257702, 0.104786139306570145, - 0.106537004050001632, 0.108300825451033755, 0.110077676405185357, 0.111867631670056283, - 0.113670767882744286, 0.115487163578633506, 0.117316899211555525, 0.119160057175327641, - 0.121016721826674792, 0.122886979509545108, 0.124770918580830933, 0.126668629437510671, - 0.128580204545228199, 0.130505738468330773, 0.132445327901387494, 0.134399071702213602, - 0.136367070926428829, 0.138349428863580176, 0.140346251074862399, 0.142357645432472146, - 0.144383722160634720, 0.146424593878344889, 0.148480375643866735, 0.150551185001039839, - 0.152637142027442801, 0.154738369384468027, 0.156854992369365148, 0.158987138969314129, - 0.161134939917591952, 0.163298528751901734, 0.165478041874935922, 0.167673618617250081, - 0.169885401302527550, 0.172113535315319977, 0.174358169171353411, 0.176619454590494829, - 0.178897546572478278, 0.181192603475496261, 0.183504787097767436, 0.185834262762197083, - 0.188181199404254262, 0.190545769663195363, 0.192928149976771296, 0.195328520679563189, - 0.197747066105098818, 0.200183974691911210, 0.202639439093708962, 0.205113656293837654, - 0.207606827724221982, 0.210119159388988230, 0.212650861992978224, 0.215202151075378628, - 0.217773247148700472, 0.220364375843359439, 0.222975768058120111, 0.225607660116683956, - 0.228260293930716618, 0.230933917169627356, 0.233628783437433291, 0.236345152457059560, - 0.239083290262449094, 0.241843469398877131, 0.244625969131892024, 0.247431075665327543, - 0.250259082368862240, 0.253110290015629402, 0.255985007030415324, 0.258883549749016173, - 0.261806242689362922, 0.264753418835062149, 0.267725419932044739, 0.270722596799059967, - 0.273745309652802915, 0.276793928448517301, 0.279868833236972869, 0.282970414538780746, - 0.286099073737076826, 0.289255223489677693, 0.292439288161892630, 0.295651704281261252, - 0.298892921015581847, 0.302163400675693528, 0.305463619244590256, 0.308794066934560185, - 0.312155248774179606, 0.315547685227128949, 0.318971912844957239, 0.322428484956089223, - 0.325917972393556354, 0.329440964264136438, 0.332998068761809096, 0.336589914028677717, - 0.340217149066780189, 0.343880444704502575, 0.347580494621637148, 0.351318016437483449, - 0.355093752866787626, 0.358908472948750001, 0.362762973354817997, 0.366658079781514379, - 0.370594648435146223, 0.374573567615902381, 0.378595759409581067, 0.382662181496010056, - 0.386773829084137932, 0.390931736984797384, 0.395136981833290435, 0.399390684475231350, - 0.403694012530530555, 0.408048183152032673, 0.412454465997161457, 0.416914186433003209, - 0.421428728997616908, 0.425999541143034677, 0.430628137288459167, 0.435316103215636907, - 0.440065100842354173, 0.444876873414548846, 0.449753251162755330, 0.454696157474615836, - 0.459707615642138023, 0.464789756250426511, 0.469944825283960310, 0.475175193037377708, - 0.480483363930454543, 0.485871987341885248, 0.491343869594032867, 0.496901987241549881, - 0.502549501841348056, 0.508289776410643213, 0.514126393814748894, 0.520063177368233931, - 0.526104213983620062, 0.532253880263043655, 0.538516872002862246, 0.544898237672440056, - 0.551403416540641733, 0.558038282262587892, 0.564809192912400615, 0.571723048664826150, - 0.578787358602845359, 0.586010318477268366, 0.593400901691733762, 0.600968966365232560, - 0.608725382079622346, 0.616682180915207878, 0.624852738703666200, 0.633251994214366398, - 0.641896716427266423, 0.650805833414571433, 0.660000841079000145, 0.669506316731925177, - 0.679350572264765806, 0.689566496117078431, 0.700192655082788606, 0.711274760805076456, - 0.722867659593572465, 0.735038092431424039, 0.747868621985195658, 0.761463388849896838, - 0.775956852040116218, 0.791527636972496285, 0.808421651523009044, 0.826993296643051101, - 0.847785500623990496, 0.871704332381204705, 0.900469929925747703, 0.938143680862176477, - 1.000000000000000000]; diff --git a/vendor/rand-8c5b0ac51d/src/entropy_rng.rs b/vendor/rand-8c5b0ac51d/src/entropy_rng.rs deleted file mode 100644 index 6b31fc6..0000000 --- a/vendor/rand-8c5b0ac51d/src/entropy_rng.rs +++ /dev/null @@ -1,167 +0,0 @@ -// Copyright 2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Entropy generator, or wrapper around external generators - -use rand_core::{RngCore, CryptoRng, Error, impls}; -use os::OsRng; -use jitter::JitterRng; - -/// An interface returning random data from external source(s), provided -/// specifically for securely seeding algorithmic generators (PRNGs). -/// -/// Where possible, `EntropyRng` retrieves random data from the operating -/// system's interface for random numbers ([`OsRng`]); if that fails it will -/// fall back to the [`JitterRng`] entropy collector. In the latter case it will -/// still try to use [`OsRng`] on the next usage. -/// -/// If no secure source of entropy is available `EntropyRng` will panic on use; -/// i.e. it should never output predictable data. -/// -/// This is either a little slow ([`OsRng`] requires a system call) or extremely -/// slow ([`JitterRng`] must use significant CPU time to generate sufficient -/// jitter); for better performance it is common to seed a local PRNG from -/// external entropy then primarily use the local PRNG ([`thread_rng`] is -/// provided as a convenient, local, automatically-seeded CSPRNG). -/// -/// [`OsRng`]: os/struct.OsRng.html -/// [`JitterRng`]: jitter/struct.JitterRng.html -/// [`thread_rng`]: fn.thread_rng.html -#[derive(Debug)] -pub struct EntropyRng { - rng: EntropySource, -} - -#[derive(Debug)] -enum EntropySource { - Os(OsRng), - Jitter(JitterRng), - None, -} - -impl EntropyRng { - /// Create a new `EntropyRng`. - /// - /// This method will do no system calls or other initialization routines, - /// those are done on first use. This is done to make `new` infallible, - /// and `try_fill_bytes` the only place to report errors. - pub fn new() -> Self { - EntropyRng { rng: EntropySource::None } - } -} - -impl Default for EntropyRng { - fn default() -> Self { - EntropyRng::new() - } -} - -impl RngCore for EntropyRng { - fn next_u32(&mut self) -> u32 { - impls::next_u32_via_fill(self) - } - - fn next_u64(&mut self) -> u64 { - impls::next_u64_via_fill(self) - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.try_fill_bytes(dest).unwrap_or_else(|err| - panic!("all entropy sources failed; first error: {}", err)) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - fn try_os_new(dest: &mut [u8]) -> Result<OsRng, Error> - { - let mut rng = OsRng::new()?; - rng.try_fill_bytes(dest)?; - Ok(rng) - } - - fn try_jitter_new(dest: &mut [u8]) -> Result<JitterRng, Error> - { - let mut rng = JitterRng::new()?; - rng.try_fill_bytes(dest)?; - Ok(rng) - } - - let mut switch_rng = None; - match self.rng { - EntropySource::None => { - let os_rng_result = try_os_new(dest); - match os_rng_result { - Ok(os_rng) => { - debug!("EntropyRng: using OsRng"); - switch_rng = Some(EntropySource::Os(os_rng)); - } - Err(os_rng_error) => { - warn!("EntropyRng: OsRng failed [falling back to JitterRng]: {}", - os_rng_error); - match try_jitter_new(dest) { - Ok(jitter_rng) => { - debug!("EntropyRng: using JitterRng"); - switch_rng = Some(EntropySource::Jitter(jitter_rng)); - } - Err(_jitter_error) => { - warn!("EntropyRng: JitterRng failed: {}", - _jitter_error); - return Err(os_rng_error); - } - } - } - } - } - EntropySource::Os(ref mut rng) => { - let os_rng_result = rng.try_fill_bytes(dest); - if let Err(os_rng_error) = os_rng_result { - warn!("EntropyRng: OsRng failed [falling back to JitterRng]: {}", - os_rng_error); - match try_jitter_new(dest) { - Ok(jitter_rng) => { - debug!("EntropyRng: using JitterRng"); - switch_rng = Some(EntropySource::Jitter(jitter_rng)); - } - Err(_jitter_error) => { - warn!("EntropyRng: JitterRng failed: {}", - _jitter_error); - return Err(os_rng_error); - } - } - } - } - EntropySource::Jitter(ref mut rng) => { - if let Ok(os_rng) = try_os_new(dest) { - debug!("EntropyRng: using OsRng"); - switch_rng = Some(EntropySource::Os(os_rng)); - } else { - return rng.try_fill_bytes(dest); // use JitterRng - } - } - } - if let Some(rng) = switch_rng { - self.rng = rng; - } - Ok(()) - } -} - -impl CryptoRng for EntropyRng {} - -#[cfg(test)] -mod test { - use super::*; - - #[test] - fn test_entropy() { - let mut rng = EntropyRng::new(); - let n = (rng.next_u32() ^ rng.next_u32()).count_ones(); - assert!(n >= 2); // p(failure) approx 1e-7 - } -} diff --git a/vendor/rand-8c5b0ac51d/src/jitter.rs b/vendor/rand-8c5b0ac51d/src/jitter.rs deleted file mode 100644 index e633800..0000000 --- a/vendor/rand-8c5b0ac51d/src/jitter.rs +++ /dev/null @@ -1,875 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. -// -// Based on jitterentropy-library, http://www.chronox.de/jent.html. -// Copyright Stephan Mueller smueller@chronox.de, 2014 - 2017. -// -// With permission from Stephan Mueller to relicense the Rust translation under -// the MIT license. - -//! Non-physical true random number generator based on timing jitter. - -// Note: the C implementation of `Jitterentropy` relies on being compiled -// without optimizations. This implementation goes through lengths to make the -// compiler not optimise out what is technically dead code, but that does -// influence timing jitter. - -use rand_core::{RngCore, CryptoRng, Error, ErrorKind, impls}; - -use core::{fmt, mem, ptr}; -#[cfg(feature="std")] -use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering}; - -const MEMORY_BLOCKS: usize = 64; -const MEMORY_BLOCKSIZE: usize = 32; -const MEMORY_SIZE: usize = MEMORY_BLOCKS * MEMORY_BLOCKSIZE; - -/// A true random number generator based on jitter in the CPU execution time, -/// and jitter in memory access time. -/// -/// This is a true random number generator, as opposed to pseudo-random -/// generators. Random numbers generated by `JitterRng` can be seen as fresh -/// entropy. A consequence is that is orders of magnitude slower than [`OsRng`] -/// and PRNGs (about 10<sup>3</sup>..10<sup>6</sup> slower). -/// -/// There are very few situations where using this RNG is appropriate. Only very -/// few applications require true entropy. A normal PRNG can be statistically -/// indistinguishable, and a cryptographic PRNG should also be as impossible to -/// predict. -/// -/// Use of `JitterRng` is recommended for initializing cryptographic PRNGs when -/// [`OsRng`] is not available. -/// -/// This implementation is based on -/// [Jitterentropy](http://www.chronox.de/jent.html) version 2.1.0. -/// -/// [`OsRng`]: ../os/struct.OsRng.html -pub struct JitterRng { - data: u64, // Actual random number - // Number of rounds to run the entropy collector per 64 bits - rounds: u8, - // Timer used by `measure_jitter` - timer: fn() -> u64, - // Memory for the Memory Access noise source - mem_prev_index: u16, - // Make `next_u32` not waste 32 bits - data_half_used: bool, -} - -// Note: `JitterRng` maintains a small 64-bit entropy pool. With every -// `generate` 64 new bits should be integrated in the pool. If a round of -// `generate` were to collect less than the expected 64 bit, then the returned -// value, and the new state of the entropy pool, would be in some way related to -// the initial state. It is therefore better if the initial state of the entropy -// pool is different on each call to `generate`. This has a few implications: -// - `generate` should be called once before using `JitterRng` to produce the -// first usable value (this is done by default in `new`); -// - We do not zero the entropy pool after generating a result. The reference -// implementation also does not support zeroing, but recommends generating a -// new value without using it if you want to protect a previously generated -// 'secret' value from someone inspecting the memory; -// - Implementing `Clone` seems acceptable, as it would not cause the systematic -// bias a constant might cause. Only instead of one value that could be -// potentially related to the same initial state, there are now two. - -// Entropy collector state. -// These values are not necessary to preserve across runs. -struct EcState { - // Previous time stamp to determine the timer delta - prev_time: u64, - // Deltas used for the stuck test - last_delta: i32, - last_delta2: i32, - // Memory for the Memory Access noise source - mem: [u8; MEMORY_SIZE], -} - -impl EcState { - // Stuck test by checking the: - // - 1st derivation of the jitter measurement (time delta) - // - 2nd derivation of the jitter measurement (delta of time deltas) - // - 3rd derivation of the jitter measurement (delta of delta of time - // deltas) - // - // All values must always be non-zero. - // This test is a heuristic to see whether the last measurement holds - // entropy. - fn stuck(&mut self, current_delta: i32) -> bool { - let delta2 = self.last_delta - current_delta; - let delta3 = delta2 - self.last_delta2; - - self.last_delta = current_delta; - self.last_delta2 = delta2; - - current_delta == 0 || delta2 == 0 || delta3 == 0 - } -} - -// Custom Debug implementation that does not expose the internal state -impl fmt::Debug for JitterRng { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "JitterRng {{}}") - } -} - -impl Clone for JitterRng { - fn clone(&self) -> JitterRng { - JitterRng { - data: self.data, - rounds: self.rounds, - timer: self.timer, - mem_prev_index: self.mem_prev_index, - // The 32 bits that may still be unused from the previous round are - // for the original to use, not for the clone. - data_half_used: false, - } - } -} - -/// An error that can occur when [`JitterRng::test_timer`] fails. -/// -/// [`JitterRng::test_timer`]: struct.JitterRng.html#method.test_timer -#[derive(Debug, Clone, PartialEq, Eq)] -pub enum TimerError { - /// No timer available. - NoTimer, - /// Timer too coarse to use as an entropy source. - CoarseTimer, - /// Timer is not monotonically increasing. - NotMonotonic, - /// Variations of deltas of time too small. - TinyVariantions, - /// Too many stuck results (indicating no added entropy). - TooManyStuck, - #[doc(hidden)] - __Nonexhaustive, -} - -impl TimerError { - fn description(&self) -> &'static str { - match *self { - TimerError::NoTimer => "no timer available", - TimerError::CoarseTimer => "coarse timer", - TimerError::NotMonotonic => "timer not monotonic", - TimerError::TinyVariantions => "time delta variations too small", - TimerError::TooManyStuck => "too many stuck results", - TimerError::__Nonexhaustive => unreachable!(), - } - } -} - -impl fmt::Display for TimerError { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "{}", self.description()) - } -} - -#[cfg(feature="std")] -impl ::std::error::Error for TimerError { - fn description(&self) -> &str { - self.description() - } -} - -impl From<TimerError> for Error { - fn from(err: TimerError) -> Error { - // Timer check is already quite permissive of failures so we don't - // expect false-positive failures, i.e. any error is irrecoverable. - Error::with_cause(ErrorKind::Unavailable, - "timer jitter failed basic quality tests", err) - } -} - -// Initialise to zero; must be positive -#[cfg(feature="std")] -static JITTER_ROUNDS: AtomicUsize = ATOMIC_USIZE_INIT; - -impl JitterRng { - /// Create a new `JitterRng`. Makes use of `std::time` for a timer, or a - /// platform-specific function with higher accuracy if necessary and - /// available. - /// - /// During initialization CPU execution timing jitter is measured a few - /// hundred times. If this does not pass basic quality tests, an error is - /// returned. The test result is cached to make subsequent calls faster. - #[cfg(feature="std")] - pub fn new() -> Result<JitterRng, TimerError> { - let mut state = JitterRng::new_with_timer(platform::get_nstime); - let mut rounds = JITTER_ROUNDS.load(Ordering::Relaxed) as u8; - if rounds == 0 { - // No result yet: run test. - // This allows the timer test to run multiple times; we don't care. - rounds = state.test_timer()?; - JITTER_ROUNDS.store(rounds as usize, Ordering::Relaxed); - info!("JitterRng: using {} rounds per u64 output", rounds); - } - state.set_rounds(rounds); - - // Fill `data` with a non-zero value. - state.gen_entropy(); - Ok(state) - } - - /// Create a new `JitterRng`. - /// A custom timer can be supplied, making it possible to use `JitterRng` in - /// `no_std` environments. - /// - /// The timer must have nanosecond precision. - /// - /// This method is more low-level than `new()`. It is the responsibility of - /// the caller to run [`test_timer`] before using any numbers generated with - /// `JitterRng`, and optionally call [`set_rounds`]. Also it is important to - /// consume at least one `u64` before using the first result to initialize - /// the entropy collection pool. - /// - /// # Example - /// - /// ```rust - /// # use rand::{Rng, Error}; - /// use rand::jitter::JitterRng; - /// - /// # fn try_inner() -> Result<(), Error> { - /// fn get_nstime() -> u64 { - /// use std::time::{SystemTime, UNIX_EPOCH}; - /// - /// let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap(); - /// // The correct way to calculate the current time is - /// // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64` - /// // But this is faster, and the difference in terms of entropy is - /// // negligible (log2(10^9) == 29.9). - /// dur.as_secs() << 30 | dur.subsec_nanos() as u64 - /// } - /// - /// let mut rng = JitterRng::new_with_timer(get_nstime); - /// let rounds = rng.test_timer()?; - /// rng.set_rounds(rounds); // optional - /// let _ = rng.gen::<u64>(); - /// - /// // Ready for use - /// let v: u64 = rng.gen(); - /// # Ok(()) - /// # } - /// - /// # let _ = try_inner(); - /// ``` - /// - /// [`test_timer`]: struct.JitterRng.html#method.test_timer - /// [`set_rounds`]: struct.JitterRng.html#method.set_rounds - pub fn new_with_timer(timer: fn() -> u64) -> JitterRng { - JitterRng { - data: 0, - rounds: 64, - timer, - mem_prev_index: 0, - data_half_used: false, - } - } - - /// Configures how many rounds are used to generate each 64-bit value. - /// This must be greater than zero, and has a big impact on performance - /// and output quality. - /// - /// [`new_with_timer`] conservatively uses 64 rounds, but often less rounds - /// can be used. The `test_timer()` function returns the minimum number of - /// rounds required for full strength (platform dependent), so one may use - /// `rng.set_rounds(rng.test_timer()?);` or cache the value. - /// - /// [`new_with_timer`]: struct.JitterRng.html#method.new_with_timer - pub fn set_rounds(&mut self, rounds: u8) { - assert!(rounds > 0); - self.rounds = rounds; - } - - // Calculate a random loop count used for the next round of an entropy - // collection, based on bits from a fresh value from the timer. - // - // The timer is folded to produce a number that contains at most `n_bits` - // bits. - // - // Note: A constant should be added to the resulting random loop count to - // prevent loops that run 0 times. - #[inline(never)] - fn random_loop_cnt(&mut self, n_bits: u32) -> u32 { - let mut rounds = 0; - - let mut time = (self.timer)(); - // Mix with the current state of the random number balance the random - // loop counter a bit more. - time ^= self.data; - - // We fold the time value as much as possible to ensure that as many - // bits of the time stamp are included as possible. - let folds = (64 + n_bits - 1) / n_bits; - let mask = (1 << n_bits) - 1; - for _ in 0..folds { - rounds ^= time & mask; - time >>= n_bits; - } - - rounds as u32 - } - - // CPU jitter noise source - // Noise source based on the CPU execution time jitter - // - // This function injects the individual bits of the time value into the - // entropy pool using an LFSR. - // - // The code is deliberately inefficient with respect to the bit shifting. - // This function not only acts as folding operation, but this function's - // execution is used to measure the CPU execution time jitter. Any change to - // the loop in this function implies that careful retesting must be done. - #[inline(never)] - fn lfsr_time(&mut self, time: u64, var_rounds: bool) { - fn lfsr(mut data: u64, time: u64) -> u64{ - for i in 1..65 { - let mut tmp = time << (64 - i); - tmp >>= 64 - 1; - - // Fibonacci LSFR with polynomial of - // x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is - // primitive according to - // http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf - // (the shift values are the polynomial values minus one - // due to counting bits from 0 to 63). As the current - // position is always the LSB, the polynomial only needs - // to shift data in from the left without wrap. - data ^= tmp; - data ^= (data >> 63) & 1; - data ^= (data >> 60) & 1; - data ^= (data >> 55) & 1; - data ^= (data >> 30) & 1; - data ^= (data >> 27) & 1; - data ^= (data >> 22) & 1; - data = data.rotate_left(1); - } - data - } - - // Note: in the reference implementation only the last round effects - // `self.data`, all the other results are ignored. To make sure the - // other rounds are not optimised out, we first run all but the last - // round on a throw-away value instead of the real `self.data`. - let mut lfsr_loop_cnt = 0; - if var_rounds { lfsr_loop_cnt = self.random_loop_cnt(4) }; - - let mut throw_away: u64 = 0; - for _ in 0..lfsr_loop_cnt { - throw_away = lfsr(throw_away, time); - } - black_box(throw_away); - - self.data = lfsr(self.data, time); - } - - // Memory Access noise source - // This is a noise source based on variations in memory access times - // - // This function performs memory accesses which will add to the timing - // variations due to an unknown amount of CPU wait states that need to be - // added when accessing memory. The memory size should be larger than the L1 - // caches as outlined in the documentation and the associated testing. - // - // The L1 cache has a very high bandwidth, albeit its access rate is usually - // slower than accessing CPU registers. Therefore, L1 accesses only add - // minimal variations as the CPU has hardly to wait. Starting with L2, - // significant variations are added because L2 typically does not belong to - // the CPU any more and therefore a wider range of CPU wait states is - // necessary for accesses. L3 and real memory accesses have even a wider - // range of wait states. However, to reliably access either L3 or memory, - // the `self.mem` memory must be quite large which is usually not desirable. - #[inline(never)] - fn memaccess(&mut self, mem: &mut [u8; MEMORY_SIZE], var_rounds: bool) { - let mut acc_loop_cnt = 128; - if var_rounds { acc_loop_cnt += self.random_loop_cnt(4) }; - - let mut index = self.mem_prev_index as usize; - for _ in 0..acc_loop_cnt { - // Addition of memblocksize - 1 to index with wrap around logic to - // ensure that every memory location is hit evenly. - // The modulus also allows the compiler to remove the indexing - // bounds check. - index = (index + MEMORY_BLOCKSIZE - 1) % MEMORY_SIZE; - - // memory access: just add 1 to one byte - // memory access implies read from and write to memory location - mem[index] = mem[index].wrapping_add(1); - } - self.mem_prev_index = index as u16; - } - - // This is the heart of the entropy generation: calculate time deltas and - // use the CPU jitter in the time deltas. The jitter is injected into the - // entropy pool. - // - // Ensure that `ec.prev_time` is primed before using the output of this - // function. This can be done by calling this function and not using its - // result. - fn measure_jitter(&mut self, ec: &mut EcState) -> Option<()> { - // Invoke one noise source before time measurement to add variations - self.memaccess(&mut ec.mem, true); - - // Get time stamp and calculate time delta to previous - // invocation to measure the timing variations - let time = (self.timer)(); - // Note: wrapping_sub combined with a cast to `i64` generates a correct - // delta, even in the unlikely case this is a timer that is not strictly - // monotonic. - let current_delta = time.wrapping_sub(ec.prev_time) as i64 as i32; - ec.prev_time = time; - - // Call the next noise source which also injects the data - self.lfsr_time(current_delta as u64, true); - - // Check whether we have a stuck measurement (i.e. does the last - // measurement holds entropy?). - if ec.stuck(current_delta) { return None }; - - // Rotate the data buffer by a prime number (any odd number would - // do) to ensure that every bit position of the input time stamp - // has an even chance of being merged with a bit position in the - // entropy pool. We do not use one here as the adjacent bits in - // successive time deltas may have some form of dependency. The - // chosen value of 7 implies that the low 7 bits of the next - // time delta value is concatenated with the current time delta. - self.data = self.data.rotate_left(7); - - Some(()) - } - - // Shuffle the pool a bit by mixing some value with a bijective function - // (XOR) into the pool. - // - // The function generates a mixer value that depends on the bits set and - // the location of the set bits in the random number generated by the - // entropy source. Therefore, based on the generated random number, this - // mixer value can have 2^64 different values. That mixer value is - // initialized with the first two SHA-1 constants. After obtaining the - // mixer value, it is XORed into the random number. - // - // The mixer value is not assumed to contain any entropy. But due to the - // XOR operation, it can also not destroy any entropy present in the - // entropy pool. - #[inline(never)] - fn stir_pool(&mut self) { - // This constant is derived from the first two 32 bit initialization - // vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1 - // The order does not really matter as we do not rely on the specific - // numbers. We just pick the SHA-1 constants as they have a good mix of - // bit set and unset. - const CONSTANT: u64 = 0x67452301efcdab89; - - // The start value of the mixer variable is derived from the third - // and fourth 32 bit initialization vector of SHA-1 as defined in - // FIPS 180-4 section 5.3.1 - let mut mixer = 0x98badcfe10325476; - - // This is a constant time function to prevent leaking timing - // information about the random number. - // The normal code is: - // ``` - // for i in 0..64 { - // if ((self.data >> i) & 1) == 1 { mixer ^= CONSTANT; } - // } - // ``` - // This is a bit fragile, as LLVM really wants to use branches here, and - // we rely on it to not recognise the opportunity. - for i in 0..64 { - let apply = (self.data >> i) & 1; - let mask = !apply.wrapping_sub(1); - mixer ^= CONSTANT & mask; - mixer = mixer.rotate_left(1); - } - - self.data ^= mixer; - } - - fn gen_entropy(&mut self) -> u64 { - trace!("JitterRng: collecting entropy"); - - // Prime `ec.prev_time`, and run the noice sources to make sure the - // first loop round collects the expected entropy. - let mut ec = EcState { - prev_time: (self.timer)(), - last_delta: 0, - last_delta2: 0, - mem: [0; MEMORY_SIZE], - }; - let _ = self.measure_jitter(&mut ec); - - for _ in 0..self.rounds { - // If a stuck measurement is received, repeat measurement - // Note: we do not guard against an infinite loop, that would mean - // the timer suddenly became broken. - while self.measure_jitter(&mut ec).is_none() {} - } - - // Do a single read from `self.mem` to make sure the Memory Access noise - // source is not optimised out. - black_box(ec.mem[0]); - - self.stir_pool(); - self.data - } - - /// Basic quality tests on the timer, by measuring CPU timing jitter a few - /// hundred times. - /// - /// If succesful, this will return the estimated number of rounds necessary - /// to collect 64 bits of entropy. Otherwise a [`TimerError`] with the cause - /// of the failure will be returned. - /// - /// [`TimerError`]: enum.TimerError.html - #[cfg(not(all(target_arch = "wasm32", not(target_os = "emscripten"))))] - pub fn test_timer(&mut self) -> Result<u8, TimerError> { - debug!("JitterRng: testing timer ..."); - // We could add a check for system capabilities such as `clock_getres` - // or check for `CONFIG_X86_TSC`, but it does not make much sense as the - // following sanity checks verify that we have a high-resolution timer. - - let mut delta_sum = 0; - let mut old_delta = 0; - - let mut time_backwards = 0; - let mut count_mod = 0; - let mut count_stuck = 0; - - let mut ec = EcState { - prev_time: (self.timer)(), - last_delta: 0, - last_delta2: 0, - mem: [0; MEMORY_SIZE], - }; - - // TESTLOOPCOUNT needs some loops to identify edge systems. - // 100 is definitely too little. - const TESTLOOPCOUNT: u64 = 300; - const CLEARCACHE: u64 = 100; - - for i in 0..(CLEARCACHE + TESTLOOPCOUNT) { - // Measure time delta of core entropy collection logic - let time = (self.timer)(); - self.memaccess(&mut ec.mem, true); - self.lfsr_time(time, true); - let time2 = (self.timer)(); - - // Test whether timer works - if time == 0 || time2 == 0 { - return Err(TimerError::NoTimer); - } - let delta = time2.wrapping_sub(time) as i64 as i32; - - // Test whether timer is fine grained enough to provide delta even - // when called shortly after each other -- this implies that we also - // have a high resolution timer - if delta == 0 { - return Err(TimerError::CoarseTimer); - } - - // Up to here we did not modify any variable that will be - // evaluated later, but we already performed some work. Thus we - // already have had an impact on the caches, branch prediction, - // etc. with the goal to clear it to get the worst case - // measurements. - if i < CLEARCACHE { continue; } - - if ec.stuck(delta) { count_stuck += 1; } - - // Test whether we have an increasing timer. - if !(time2 > time) { time_backwards += 1; } - - // Count the number of times the counter increases in steps of 100ns - // or greater. - if (delta % 100) == 0 { count_mod += 1; } - - // Ensure that we have a varying delta timer which is necessary for - // the calculation of entropy -- perform this check only after the - // first loop is executed as we need to prime the old_delta value - delta_sum += (delta - old_delta).abs() as u64; - old_delta = delta; - } - - // Do a single read from `self.mem` to make sure the Memory Access noise - // source is not optimised out. - black_box(ec.mem[0]); - - // We allow the time to run backwards for up to three times. - // This can happen if the clock is being adjusted by NTP operations. - // If such an operation just happens to interfere with our test, it - // should not fail. The value of 3 should cover the NTP case being - // performed during our test run. - if time_backwards > 3 { - return Err(TimerError::NotMonotonic); - } - - // Test that the available amount of entropy per round does not get to - // low. We expect 1 bit of entropy per round as a reasonable minimum - // (although less is possible, it means the collector loop has to run - // much more often). - // `assert!(delta_average >= log2(1))` - // `assert!(delta_sum / TESTLOOPCOUNT >= 1)` - // `assert!(delta_sum >= TESTLOOPCOUNT)` - if delta_sum < TESTLOOPCOUNT { - return Err(TimerError::TinyVariantions); - } - - // Ensure that we have variations in the time stamp below 100 for at - // least 10% of all checks -- on some platforms, the counter increments - // in multiples of 100, but not always - if count_mod > (TESTLOOPCOUNT * 9 / 10) { - return Err(TimerError::CoarseTimer); - } - - // If we have more than 90% stuck results, then this Jitter RNG is - // likely to not work well. - if count_stuck > (TESTLOOPCOUNT * 9 / 10) { - return Err(TimerError::TooManyStuck); - } - - // Estimate the number of `measure_jitter` rounds necessary for 64 bits - // of entropy. - // - // We don't try very hard to come up with a good estimate of the - // available bits of entropy per round here for two reasons: - // 1. Simple estimates of the available bits (like Shannon entropy) are - // too optimistic. - // 2. Unless we want to waste a lot of time during intialization, there - // only a small number of samples are available. - // - // Therefore we use a very simple and conservative estimate: - // `let bits_of_entropy = log2(delta_average) / 2`. - // - // The number of rounds `measure_jitter` should run to collect 64 bits - // of entropy is `64 / bits_of_entropy`. - let delta_average = delta_sum / TESTLOOPCOUNT; - - if delta_average >= 16 { - let log2 = 64 - delta_average.leading_zeros(); - // Do something similar to roundup(64/(log2/2)): - Ok( ((64u32 * 2 + log2 - 1) / log2) as u8) - } else { - // For values < 16 the rounding error becomes too large, use a - // lookup table. - // Values 0 and 1 are invalid, and filtered out by the - // `delta_sum < TESTLOOPCOUNT` test above. - let log2_lookup = [0, 0, 128, 81, 64, 56, 50, 46, - 43, 41, 39, 38, 36, 35, 34, 33]; - Ok(log2_lookup[delta_average as usize]) - } - } - #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] - pub fn test_timer(&mut self) -> Result<u8, TimerError> { - return Err(TimerError::NoTimer); - } - - /// Statistical test: return the timer delta of one normal run of the - /// `JitterEntropy` entropy collector. - /// - /// Setting `var_rounds` to `true` will execute the memory access and the - /// CPU jitter noice sources a variable amount of times (just like a real - /// `JitterEntropy` round). - /// - /// Setting `var_rounds` to `false` will execute the noice sources the - /// minimal number of times. This can be used to measure the minimum amount - /// of entropy one round of entropy collector can collect in the worst case. - /// - /// # Example - /// - /// Use `timer_stats` to run the [NIST SP 800-90B Entropy Estimation Suite]( - /// https://github.com/usnistgov/SP800-90B_EntropyAssessment). - /// - /// This is the recommended way to test the quality of `JitterRng`. It - /// should be run before using the RNG on untested hardware, after changes - /// that could effect how the code is optimised, and after major compiler - /// compiler changes, like a new LLVM version. - /// - /// First generate two files `jitter_rng_var.bin` and `jitter_rng_var.min`. - /// - /// Execute `python noniid_main.py -v jitter_rng_var.bin 8`, and validate it - /// with `restart.py -v jitter_rng_var.bin 8 <min-entropy>`. - /// This number is the expected amount of entropy that is at least available - /// for each round of the entropy collector. This number should be greater - /// than the amount estimated with `64 / test_timer()`. - /// - /// Execute `python noniid_main.py -v -u 4 jitter_rng_var.bin 4`, and - /// validate it with `restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>`. - /// This number is the expected amount of entropy that is available in the - /// last 4 bits of the timer delta after running noice sources. Note that - /// a value of 3.70 is the minimum estimated entropy for true randomness. - /// - /// Execute `python noniid_main.py -v -u 4 jitter_rng_var.bin 4`, and - /// validate it with `restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>`. - /// This number is the expected amount of entropy that is available to the - /// entropy collecter if both noice sources only run their minimal number of - /// times. This measures the absolute worst-case, and gives a lower bound - /// for the available entropy. - /// - /// ```rust,no_run - /// use rand::jitter::JitterRng; - /// # - /// # use std::error::Error; - /// # use std::fs::File; - /// # use std::io::Write; - /// # - /// # fn try_main() -> Result<(), Box<Error>> { - /// let mut rng = JitterRng::new()?; - /// - /// // 1_000_000 results are required for the NIST SP 800-90B Entropy - /// // Estimation Suite - /// const ROUNDS: usize = 1_000_000; - /// let mut deltas_variable: Vec<u8> = Vec::with_capacity(ROUNDS); - /// let mut deltas_minimal: Vec<u8> = Vec::with_capacity(ROUNDS); - /// - /// for _ in 0..ROUNDS { - /// deltas_variable.push(rng.timer_stats(true) as u8); - /// deltas_minimal.push(rng.timer_stats(false) as u8); - /// } - /// - /// // Write out after the statistics collection loop, to not disturb the - /// // test results. - /// File::create("jitter_rng_var.bin")?.write(&deltas_variable)?; - /// File::create("jitter_rng_min.bin")?.write(&deltas_minimal)?; - /// # - /// # Ok(()) - /// # } - /// # - /// # fn main() { - /// # try_main().unwrap(); - /// # } - /// ``` - /// - #[cfg(feature="std")] - pub fn timer_stats(&mut self, var_rounds: bool) -> i64 { - let mut mem = [0; MEMORY_SIZE]; - - let time = platform::get_nstime(); - self.memaccess(&mut mem, var_rounds); - self.lfsr_time(time, var_rounds); - let time2 = platform::get_nstime(); - time2.wrapping_sub(time) as i64 - } -} - -#[cfg(feature="std")] -mod platform { - #[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "windows", - all(target_arch = "wasm32", not(target_os = "emscripten")))))] - pub fn get_nstime() -> u64 { - use std::time::{SystemTime, UNIX_EPOCH}; - - let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap(); - // The correct way to calculate the current time is - // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64` - // But this is faster, and the difference in terms of entropy is - // negligible (log2(10^9) == 29.9). - dur.as_secs() << 30 | dur.subsec_nanos() as u64 - } - - #[cfg(any(target_os = "macos", target_os = "ios"))] - pub fn get_nstime() -> u64 { - extern crate libc; - // On Mac OS and iOS std::time::SystemTime only has 1000ns resolution. - // We use `mach_absolute_time` instead. This provides a CPU dependent - // unit, to get real nanoseconds the result should by multiplied by - // numer/denom from `mach_timebase_info`. - // But we are not interested in the exact nanoseconds, just entropy. So - // we use the raw result. - unsafe { libc::mach_absolute_time() } - } - - #[cfg(target_os = "windows")] - pub fn get_nstime() -> u64 { - extern crate winapi; - unsafe { - let mut t = super::mem::zeroed(); - winapi::um::profileapi::QueryPerformanceCounter(&mut t); - *t.QuadPart() as u64 - } - } - - #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] - pub fn get_nstime() -> u64 { - unreachable!() - } -} - -// A function that is opaque to the optimizer to assist in avoiding dead-code -// elimination. Taken from `bencher`. -fn black_box<T>(dummy: T) -> T { - unsafe { - let ret = ptr::read_volatile(&dummy); - mem::forget(dummy); - ret - } -} - -impl RngCore for JitterRng { - fn next_u32(&mut self) -> u32 { - // We want to use both parts of the generated entropy - if self.data_half_used { - self.data_half_used = false; - (self.data >> 32) as u32 - } else { - self.data = self.next_u64(); - self.data_half_used = true; - self.data as u32 - } - } - - fn next_u64(&mut self) -> u64 { - self.data_half_used = false; - self.gen_entropy() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - // Fill using `next_u32`. This is faster for filling small slices (four - // bytes or less), while the overhead is negligible. - // - // This is done especially for wrappers that implement `next_u32` - // themselves via `fill_bytes`. - impls::fill_bytes_via_next(self, dest) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - Ok(self.fill_bytes(dest)) - } -} - -impl CryptoRng for JitterRng {} - -#[cfg(test)] -mod test_jitter_init { - use jitter::JitterRng; - - #[cfg(feature="std")] - #[test] - fn test_jitter_init() { - use RngCore; - // Because this is a debug build, measurements here are not representive - // of the final release build. - // Don't fail this test if initializing `JitterRng` fails because of a - // bad timer (the timer from the standard library may not have enough - // accuracy on all platforms). - match JitterRng::new() { - Ok(ref mut rng) => { - // false positives are possible, but extremely unlikely - assert!(rng.next_u32() | rng.next_u32() != 0); - }, - Err(_) => {}, - } - } - - #[test] - fn test_jitter_bad_timer() { - fn bad_timer() -> u64 { 0 } - let mut rng = JitterRng::new_with_timer(bad_timer); - assert!(rng.test_timer().is_err()); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/lib.rs b/vendor/rand-8c5b0ac51d/src/lib.rs deleted file mode 100644 index 5f6fae2..0000000 --- a/vendor/rand-8c5b0ac51d/src/lib.rs +++ /dev/null @@ -1,1206 +0,0 @@ -// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Utilities for random number generation -//! -//! ## Example -//! -//! ```rust -//! // Rng is the main trait and needs to be imported: -//! use rand::{Rng, thread_rng}; -//! -//! // thread_rng is often the most convenient source of randomness: -//! let mut rng = thread_rng(); -//! if rng.gen() { // random bool -//! let x: f64 = rng.gen(); // random number in range (0, 1) -//! println!("x is: {}", x); -//! println!("Number from 0 to 9: {}", rng.gen_range(0, 10)); -//! } -//! ``` -//! -//! The key function is [`Rng::gen()`]. It is polymorphic and so can be used to -//! generate many types; the [`Standard`] distribution carries the -//! implementations. In some cases type annotation is required, e.g. -//! `rng.gen::<f64>()`. -//! -//! # Getting random values -//! -//! The most convenient source of randomness is likely [`thread_rng`], which -//! automatically initialises a fast algorithmic generator on first use per -//! thread with thread-local storage. -//! -//! If one wants to obtain random data directly from an external source it is -//! recommended to use [`EntropyRng`] which manages multiple available sources -//! or [`OsRng`] which retrieves random data directly from the OS. It should be -//! noted that this is significantly slower than using a local generator like -//! [`thread_rng`] and potentially much slower if [`EntropyRng`] must fall back to -//! [`JitterRng`] as a source. -//! -//! It is also common to use an algorithmic generator in local memory; this may -//! be faster than `thread_rng` and provides more control. In this case -//! [`StdRng`] — the generator behind [`thread_rng`] — and [`SmallRng`] — a -//! small, fast, weak generator — are good choices; more options can be found in -//! the [`prng`] module as well as in other crates. -//! -//! Local generators need to be seeded. It is recommended to use [`FromEntropy`] or -//! to seed from a strong parent generator with [`from_rng`]: -//! -//! ``` -//! # use rand::{Rng, Error}; -//! // seed with fresh entropy: -//! use rand::{StdRng, FromEntropy}; -//! let mut rng = StdRng::from_entropy(); -//! # let v: u32 = rng.gen(); -//! -//! // seed from thread_rng: -//! use rand::{SmallRng, SeedableRng, thread_rng}; -//! -//! # fn try_inner() -> Result<(), Error> { -//! let mut rng = SmallRng::from_rng(thread_rng())?; -//! # let v: u32 = rng.gen(); -//! # Ok(()) -//! # } -//! # try_inner().unwrap() -//! ``` -//! -//! In case you specifically want to have a reproducible stream of "random" -//! data (e.g. to procedurally generate a game world), select a named algorithm -//! (i.e. not [`StdRng`]/[`SmallRng`] which may be adjusted in the future), and -//! use [`SeedableRng::from_seed`] or a constructor specific to the generator -//! (e.g. [`IsaacRng::new_from_u64`]). -//! -//! ## Applying / converting random data -//! -//! The [`RngCore`] trait allows generators to implement a common interface for -//! retrieving random data, but how should you use this? Typically users should -//! use the [`Rng`] trait not [`RngCore`]; this provides more flexible ways to -//! access the same data (e.g. `gen()` can output many more types than -//! `next_u32()` and `next_u64()`; Rust's optimiser should eliminate any -//! overhead). It also provides several useful algorithms, -//! e.g. `gen_bool(p)` to generate events with weighted probability and -//! `shuffle(&mut v[..])` to randomly-order a vector. -//! -//! The [`distributions`] module provides several more ways to convert random -//! data to useful values, e.g. time of decay is often modelled with an -//! exponential distribution, and the log-normal distribution provides a good -//! model of many natural phenomona. -//! -//! The [`seq`] module has a few tools applicable to sliceable or iterable data. -//! -//! ## Cryptographic security -//! -//! First, lets recap some terminology: -//! -//! - **PRNG:** *Pseudo-Random-Number-Generator* is another name for an -//! *algorithmic generator* -//! - **CSPRNG:** a *Cryptographically Secure* PRNG -//! -//! Security analysis requires a threat model and expert review; we can provide -//! neither, but we can provide a few hints. We assume that the goal is to -//! produce secret apparently-random data. Therefore, we need: -//! -//! - A good source of entropy. A known algorithm given known input data is -//! trivial to predict, and likewise if there's a non-negligable chance that -//! the input to a PRNG is guessable then there's a chance its output is too. -//! We recommend seeding CSPRNGs with [`EntropyRng`] or [`OsRng`] which -//! provide fresh "random" values from an external source. -//! One can also seed from another CSPRNG, e.g. `thread_rng`, which is faster, -//! but adds another component which must be trusted. -//! - A strong algorithmic generator. It is possible to use a good entropy -//! source like `OsRng` directly, and in some cases this is the best option, -//! but for better performance (or if requiring reproducible values generated -//! from a fixed seed) it is common to use a local CSPRNG. The basic security -//! that CSPRNGs must provide is making it infeasible to predict future output -//! given a sample of past output. A further security that *some* CSPRNGs -//! provide is *forward secrecy*; this ensures that in the event that the -//! algorithm's state is revealed, it is infeasible to reconstruct past -//! output. See the [`CryptoRng`] trait and notes on individual algorithms. -//! - To be careful not to leak secrets like keys and CSPRNG's internal state -//! and robust against "side channel attacks". This goes well beyond the scope -//! of random number generation, but this crate takes some precautions: -//! - to avoid printing CSPRNG state in log files, implementations have a -//! custom `Debug` implementation which omits all internal state -//! - `thread_rng` uses [`ReseedingRng`] to periodically refresh its state -//! - in the future we plan to add some protection against fork attacks -//! (where the process is forked and each clone generates the same "random" -//! numbers); this is not yet implemented (see issues #314, #370) -//! -//! # Examples -//! -//! For some inspiration, see the examples: -//! -//! * [Monte Carlo estimation of π]( -//! https://github.com/rust-lang-nursery/rand/blob/master/examples/monte-carlo.r...) -//! * [Monty Hall Problem]( -//! https://github.com/rust-lang-nursery/rand/blob/master/examples/monty-hall.rs) -//! -//! [`Rng`]: trait.Rng.html -//! [`Rng::gen()`]: trait.Rng.html#method.gen -//! [`RngCore`]: trait.RngCore.html -//! [`FromEntropy`]: trait.FromEntropy.html -//! [`SeedableRng::from_seed`]: trait.SeedableRng.html#tymethod.from_seed -//! [`from_rng`]: trait.SeedableRng.html#method.from_rng -//! [`CryptoRng`]: trait.CryptoRng.html -//! [`thread_rng`]: fn.thread_rng.html -//! [`EntropyRng`]: struct.EntropyRng.html -//! [`OsRng`]: os/struct.OsRng.html -//! [`JitterRng`]: jitter/struct.JitterRng.html -//! [`StdRng`]: struct.StdRng.html -//! [`SmallRng`]: struct.SmallRng.html -//! [`ReseedingRng`]: reseeding/struct.ReseedingRng.html -//! [`prng`]: prng/index.html -//! [`IsaacRng::new_from_u64`]: prng/isaac/struct.IsaacRng.html#method.new_from_u64 -//! [`Hc128Rng`]: prng/hc128/struct.Hc128Rng.html -//! [`ChaChaRng`]: prng/chacha/struct.ChaChaRng.html -//! [`IsaacRng`]: prng/isaac/struct.IsaacRng.html -//! [`Isaac64Rng`]: prng/isaac64/struct.Isaac64Rng.html -//! [`seq`]: seq/index.html -//! [`distributions`]: distributions/index.html -//! [`Standard`]: distributions/struct.Standard.html - -#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", - html_favicon_url = "https://www.rust-lang.org/favicon.ico", - html_root_url = "https://docs.rs/rand/0.5")] - -#![deny(missing_docs)] -#![deny(missing_debug_implementations)] -#![doc(test(attr(allow(unused_variables), deny(warnings))))] - -#![cfg_attr(not(feature="std"), no_std)] -#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] -#![cfg_attr(all(feature="i128_support", feature="nightly"), allow(stable_features))] // stable since 2018-03-27 -#![cfg_attr(all(feature="i128_support", feature="nightly"), feature(i128_type, i128))] -#![cfg_attr(feature = "stdweb", recursion_limit="128")] - -#[cfg(feature="std")] extern crate std as core; -#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc; - -#[cfg(test)] #[cfg(feature="serde1")] extern crate bincode; -#[cfg(feature="serde1")] extern crate serde; -#[cfg(feature="serde1")] #[macro_use] extern crate serde_derive; - -#[cfg(all(target_arch = "wasm32", feature = "stdweb"))] -#[macro_use] -extern crate stdweb; - -extern crate rand_core; - -#[cfg(feature = "log")] #[macro_use] extern crate log; -#[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () } -#[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () } -#[cfg(all(feature="std", not(feature = "log")))] macro_rules! info { ($($x:tt)*) => () } -#[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () } -#[cfg(all(feature="std", not(feature = "log")))] macro_rules! error { ($($x:tt)*) => () } - - -// Re-exports from rand_core -pub use rand_core::{RngCore, BlockRngCore, CryptoRng, SeedableRng}; -pub use rand_core::{ErrorKind, Error}; - -// Public exports -#[cfg(feature="std")] pub use entropy_rng::EntropyRng; -#[cfg(feature="std")] pub use os::OsRng; -pub use reseeding::ReseedingRng; -#[cfg(feature="std")] pub use thread_rng::{ThreadRng, thread_rng}; -#[cfg(feature="std")] #[allow(deprecated)] pub use thread_rng::random; - -// Public modules -pub mod distributions; -pub mod jitter; // Public because of the error type. -pub mod mock; // Public so we don't export `StepRng` directly, making it a bit - // more clear it is intended for testing. -pub mod prng; -#[cfg(feature="std")] pub mod read; -#[cfg(feature = "alloc")] pub mod seq; - -// These modules are public to avoid API breakage, probably only temporarily. -// Hidden in the documentation. -#[cfg(feature="std")] #[doc(hidden)] pub mod os; -#[doc(hidden)] pub use prng::{ChaChaRng, IsaacRng, Isaac64Rng, XorShiftRng}; -#[doc(hidden)] -pub mod chacha { - //! The ChaCha random number generator. - pub use prng::ChaChaRng; -} -#[doc(hidden)] -pub mod isaac { - //! The ISAAC random number generator. - pub use prng::{IsaacRng, Isaac64Rng}; -} - -// private modules -#[cfg(feature="std")] mod entropy_rng; -mod reseeding; -#[cfg(feature="std")] mod thread_rng; - - -// Normal imports just for this file -use core::{marker, mem, slice}; -use distributions::{Distribution, Standard, Uniform}; -use distributions::uniform::SampleUniform; -use prng::hc128::Hc128Rng; - - -/// A type that can be randomly generated using an [`Rng`]. -/// -/// This is merely an adaptor around the [`Standard`] distribution for -/// convenience and backwards-compatibility. -/// -/// [`Rng`]: trait.Rng.html -/// [`Standard`]: distributions/struct.Standard.html -#[deprecated(since="0.5.0", note="replaced by distributions::Standard")] -pub trait Rand : Sized { - /// Generates a random instance of this type using the specified source of - /// randomness. - fn rand<R: Rng>(rng: &mut R) -> Self; -} - -/// An automatically-implemented extension trait on [`RngCore`] providing high-level -/// generic methods for sampling values and other convenience methods. -/// -/// This is the primary trait to use when generating random values. -/// -/// # Generic usage -/// -/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some -/// things are worth noting here: -/// -/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no -/// difference whether we use `R: Rng` or `R: RngCore`. -/// - The `+ ?Sized` un-bounding allows functions to be called directly on -/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without -/// this it would be necessary to write `foo(&mut r)`. -/// -/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some -/// trade-offs. It allows the argument to be consumed directly without a `&mut` -/// (which is how `from_rng(thread_rng())` works); also it still works directly -/// on references (including type-erased references). Unfortunately within the -/// function `foo` it is not known whether `rng` is a reference type or not, -/// hence many uses of `rng` require an extra reference, either explicitly -/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the -/// optimiser can remove redundant references later. -/// -/// Example: -/// -/// ```rust -/// # use rand::thread_rng; -/// use rand::Rng; -/// -/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { -/// rng.gen() -/// } -/// -/// # let v = foo(&mut thread_rng()); -/// ``` -/// -/// [`RngCore`]: trait.RngCore.html -pub trait Rng: RngCore { - /// Return a random value supporting the [`Standard`] distribution. - /// - /// [`Standard`]: distributions/struct.Standard.html - /// - /// # Example - /// - /// ```rust - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// let x: u32 = rng.gen(); - /// println!("{}", x); - /// println!("{:?}", rng.gen::<(f64, bool)>()); - /// ``` - #[inline(always)] - fn gen<T>(&mut self) -> T where Standard: Distribution<T> { - Standard.sample(self) - } - - /// Generate a random value in the range [`low`, `high`), i.e. inclusive of - /// `low` and exclusive of `high`. - /// - /// This is a convenience wrapper around - /// `distributions::Uniform::sample_single`. If this function will be called - /// repeatedly with the same arguments, it will likely be faster to - /// construct a `Uniform` distribution object and sample from that; this - /// allows amortization of the computations that allow for perfect - /// uniformity within the `Uniform::new` constructor. - /// - /// # Panics - /// - /// Panics if `low >= high`. - /// - /// # Example - /// - /// ```rust - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// let n: u32 = rng.gen_range(0, 10); - /// println!("{}", n); - /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); - /// println!("{}", m); - /// ``` - fn gen_range<T: PartialOrd + SampleUniform>(&mut self, low: T, high: T) -> T { - Uniform::sample_single(low, high, self) - } - - /// Sample a new value, using the given distribution. - /// - /// ### Example - /// - /// ```rust - /// use rand::{thread_rng, Rng}; - /// use rand::distributions::Uniform; - /// - /// let mut rng = thread_rng(); - /// let x: i32 = rng.sample(Uniform::new(10, 15)); - /// ``` - fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { - distr.sample(self) - } - - /// Create an iterator that generates values using the given distribution. - /// - /// # Example - /// - /// ```rust - /// use rand::{thread_rng, Rng}; - /// use rand::distributions::{Alphanumeric, Uniform, Standard}; - /// - /// let mut rng = thread_rng(); - /// - /// // Vec of 16 x f32: - /// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect(); - /// - /// // String: - /// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect(); - /// - /// // Combined values - /// println!("{:?}", thread_rng().sample_iter(&Standard).take(5) - /// .collect::<Vec<(f64, bool)>>()); - /// - /// // Dice-rolling: - /// let die_range = Uniform::new_inclusive(1, 6); - /// let mut roll_die = rng.sample_iter(&die_range); - /// while roll_die.next().unwrap() != 6 { - /// println!("Not a 6; rolling again!"); - /// } - /// ``` - fn sample_iter<'a, T, D: Distribution<T>>(&'a mut self, distr: &'a D) - -> distributions::DistIter<'a, D, Self, T> where Self: Sized - { - distr.sample_iter(self) - } - - /// Fill `dest` entirely with random bytes (uniform value distribution), - /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices - /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). - /// - /// On big-endian platforms this performs byte-swapping to ensure - /// portability of results from reproducible generators. - /// - /// This uses [`fill_bytes`] internally which may handle some RNG errors - /// implicitly (e.g. waiting if the OS generator is not ready), but panics - /// on other errors. See also [`try_fill`] which returns errors. - /// - /// # Example - /// - /// ```rust - /// use rand::{thread_rng, Rng}; - /// - /// let mut arr = [0i8; 20]; - /// thread_rng().fill(&mut arr[..]); - /// ``` - /// - /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes - /// [`try_fill`]: trait.Rng.html#method.try_fill - /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html - fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) { - self.fill_bytes(dest.as_byte_slice_mut()); - dest.to_le(); - } - - /// Fill `dest` entirely with random bytes (uniform value distribution), - /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices - /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). - /// - /// On big-endian platforms this performs byte-swapping to ensure - /// portability of results from reproducible generators. - /// - /// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In - /// some cases errors may be resolvable; see [`ErrorKind`] and - /// documentation for the RNG in use. If you do not plan to handle these - /// errors you may prefer to use [`fill`]. - /// - /// # Example - /// - /// ```rust - /// # use rand::Error; - /// use rand::{thread_rng, Rng}; - /// - /// # fn try_inner() -> Result<(), Error> { - /// let mut arr = [0u64; 4]; - /// thread_rng().try_fill(&mut arr[..])?; - /// # Ok(()) - /// # } - /// - /// # try_inner().unwrap() - /// ``` - /// - /// [`ErrorKind`]: enum.ErrorKind.html - /// [`try_fill_bytes`]: trait.RngCore.html#method.try_fill_bytes - /// [`fill`]: trait.Rng.html#method.fill - /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html - fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { - self.try_fill_bytes(dest.as_byte_slice_mut())?; - dest.to_le(); - Ok(()) - } - - /// Return a bool with a probability `p` of being true. - /// - /// # Example - /// - /// ```rust - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// println!("{}", rng.gen_bool(1.0 / 3.0)); - /// ``` - /// - /// # Accuracy note - /// - /// `gen_bool` uses 32 bits of the RNG, so if you use it to generate close - /// to or more than `2^32` results, a tiny bias may become noticable. - /// A notable consequence of the method used here is that the worst case is - /// `rng.gen_bool(0.0)`: it has a chance of 1 in `2^32` of being true, while - /// it should always be false. But using `gen_bool` to consume *many* values - /// from an RNG just to consistently generate `false` does not match with - /// the intent of this method. - fn gen_bool(&mut self, p: f64) -> bool { - assert!(p >= 0.0 && p <= 1.0); - // If `p` is constant, this will be evaluated at compile-time. - let p_int = (p * f64::from(core::u32::MAX)) as u32; - self.gen::<u32>() <= p_int - } - - /// Return a random element from `values`. - /// - /// Return `None` if `values` is empty. - /// - /// # Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// - /// let choices = [1, 2, 4, 8, 16, 32]; - /// let mut rng = thread_rng(); - /// println!("{:?}", rng.choose(&choices)); - /// assert_eq!(rng.choose(&choices[..0]), None); - /// ``` - fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> { - if values.is_empty() { - None - } else { - Some(&values[self.gen_range(0, values.len())]) - } - } - - /// Return a mutable pointer to a random element from `values`. - /// - /// Return `None` if `values` is empty. - fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> { - if values.is_empty() { - None - } else { - let len = values.len(); - Some(&mut values[self.gen_range(0, len)]) - } - } - - /// Shuffle a mutable slice in place. - /// - /// This applies Durstenfeld's algorithm for the [Fisher–Yates shuffle]( - /// https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algori...) - /// which produces an unbiased permutation. - /// - /// # Example - /// - /// ```rust - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// let mut y = [1, 2, 3]; - /// rng.shuffle(&mut y); - /// println!("{:?}", y); - /// rng.shuffle(&mut y); - /// println!("{:?}", y); - /// ``` - fn shuffle<T>(&mut self, values: &mut [T]) { - let mut i = values.len(); - while i >= 2 { - // invariant: elements with index >= i have been locked in place. - i -= 1; - // lock element i in place. - values.swap(i, self.gen_range(0, i + 1)); - } - } - - /// Return an iterator that will yield an infinite number of randomly - /// generated items. - /// - /// # Example - /// - /// ``` - /// # #![allow(deprecated)] - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>(); - /// println!("{:?}", x); - /// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5) - /// .collect::<Vec<(f64, bool)>>()); - /// ``` - #[allow(deprecated)] - #[deprecated(since="0.5.0", note="use Rng::sample_iter(&Standard) instead")] - fn gen_iter<T>(&mut self) -> Generator<T, &mut Self> where Standard: Distribution<T> { - Generator { rng: self, _marker: marker::PhantomData } - } - - /// Return a bool with a 1 in n chance of true - /// - /// # Example - /// - /// ```rust - /// # #![allow(deprecated)] - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// assert_eq!(rng.gen_weighted_bool(0), true); - /// assert_eq!(rng.gen_weighted_bool(1), true); - /// // Just like `rng.gen::<bool>()` a 50-50% chance, but using a slower - /// // method with different results. - /// println!("{}", rng.gen_weighted_bool(2)); - /// // First meaningful use of `gen_weighted_bool`. - /// println!("{}", rng.gen_weighted_bool(3)); - /// ``` - #[deprecated(since="0.5.0", note="use gen_bool instead")] - fn gen_weighted_bool(&mut self, n: u32) -> bool { - // Short-circuit after `n <= 1` to avoid panic in `gen_range` - n <= 1 || self.gen_range(0, n) == 0 - } - - /// Return an iterator of random characters from the set A-Z,a-z,0-9. - /// - /// # Example - /// - /// ```rust - /// # #![allow(deprecated)] - /// use rand::{thread_rng, Rng}; - /// - /// let s: String = thread_rng().gen_ascii_chars().take(10).collect(); - /// println!("{}", s); - /// ``` - #[allow(deprecated)] - #[deprecated(since="0.5.0", note="use sample_iter(&Alphanumeric) instead")] - fn gen_ascii_chars(&mut self) -> AsciiGenerator<&mut Self> { - AsciiGenerator { rng: self } - } -} - -impl<R: RngCore + ?Sized> Rng for R {} - -/// Trait for casting types to byte slices -/// -/// This is used by the [`fill`] and [`try_fill`] methods. -/// -/// [`fill`]: trait.Rng.html#method.fill -/// [`try_fill`]: trait.Rng.html#method.try_fill -pub trait AsByteSliceMut { - /// Return a mutable reference to self as a byte slice - fn as_byte_slice_mut(&mut self) -> &mut [u8]; - - /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms). - fn to_le(&mut self); -} - -impl AsByteSliceMut for [u8] { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - self - } - - fn to_le(&mut self) {} -} - -macro_rules! impl_as_byte_slice { - ($t:ty) => { - impl AsByteSliceMut for [$t] { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - unsafe { - slice::from_raw_parts_mut(&mut self[0] - as *mut $t - as *mut u8, - self.len() * mem::size_of::<$t>() - ) - } - } - - fn to_le(&mut self) { - for x in self { - *x = x.to_le(); - } - } - } - } -} - -impl_as_byte_slice!(u16); -impl_as_byte_slice!(u32); -impl_as_byte_slice!(u64); -#[cfg(feature="i128_support")] impl_as_byte_slice!(u128); -impl_as_byte_slice!(usize); -impl_as_byte_slice!(i8); -impl_as_byte_slice!(i16); -impl_as_byte_slice!(i32); -impl_as_byte_slice!(i64); -#[cfg(feature="i128_support")] impl_as_byte_slice!(i128); -impl_as_byte_slice!(isize); - -macro_rules! impl_as_byte_slice_arrays { - ($n:expr,) => {}; - ($n:expr, $N:ident, $($NN:ident,)*) => { - impl_as_byte_slice_arrays!($n - 1, $($NN,)*); - - impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - self[..].as_byte_slice_mut() - } - - fn to_le(&mut self) { - self[..].to_le() - } - } - }; - (!div $n:expr,) => {}; - (!div $n:expr, $N:ident, $($NN:ident,)*) => { - impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*); - - impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - self[..].as_byte_slice_mut() - } - - fn to_le(&mut self) { - self[..].to_le() - } - } - }; -} -impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); -impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,); - -/// Iterator which will generate a stream of random items. -/// -/// This iterator is created via the [`gen_iter`] method on [`Rng`]. -/// -/// [`gen_iter`]: trait.Rng.html#method.gen_iter -/// [`Rng`]: trait.Rng.html -#[derive(Debug)] -#[allow(deprecated)] -#[deprecated(since="0.5.0", note="use Rng::sample_iter instead")] -pub struct Generator<T, R: RngCore> { - rng: R, - _marker: marker::PhantomData<fn() -> T>, -} - -#[allow(deprecated)] -impl<T, R: RngCore> Iterator for Generator<T, R> where Standard: Distribution<T> { - type Item = T; - - fn next(&mut self) -> Option<T> { - Some(self.rng.gen()) - } -} - -/// Iterator which will continuously generate random ascii characters. -/// -/// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`]. -/// -/// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars -/// [`Rng`]: trait.Rng.html -#[derive(Debug)] -#[allow(deprecated)] -#[deprecated(since="0.5.0", note="use distributions::Alphanumeric instead")] -pub struct AsciiGenerator<R: RngCore> { - rng: R, -} - -#[allow(deprecated)] -impl<R: RngCore> Iterator for AsciiGenerator<R> { - type Item = char; - - fn next(&mut self) -> Option<char> { - const GEN_ASCII_STR_CHARSET: &[u8] = - b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ - abcdefghijklmnopqrstuvwxyz\ - 0123456789"; - Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char) - } -} - - -/// A convenience extension to [`SeedableRng`] allowing construction from fresh -/// entropy. This trait is automatically implemented for any PRNG implementing -/// [`SeedableRng`] and is not intended to be implemented by users. -/// -/// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then -/// unwrapping the result. -/// -/// Since this is convenient and secure, it is the recommended way to create -/// PRNGs, though two alternatives may be considered: -/// -/// * Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed -/// * Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`; -/// this will usually be faster and should also be secure, but requires -/// trusting one extra component. -/// -/// ## Example -/// -/// ``` -/// use rand::{StdRng, Rng, FromEntropy}; -/// -/// let mut rng = StdRng::from_entropy(); -/// println!("Random die roll: {}", rng.gen_range(1, 7)); -/// ``` -/// -/// [`EntropyRng`]: struct.EntropyRng.html -/// [`SeedableRng`]: trait.SeedableRng.html -/// [`SeedableRng::from_seed`]: trait.SeedableRng.html#tymethod.from_seed -#[cfg(feature="std")] -pub trait FromEntropy: SeedableRng { - /// Creates a new instance, automatically seeded with fresh entropy. - /// - /// Normally this will use `OsRng`, but if that fails `JitterRng` will be - /// used instead. Both should be suitable for cryptography. It is possible - /// that both entropy sources will fail though unlikely; failures would - /// almost certainly be platform limitations or build issues, i.e. most - /// applications targetting PC/mobile platforms should not need to worry - /// about this failing. - /// - /// If all entropy sources fail this will panic. If you need to handle - /// errors, use the following code, equivalent aside from error handling: - /// - /// ```rust - /// # use rand::Error; - /// use rand::{Rng, StdRng, EntropyRng, SeedableRng}; - /// - /// # fn try_inner() -> Result<(), Error> { - /// // This uses StdRng, but is valid for any R: SeedableRng - /// let mut rng = StdRng::from_rng(EntropyRng::new())?; - /// - /// println!("random number: {}", rng.gen_range(1, 10)); - /// # Ok(()) - /// # } - /// - /// # try_inner().unwrap() - /// ``` - fn from_entropy() -> Self; -} - -#[cfg(feature="std")] -impl<R: SeedableRng> FromEntropy for R { - fn from_entropy() -> R { - R::from_rng(EntropyRng::new()).unwrap_or_else(|err| - panic!("FromEntropy::from_entropy() failed: {}", err)) - } -} - -/// The standard RNG. The PRNG algorithm in `StdRng` is chosen to be efficient -/// on the current platform, to be statistically strong and unpredictable -/// (meaning a cryptographically secure PRNG). -/// -/// The current algorithm used on all platforms is [HC-128]. -/// -/// Reproducibility of output from this generator is however not required, thus -/// future library versions may use a different internal generator with -/// different output. Further, this generator may not be portable and can -/// produce different output depending on the architecture. If you require -/// reproducible output, use a named RNG, for example [`ChaChaRng`]. -/// -/// [HC-128]: prng/hc128/struct.Hc128Rng.html -/// [`ChaChaRng`]: prng/chacha/struct.ChaChaRng.html -#[derive(Clone, Debug)] -pub struct StdRng(Hc128Rng); - -impl RngCore for StdRng { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - self.0.next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - self.0.next_u64() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.0.fill_bytes(dest); - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -impl SeedableRng for StdRng { - type Seed = <Hc128Rng as SeedableRng>::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - StdRng(Hc128Rng::from_seed(seed)) - } - - fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { - Hc128Rng::from_rng(rng).map(StdRng) - } -} - -impl CryptoRng for StdRng {} - -/// An RNG recommended when small state, cheap initialization and good -/// performance are required. The PRNG algorithm in `SmallRng` is chosen to be -/// efficient on the current platform, **without consideration for cryptography -/// or security**. The size of its state is much smaller than for [`StdRng`]. -/// -/// Reproducibility of output from this generator is however not required, thus -/// future library versions may use a different internal generator with -/// different output. Further, this generator may not be portable and can -/// produce different output depending on the architecture. If you require -/// reproducible output, use a named RNG, for example [`XorShiftRng`]. -/// -/// The current algorithm used on all platforms is [Xorshift]. -/// -/// # Examples -/// -/// Initializing `SmallRng` with a random seed can be done using [`FromEntropy`]: -/// -/// ``` -/// # use rand::Rng; -/// use rand::{FromEntropy, SmallRng}; -/// -/// // Create small, cheap to initialize and fast RNG with a random seed. -/// // The randomness is supplied by the operating system. -/// let mut small_rng = SmallRng::from_entropy(); -/// # let v: u32 = small_rng.gen(); -/// ``` -/// -/// When initializing a lot of `SmallRng`'s, using [`thread_rng`] can be more -/// efficient: -/// -/// ``` -/// use std::iter; -/// use rand::{SeedableRng, SmallRng, thread_rng}; -/// -/// // Create a big, expensive to initialize and slower, but unpredictable RNG. -/// // This is cached and done only once per thread. -/// let mut thread_rng = thread_rng(); -/// // Create small, cheap to initialize and fast RNGs with random seeds. -/// // One can generally assume this won't fail. -/// let rngs: Vec<SmallRng> = iter::repeat(()) -/// .map(|()| SmallRng::from_rng(&mut thread_rng).unwrap()) -/// .take(10) -/// .collect(); -/// ``` -/// -/// [`FromEntropy`]: trait.FromEntropy.html -/// [`StdRng`]: struct.StdRng.html -/// [`thread_rng`]: fn.thread_rng.html -/// [Xorshift]: prng/struct.XorShiftRng.html -/// [`XorShiftRng`]: prng/struct.XorShiftRng.html -#[derive(Clone, Debug)] -pub struct SmallRng(XorShiftRng); - -impl RngCore for SmallRng { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - self.0.next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - self.0.next_u64() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.0.fill_bytes(dest); - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -impl SeedableRng for SmallRng { - type Seed = <XorShiftRng as SeedableRng>::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - SmallRng(XorShiftRng::from_seed(seed)) - } - - fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { - XorShiftRng::from_rng(rng).map(SmallRng) - } -} - -/// DEPRECATED: use [`SmallRng`] instead. -/// -/// Create a weak random number generator with a default algorithm and seed. -/// -/// It returns the fastest `Rng` algorithm currently available in Rust without -/// consideration for cryptography or security. If you require a specifically -/// seeded `Rng` for consistency over time you should pick one algorithm and -/// create the `Rng` yourself. -/// -/// This will seed the generator with randomness from `thread_rng`. -/// -/// [`SmallRng`]: struct.SmallRng.html -#[deprecated(since="0.5.0", note="removed in favor of SmallRng")] -#[cfg(feature="std")] -pub fn weak_rng() -> XorShiftRng { - XorShiftRng::from_rng(thread_rng()).unwrap_or_else(|err| - panic!("weak_rng failed: {:?}", err)) -} - -/// DEPRECATED: use `seq::sample_iter` instead. -/// -/// Randomly sample up to `amount` elements from a finite iterator. -/// The order of elements in the sample is not random. -/// -/// # Example -/// -/// ```rust -/// # #![allow(deprecated)] -/// use rand::{thread_rng, sample}; -/// -/// let mut rng = thread_rng(); -/// let sample = sample(&mut rng, 1..100, 5); -/// println!("{:?}", sample); -/// ``` -#[cfg(feature="std")] -#[inline(always)] -#[deprecated(since="0.4.0", note="renamed to seq::sample_iter")] -pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T> - where I: IntoIterator<Item=T>, - R: Rng, -{ - // the legacy sample didn't care whether amount was met - seq::sample_iter(rng, iterable, amount) - .unwrap_or_else(|e| e) -} - -#[cfg(test)] -mod test { - use mock::StepRng; - use super::*; - #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box; - - pub struct TestRng<R> { inner: R } - - impl<R: RngCore> RngCore for TestRng<R> { - fn next_u32(&mut self) -> u32 { - self.inner.next_u32() - } - fn next_u64(&mut self) -> u64 { - self.inner.next_u64() - } - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.inner.fill_bytes(dest) - } - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.inner.try_fill_bytes(dest) - } - } - - pub fn rng(seed: u64) -> TestRng<StdRng> { - // TODO: use from_hashable - let mut state = seed; - let mut seed = <StdRng as SeedableRng>::Seed::default(); - for x in seed.iter_mut() { - // PCG algorithm - const MUL: u64 = 6364136223846793005; - const INC: u64 = 11634580027462260723; - let oldstate = state; - state = oldstate.wrapping_mul(MUL).wrapping_add(INC); - - let xorshifted = (((oldstate >> 18) ^ oldstate) >> 27) as u32; - let rot = (oldstate >> 59) as u32; - *x = xorshifted.rotate_right(rot) as u8; - } - TestRng { inner: StdRng::from_seed(seed) } - } - - #[test] - fn test_fill_bytes_default() { - let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); - - // check every remainder mod 8, both in small and big vectors. - let lengths = [0, 1, 2, 3, 4, 5, 6, 7, - 80, 81, 82, 83, 84, 85, 86, 87]; - for &n in lengths.iter() { - let mut buffer = [0u8; 87]; - let v = &mut buffer[0..n]; - r.fill_bytes(v); - - // use this to get nicer error messages. - for (i, &byte) in v.iter().enumerate() { - if byte == 0 { - panic!("byte {} of {} is zero", i, n) - } - } - } - } - - #[test] - fn test_fill() { - let x = 9041086907909331047; // a random u64 - let mut rng = StepRng::new(x, 0); - - // Convert to byte sequence and back to u64; byte-swap twice if BE. - let mut array = [0u64; 2]; - rng.fill(&mut array[..]); - assert_eq!(array, [x, x]); - assert_eq!(rng.next_u64(), x); - - // Convert to bytes then u32 in LE order - let mut array = [0u32; 2]; - rng.fill(&mut array[..]); - assert_eq!(array, [x as u32, (x >> 32) as u32]); - assert_eq!(rng.next_u32(), x as u32); - } - - #[test] - fn test_gen_range() { - let mut r = rng(101); - for _ in 0..1000 { - let a = r.gen_range(-3, 42); - assert!(a >= -3 && a < 42); - assert_eq!(r.gen_range(0, 1), 0); - assert_eq!(r.gen_range(-12, -11), -12); - } - - for _ in 0..1000 { - let a = r.gen_range(10, 42); - assert!(a >= 10 && a < 42); - assert_eq!(r.gen_range(0, 1), 0); - assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000); - } - - } - - #[test] - #[should_panic] - fn test_gen_range_panic_int() { - let mut r = rng(102); - r.gen_range(5, -2); - } - - #[test] - #[should_panic] - fn test_gen_range_panic_usize() { - let mut r = rng(103); - r.gen_range(5, 2); - } - - #[test] - #[allow(deprecated)] - fn test_gen_weighted_bool() { - let mut r = rng(104); - assert_eq!(r.gen_weighted_bool(0), true); - assert_eq!(r.gen_weighted_bool(1), true); - } - - #[test] - fn test_gen_bool() { - let mut r = rng(105); - for _ in 0..5 { - assert_eq!(r.gen_bool(0.0), false); - assert_eq!(r.gen_bool(1.0), true); - } - } - - #[test] - fn test_choose() { - let mut r = rng(107); - assert_eq!(r.choose(&[1, 1, 1]).map(|&x|x), Some(1)); - - let v: &[isize] = &[]; - assert_eq!(r.choose(v), None); - } - - #[test] - fn test_shuffle() { - let mut r = rng(108); - let empty: &mut [isize] = &mut []; - r.shuffle(empty); - let mut one = [1]; - r.shuffle(&mut one); - let b: &[_] = &[1]; - assert_eq!(one, b); - - let mut two = [1, 2]; - r.shuffle(&mut two); - assert!(two == [1, 2] || two == [2, 1]); - - let mut x = [1, 1, 1]; - r.shuffle(&mut x); - let b: &[_] = &[1, 1, 1]; - assert_eq!(x, b); - } - - #[test] - fn test_rng_trait_object() { - use distributions::{Distribution, Standard}; - let mut rng = rng(109); - let mut r = &mut rng as &mut RngCore; - r.next_u32(); - r.gen::<i32>(); - let mut v = [1, 1, 1]; - r.shuffle(&mut v); - let b: &[_] = &[1, 1, 1]; - assert_eq!(v, b); - assert_eq!(r.gen_range(0, 1), 0); - let _c: u8 = Standard.sample(&mut r); - } - - #[test] - #[cfg(feature="alloc")] - fn test_rng_boxed_trait() { - use distributions::{Distribution, Standard}; - let rng = rng(110); - let mut r = Box::new(rng) as Box<RngCore>; - r.next_u32(); - r.gen::<i32>(); - let mut v = [1, 1, 1]; - r.shuffle(&mut v); - let b: &[_] = &[1, 1, 1]; - assert_eq!(v, b); - assert_eq!(r.gen_range(0, 1), 0); - let _c: u8 = Standard.sample(&mut r); - } - - #[test] - fn test_stdrng_construction() { - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng1 = StdRng::from_seed(seed); - assert_eq!(rng1.next_u64(), 15759097995037006553); - - let mut rng2 = StdRng::from_rng(rng1).unwrap(); - assert_eq!(rng2.next_u64(), 6766915756997287454); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/mock.rs b/vendor/rand-8c5b0ac51d/src/mock.rs deleted file mode 100644 index 090258e..0000000 --- a/vendor/rand-8c5b0ac51d/src/mock.rs +++ /dev/null @@ -1,61 +0,0 @@ -// Copyright 2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Mock random number generator - -use rand_core::{RngCore, Error, impls}; - -/// A simple implementation of `RngCore` for testing purposes. -/// -/// This generates an arithmetic sequence (i.e. adds a constant each step) -/// over a `u64` number, using wrapping arithmetic. If the increment is 0 -/// the generator yields a constant. -/// -/// ```rust -/// use rand::Rng; -/// use rand::mock::StepRng; -/// -/// let mut my_rng = StepRng::new(2, 1); -/// let sample: [u64; 3] = my_rng.gen(); -/// assert_eq!(sample, [2, 3, 4]); -/// ``` -#[derive(Debug, Clone)] -pub struct StepRng { - v: u64, - a: u64, -} - -impl StepRng { - /// Create a `StepRng`, yielding an arithmetic sequence starting with - /// `initial` and incremented by `increment` each time. - pub fn new(initial: u64, increment: u64) -> Self { - StepRng { v: initial, a: increment } - } -} - -impl RngCore for StepRng { - fn next_u32(&mut self) -> u32 { - self.next_u64() as u32 - } - - fn next_u64(&mut self) -> u64 { - let result = self.v; - self.v = self.v.wrapping_add(self.a); - result - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - impls::fill_bytes_via_next(self, dest); - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - Ok(self.fill_bytes(dest)) - } -} diff --git a/vendor/rand-8c5b0ac51d/src/os.rs b/vendor/rand-8c5b0ac51d/src/os.rs deleted file mode 100644 index ef96e31..0000000 --- a/vendor/rand-8c5b0ac51d/src/os.rs +++ /dev/null @@ -1,833 +0,0 @@ -// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Interfaces to the operating system provided random number -//! generators. - -use std::fmt; -use rand_core::{RngCore, Error, impls}; - -/// A random number generator that retrieves randomness straight from the -/// operating system. -/// -/// This is the preferred external source of entropy for most -/// applications. Commonly it is used to initialize a user-space RNG, which can -/// then be used to generate random values with much less overhead than `OsRng`. -/// -/// You may prefer to use [`EntropyRng`] instead of `OsRng`. Is is unlikely, but -/// not entirely theoretical, for `OsRng` to fail. In such cases `EntropyRng` -/// falls back on a good alternative entropy source. -/// -/// `OsRng` usually does not block. On some systems, and notably virtual -/// machines, it may block very early in the init process, when the OS CSPRNG -/// has not yet been seeded. -/// -/// `OsRng::new()` is guaranteed to be very cheap (after the first successful -/// call), and will never consume more than one file handle per process. -/// -/// ## Platform sources: -/// -/// - Linux, Android: reads from the `getrandom(2)` system call if available, -/// otherwise from `/dev/urandom`. -/// - macOS, iOS: calls `SecRandomCopyBytes`. -/// - Windows: calls `RtlGenRandom`. -/// - WASM: calls `window.crypto.getRandomValues` in browsers, -/// and in Node.js `require("crypto").randomBytes`. -/// - OpenBSD: calls `getentropy(2)`. -/// - FreeBSD: uses the `kern.arandom` `sysctl(2)` mib. -/// - Fuchsia: calls `cprng_draw`. -/// - Redox: reads from `rand:` device. -/// - CloudABI: calls `random_get`. -/// - Other Unix-like systems: reads directly from `/dev/urandom`. -/// Note: many Unix systems provide `/dev/random` as well as `/dev/urandom`. -/// On all modern systems these two interfaces offer identical quality, with -/// the difference that on some systems `/dev/random` may block. This is a -/// dated design, and `/dev/urandom` is preferred by cryptography experts. [1] -/// -/// [1] See [Myths about urandom](https://www.2uo.de/myths-about-urandom/). -/// -/// [`EntropyRng`]: struct.EntropyRng.html - -#[allow(unused)] // not used by all targets -#[derive(Clone)] -pub struct OsRng(imp::OsRng); - -impl fmt::Debug for OsRng { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - self.0.fmt(f) - } -} - -impl OsRng { - /// Create a new `OsRng`. - pub fn new() -> Result<OsRng, Error> { - imp::OsRng::new().map(OsRng) - } -} - -impl RngCore for OsRng { - fn next_u32(&mut self) -> u32 { - impls::next_u32_via_fill(self) - } - - fn next_u64(&mut self) -> u64 { - impls::next_u64_via_fill(self) - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - use std::{time, thread}; - - // We cannot return Err(..), so we try to handle before panicking. - const MAX_RETRY_PERIOD: u32 = 10; // max 10s - const WAIT_DUR_MS: u32 = 100; // retry every 100ms - let wait_dur = time::Duration::from_millis(WAIT_DUR_MS as u64); - const RETRY_LIMIT: u32 = (MAX_RETRY_PERIOD * 1000) / WAIT_DUR_MS; - const TRANSIENT_RETRIES: u32 = 8; - let mut err_count = 0; - let mut error_logged = false; - - loop { - if let Err(e) = self.try_fill_bytes(dest) { - if err_count >= RETRY_LIMIT { - error!("OsRng failed too many times; last error: {}", e); - panic!("OsRng failed too many times; last error: {}", e); - } - - if e.kind.should_wait() { - if !error_logged { - warn!("OsRng failed; waiting up to {}s and retrying. Error: {}", - MAX_RETRY_PERIOD, e); - error_logged = true; - } - err_count += 1; - thread::sleep(wait_dur); - continue; - } else if e.kind.should_retry() { - if !error_logged { - warn!("OsRng failed; retrying up to {} times. Error: {}", - TRANSIENT_RETRIES, e); - error_logged = true; - } - err_count += (RETRY_LIMIT + TRANSIENT_RETRIES - 1) - / TRANSIENT_RETRIES; // round up - continue; - } else { - error!("OsRng failed: {}", e); - panic!("OsRng fatal error: {}", e); - } - } - - break; - } - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -#[cfg(all(unix, - not(target_os = "cloudabi"), - not(target_os = "freebsd"), - not(target_os = "fuchsia"), - not(target_os = "ios"), - not(target_os = "macos"), - not(target_os = "openbsd"), - not(target_os = "redox")))] -mod imp { - extern crate libc; - use {Error, ErrorKind}; - use std::fs::{OpenOptions, File}; - use std::os::unix::fs::OpenOptionsExt; - use std::io; - use std::io::Read; - use std::sync::{Once, Mutex, ONCE_INIT}; - - #[derive(Clone, Debug)] - pub struct OsRng(OsRngMethod); - - #[derive(Clone, Debug)] - enum OsRngMethod { - GetRandom, - RandomDevice, - } - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - if is_getrandom_available() { - return Ok(OsRng(OsRngMethod::GetRandom)); - } - - open_dev_random()?; - Ok(OsRng(OsRngMethod::RandomDevice)) - } - - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - match self.0 { - OsRngMethod::GetRandom => getrandom_try_fill(dest), - OsRngMethod::RandomDevice => dev_random_try_fill(dest), - } - } - } - - #[cfg(all(any(target_os = "linux", target_os = "android"), - any(target_arch = "x86_64", target_arch = "x86", - target_arch = "arm", target_arch = "aarch64", - target_arch = "s390x", target_arch = "powerpc", - target_arch = "mips", target_arch = "mips64")))] - fn getrandom(buf: &mut [u8]) -> libc::c_long { - extern "C" { - fn syscall(number: libc::c_long, ...) -> libc::c_long; - } - - #[cfg(target_arch = "x86_64")] - const NR_GETRANDOM: libc::c_long = 318; - #[cfg(target_arch = "x86")] - const NR_GETRANDOM: libc::c_long = 355; - #[cfg(target_arch = "arm")] - const NR_GETRANDOM: libc::c_long = 384; - #[cfg(target_arch = "aarch64")] - const NR_GETRANDOM: libc::c_long = 278; - #[cfg(target_arch = "s390x")] - const NR_GETRANDOM: libc::c_long = 349; - #[cfg(target_arch = "powerpc")] - const NR_GETRANDOM: libc::c_long = 359; - #[cfg(target_arch = "mips")] // old ABI - const NR_GETRANDOM: libc::c_long = 4353; - #[cfg(target_arch = "mips64")] - const NR_GETRANDOM: libc::c_long = 5313; - - const GRND_NONBLOCK: libc::c_uint = 0x0001; - - unsafe { - syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK) - } - } - - #[cfg(not(all(any(target_os = "linux", target_os = "android"), - any(target_arch = "x86_64", target_arch = "x86", - target_arch = "arm", target_arch = "aarch64", - target_arch = "s390x", target_arch = "powerpc", - target_arch = "mips", target_arch = "mips64"))))] - fn getrandom(_buf: &mut [u8]) -> libc::c_long { -1 } - - fn getrandom_try_fill(dest: &mut [u8]) -> Result<(), Error> { - trace!("OsRng: reading {} bytes via getrandom", dest.len()); - let mut read = 0; - let len = dest.len(); - while read < len { - let result = getrandom(&mut dest[read..]); - if result == -1 { - let err = io::Error::last_os_error(); - let kind = err.kind(); - if kind == io::ErrorKind::Interrupted { - continue; - } else if kind == io::ErrorKind::WouldBlock { - // Potentially this would waste bytes, but since we use - // /dev/urandom blocking only happens if not initialised. - // Also, wasting the bytes in dest doesn't matter very much. - return Err(Error::with_cause( - ErrorKind::NotReady, - "getrandom not ready", - err, - )); - } else { - return Err(Error::with_cause( - ErrorKind::Unavailable, - "unexpected getrandom error", - err, - )); - } - } else { - read += result as usize; - } - } - Ok(()) - } - - #[cfg(all(any(target_os = "linux", target_os = "android"), - any(target_arch = "x86_64", target_arch = "x86", - target_arch = "arm", target_arch = "aarch64", - target_arch = "s390x", target_arch = "powerpc", - target_arch = "mips", target_arch = "mips64")))] - fn is_getrandom_available() -> bool { - use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering}; - use std::sync::{Once, ONCE_INIT}; - - static CHECKER: Once = ONCE_INIT; - static AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT; - - CHECKER.call_once(|| { - debug!("OsRng: testing getrandom"); - let mut buf: [u8; 0] = []; - let result = getrandom(&mut buf); - let available = if result == -1 { - let err = io::Error::last_os_error().raw_os_error(); - err != Some(libc::ENOSYS) - } else { - true - }; - AVAILABLE.store(available, Ordering::Relaxed); - info!("OsRng: using {}", if available { "getrandom" } else { "/dev/urandom" }); - }); - - AVAILABLE.load(Ordering::Relaxed) - } - - #[cfg(not(all(any(target_os = "linux", target_os = "android"), - any(target_arch = "x86_64", target_arch = "x86", - target_arch = "arm", target_arch = "aarch64", - target_arch = "s390x", target_arch = "powerpc", - target_arch = "mips", target_arch = "mips64"))))] - fn is_getrandom_available() -> bool { false } - - // TODO: remove outer Option when `Mutex::new(None)` is a constant expression - static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None; - static READ_RNG_ONCE: Once = ONCE_INIT; - - // Note: all instances use a single internal file handle, to prevent - // possible exhaustion of file descriptors. - // - // On some systems reading from `/dev/urandom` "may return data prior to the - // to the entropy pool being initialized". I.e., early in the boot process, - // and especially on virtual machines, `/dev/urandom` may return data that - // is less random. - // - // As a countermeasure we try to do a single read from `/dev/random` in - // non-blocking mode. If the OS RNG is not yet properly seeded, we will get - // an error. Because we keep `/dev/urandom` open when succesful, this is - // only a small one-time cost. - fn open_dev_random() -> Result<(), Error> { - fn map_err(err: io::Error) -> Error { - match err.kind() { - io::ErrorKind::Interrupted => - Error::new(ErrorKind::Transient, "interrupted"), - io::ErrorKind::WouldBlock => - Error::with_cause(ErrorKind::NotReady, - "OS RNG not yet seeded", err), - _ => Error::with_cause(ErrorKind::Unavailable, - "error while opening random device", err) - } - } - - READ_RNG_ONCE.call_once(|| { - unsafe { READ_RNG_FILE = Some(Mutex::new(None)) } - }); - - // We try opening the file outside the `call_once` fn because we cannot - // clone the error, thus we must retry on failure. - - let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; - let mut guard = mutex.lock().unwrap(); - if (*guard).is_none() { - { - info!("OsRng: opening random device /dev/random"); - let mut file = OpenOptions::new() - .read(true) - .custom_flags(libc::O_NONBLOCK) - .open("/dev/random") - .map_err(map_err)?; - let mut buf = [0u8; 1]; - file.read_exact(&mut buf).map_err(map_err)?; - } - - info!("OsRng: opening random device /dev/urandom"); - let file = File::open("/dev/urandom").map_err(map_err)?; - *guard = Some(file); - }; - Ok(()) - } - - fn dev_random_try_fill(dest: &mut [u8]) -> Result<(), Error> { - if dest.len() == 0 { return Ok(()); } - trace!("OsRng: reading {} bytes from random device", dest.len()); - - // We expect this function only to be used after `open_dev_random` was - // succesful. Therefore we can assume that our memory was set with a - // valid object. - let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; - let mut guard = mutex.lock().unwrap(); - let file = (*guard).as_mut().unwrap(); - // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. - file.read_exact(dest).map_err(|err| { - match err.kind() { - ::std::io::ErrorKind::WouldBlock => Error::with_cause( - ErrorKind::NotReady, - "reading from random device would block", err), - _ => Error::with_cause(ErrorKind::Unavailable, - "error reading random device", err) - } - }) - } -} - -#[cfg(target_os = "cloudabi")] -mod imp { - extern crate cloudabi; - - use {Error, ErrorKind}; - - #[derive(Clone, Debug)] - pub struct OsRng; - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - Ok(OsRng) - } - - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - trace!("OsRng: reading {} bytes via cloadabi::random_get", dest.len()); - let errno = unsafe { cloudabi::random_get(dest) }; - if errno == cloudabi::errno::SUCCESS { - Ok(()) - } else { - // Cloudlibc provides its own `strerror` implementation so we - // can use `from_raw_os_error` here. - Err(Error::with_cause( - ErrorKind::Unavailable, - "random_get() system call failed", - io::Error::from_raw_os_error(errno), - )) - } - } - } -} - -#[cfg(any(target_os = "macos", target_os = "ios"))] -mod imp { - extern crate libc; - - use {Error, ErrorKind}; - - use std::io; - use self::libc::{c_int, size_t}; - - #[derive(Clone, Debug)] - pub struct OsRng; - - enum SecRandom {} - - #[allow(non_upper_case_globals)] - const kSecRandomDefault: *const SecRandom = 0 as *const SecRandom; - - #[link(name = "Security", kind = "framework")] - extern { - fn SecRandomCopyBytes(rnd: *const SecRandom, - count: size_t, bytes: *mut u8) -> c_int; - } - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - Ok(OsRng) - } - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - trace!("OsRng: reading {} bytes via SecRandomCopyBytes", dest.len()); - let ret = unsafe { - SecRandomCopyBytes(kSecRandomDefault, dest.len() as size_t, dest.as_mut_ptr()) - }; - if ret == -1 { - Err(Error::with_cause( - ErrorKind::Unavailable, - "couldn't generate random bytes", - io::Error::last_os_error())) - } else { - Ok(()) - } - } - } -} - -#[cfg(target_os = "freebsd")] -mod imp { - extern crate libc; - - use {Error, ErrorKind}; - - use std::ptr; - use std::io; - - #[derive(Clone, Debug)] - pub struct OsRng; - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - Ok(OsRng) - } - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - let mib = [libc::CTL_KERN, libc::KERN_ARND]; - trace!("OsRng: reading {} bytes via kern.arandom", dest.len()); - // kern.arandom permits a maximum buffer size of 256 bytes - for s in dest.chunks_mut(256) { - let mut s_len = s.len(); - let ret = unsafe { - libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint, - s.as_mut_ptr() as *mut _, &mut s_len, - ptr::null(), 0) - }; - if ret == -1 || s_len != s.len() { - return Err(Error::with_cause( - ErrorKind::Unavailable, - "kern.arandom sysctl failed", - io::Error::last_os_error())); - } - } - Ok(()) - } - } -} - -#[cfg(target_os = "openbsd")] -mod imp { - extern crate libc; - - use {Error, ErrorKind}; - - use std::io; - - #[derive(Clone, Debug)] - pub struct OsRng; - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - Ok(OsRng) - } - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - // getentropy(2) permits a maximum buffer size of 256 bytes - for s in dest.chunks_mut(256) { - trace!("OsRng: reading {} bytes via getentropy", s.len()); - let ret = unsafe { - libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len()) - }; - if ret == -1 { - return Err(Error::with_cause( - ErrorKind::Unavailable, - "getentropy failed", - io::Error::last_os_error())); - } - } - Ok(()) - } - } -} - -#[cfg(target_os = "redox")] -mod imp { - use {Error, ErrorKind}; - use std::fs::File; - use std::io::Read; - use std::io::ErrorKind::*; - use std::sync::{Once, Mutex, ONCE_INIT}; - - #[derive(Clone, Debug)] - pub struct OsRng(); - - // TODO: remove outer Option when `Mutex::new(None)` is a constant expression - static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None; - static READ_RNG_ONCE: Once = ONCE_INIT; - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - READ_RNG_ONCE.call_once(|| { - unsafe { READ_RNG_FILE = Some(Mutex::new(None)) } - }); - - // We try opening the file outside the `call_once` fn because we cannot - // clone the error, thus we must retry on failure. - - let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; - let mut guard = mutex.lock().unwrap(); - if (*guard).is_none() { - info!("OsRng: opening random device 'rand:'"); - let file = File::open("rand:").map_err(|err| { - match err.kind() { - Interrupted => Error::new(ErrorKind::Transient, "interrupted"), - WouldBlock => Error::with_cause(ErrorKind::NotReady, - "opening random device would block", err), - _ => Error::with_cause(ErrorKind::Unavailable, - "error while opening random device", err) - } - })?; - *guard = Some(file); - }; - Ok(OsRng()) - } - - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - if dest.len() == 0 { return Ok(()); } - trace!("OsRng: reading {} bytes from random device", dest.len()); - - // Since we have an instance of Self, we can assume that our memory was - // set with a valid object. - let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() }; - let mut guard = mutex.lock().unwrap(); - let file = (*guard).as_mut().unwrap(); - // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. - file.read_exact(dest).map_err(|err| { - Error::with_cause(ErrorKind::Unavailable, - "error reading random device", err) - }) - } - } -} - -#[cfg(target_os = "fuchsia")] -mod imp { - extern crate fuchsia_zircon; - - use {Error, ErrorKind}; - - use std::io; - - #[derive(Clone, Debug)] - pub struct OsRng; - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - Ok(OsRng) - } - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - for s in dest.chunks_mut(fuchsia_zircon::sys::ZX_CPRNG_DRAW_MAX_LEN) { - trace!("OsRng: reading {} bytes via cprng_draw", s.len()); - let mut filled = 0; - while filled < s.len() { - match fuchsia_zircon::cprng_draw(&mut s[filled..]) { - Ok(actual) => filled += actual, - Err(e) => { - return Err(Error::with_cause( - ErrorKind::Unavailable, - "cprng_draw failed", - e)); - } - }; - } - } - Ok(()) - } - } -} - -#[cfg(windows)] -mod imp { - extern crate winapi; - - use {Error, ErrorKind}; - - use std::io; - - use self::winapi::shared::minwindef::ULONG; - use self::winapi::um::ntsecapi::RtlGenRandom; - use self::winapi::um::winnt::PVOID; - - #[derive(Clone, Debug)] - pub struct OsRng; - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - Ok(OsRng) - } - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - // RtlGenRandom takes an ULONG (u32) for the length so we need to - // split up the buffer. - for slice in dest.chunks_mut(<ULONG>::max_value() as usize) { - trace!("OsRng: reading {} bytes via RtlGenRandom", slice.len()); - let ret = unsafe { - RtlGenRandom(slice.as_mut_ptr() as PVOID, slice.len() as ULONG) - }; - if ret == 0 { - return Err(Error::with_cause( - ErrorKind::Unavailable, - "couldn't generate random bytes", - io::Error::last_os_error())); - } - } - Ok(()) - } - } -} - -#[cfg(all(target_arch = "wasm32", - not(target_os = "emscripten"), - not(feature = "stdweb")))] -mod imp { - use {Error, ErrorKind}; - - #[derive(Clone, Debug)] - pub struct OsRng; - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - Err(Error::new(ErrorKind::Unavailable, - "not supported on WASM without stdweb")) - } - - pub fn try_fill_bytes(&mut self, _v: &mut [u8]) -> Result<(), Error> { - Err(Error::new(ErrorKind::Unavailable, - "not supported on WASM without stdweb")) - } - } -} - -#[cfg(all(target_arch = "wasm32", - not(target_os = "emscripten"), - feature = "stdweb"))] -mod imp { - use std::mem; - use stdweb::unstable::TryInto; - use stdweb::web::error::Error as WebError; - use {Error, ErrorKind}; - - #[derive(Clone, Debug)] - enum OsRngInner { - Browser, - Node - } - - #[derive(Clone, Debug)] - pub struct OsRng(OsRngInner); - - impl OsRng { - pub fn new() -> Result<OsRng, Error> { - let result = js! { - try { - if ( - typeof window === "object" && - typeof window.crypto === "object" && - typeof window.crypto.getRandomValues === "function" - ) { - return { success: true, ty: 1 }; - } - - if (typeof require("crypto").randomBytes === "function") { - return { success: true, ty: 2 }; - } - - return { success: false, error: new Error("not supported") }; - } catch(err) { - return { success: false, error: err }; - } - }; - - if js!{ return @{ result.as_ref() }.success } == true { - let ty = js!{ return @{ result }.ty }; - - if ty == 1 { Ok(OsRng(OsRngInner::Browser)) } - else if ty == 2 { Ok(OsRng(OsRngInner::Node)) } - else { unreachable!() } - } else { - let err: WebError = js!{ return @{ result }.error }.try_into().unwrap(); - Err(Error::with_cause(ErrorKind::Unavailable, "WASM Error", err)) - } - } - - pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - assert_eq!(mem::size_of::<usize>(), 4); - - let len = dest.len() as u32; - let ptr = dest.as_mut_ptr() as i32; - - let result = match self.0 { - OsRngInner::Browser => js! { - try { - let array = new Uint8Array(@{ len }); - window.crypto.getRandomValues(array); - HEAPU8.set(array, @{ ptr }); - - return { success: true }; - } catch(err) { - return { success: false, error: err }; - } - }, - OsRngInner::Node => js! { - try { - let bytes = require("crypto").randomBytes(@{ len }); - HEAPU8.set(new Uint8Array(bytes), @{ ptr }); - - return { success: true }; - } catch(err) { - return { success: false, error: err }; - } - } - }; - - if js!{ return @{ result.as_ref() }.success } == true { - Ok(()) - } else { - let err: WebError = js!{ return @{ result }.error }.try_into().unwrap(); - Err(Error::with_cause(ErrorKind::Unexpected, "WASM Error", err)) - } - } - } -} - -#[cfg(test)] -mod test { - use RngCore; - use OsRng; - - #[test] - fn test_os_rng() { - let mut r = OsRng::new().unwrap(); - - r.next_u32(); - r.next_u64(); - - let mut v1 = [0u8; 1000]; - r.fill_bytes(&mut v1); - - let mut v2 = [0u8; 1000]; - r.fill_bytes(&mut v2); - - let mut n_diff_bits = 0; - for i in 0..v1.len() { - n_diff_bits += (v1[i] ^ v2[i]).count_ones(); - } - - // Check at least 1 bit per byte differs. p(failure) < 1e-1000 with random input. - assert!(n_diff_bits >= v1.len() as u32); - } - - #[cfg(not(any(target_arch = "wasm32", target_arch = "asmjs")))] - #[test] - fn test_os_rng_tasks() { - use std::sync::mpsc::channel; - use std::thread; - - let mut txs = vec!(); - for _ in 0..20 { - let (tx, rx) = channel(); - txs.push(tx); - - thread::spawn(move|| { - // wait until all the tasks are ready to go. - rx.recv().unwrap(); - - // deschedule to attempt to interleave things as much - // as possible (XXX: is this a good test?) - let mut r = OsRng::new().unwrap(); - thread::yield_now(); - let mut v = [0u8; 1000]; - - for _ in 0..100 { - r.next_u32(); - thread::yield_now(); - r.next_u64(); - thread::yield_now(); - r.fill_bytes(&mut v); - thread::yield_now(); - } - }); - } - - // start all the tasks - for tx in txs.iter() { - tx.send(()).unwrap(); - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/prng/chacha.rs b/vendor/rand-8c5b0ac51d/src/prng/chacha.rs deleted file mode 100644 index 55af770..0000000 --- a/vendor/rand-8c5b0ac51d/src/prng/chacha.rs +++ /dev/null @@ -1,463 +0,0 @@ -// Copyright 2014 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://www.rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The ChaCha random number generator. - -use core::fmt; -use rand_core::{BlockRngCore, CryptoRng, RngCore, SeedableRng, Error, le}; -use rand_core::impls::BlockRng; - -const SEED_WORDS: usize = 8; // 8 words for the 256-bit key -const STATE_WORDS: usize = 16; - -/// A cryptographically secure random number generator that uses the ChaCha -/// algorithm. -/// -/// ChaCha is a stream cipher designed by Daniel J. Bernstein [1], that we use -/// as an RNG. It is an improved variant of the Salsa20 cipher family, which was -/// selected as one of the "stream ciphers suitable for widespread adoption" by -/// eSTREAM [2]. -/// -/// ChaCha uses add-rotate-xor (ARX) operations as its basis. These are safe -/// against timing attacks, although that is mostly a concern for ciphers and -/// not for RNGs. Also it is very suitable for SIMD implementation. -/// Here we do not provide a SIMD implementation yet, except for what is -/// provided by auto-vectorisation. -/// -/// With the ChaCha algorithm it is possible to choose the number of rounds the -/// core algorithm should run. By default `ChaChaRng` is created as ChaCha20, -/// which means 20 rounds. The number of rounds is a tradeoff between performance -/// and security, 8 rounds are considered the minimum to be secure. A different -/// number of rounds can be set using [`set_rounds`]. -/// -/// We deviate slightly from the ChaCha specification regarding the nonce and -/// the counter. Instead of a 64-bit nonce and 64-bit counter (or a 96-bit nonce -/// and 32-bit counter in the IETF variant [3]), we use a 128-bit counter. This -/// is because a nonce does not give a meaningful advantage for ChaCha when used -/// as an RNG. The modification is provably as strong as the original cipher, -/// though, since any distinguishing attack on our variant also works against -/// ChaCha with a chosen nonce. -/// -/// The modified word layout is: -/// -/// ```text -/// constant constant constant constant -/// key key key key -/// key key key key -/// counter counter counter counter -/// ``` -/// -/// [1]: D. J. Bernstein, [*ChaCha, a variant of Salsa20*]( -/// https://cr.yp.to/chacha.html) -/// -/// [2]: [eSTREAM: the ECRYPT Stream Cipher Project]( -/// http://www.ecrypt.eu.org/stream/) -/// -/// [3]: [ChaCha20 and Poly1305 for IETF Protocols]( -/// https://tools.ietf.org/html/rfc7539) -/// -/// [`set_rounds`]: #method.set_counter -#[derive(Clone, Debug)] -pub struct ChaChaRng(BlockRng<ChaChaCore>); - -impl RngCore for ChaChaRng { - #[inline] - fn next_u32(&mut self) -> u32 { - self.0.next_u32() - } - - #[inline] - fn next_u64(&mut self) -> u64 { - self.0.next_u64() - } - - #[inline] - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.0.fill_bytes(dest) - } - - #[inline] - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -impl SeedableRng for ChaChaRng { - type Seed = <ChaChaCore as SeedableRng>::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - ChaChaRng(BlockRng::<ChaChaCore>::from_seed(seed)) - } - - fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { - BlockRng::<ChaChaCore>::from_rng(rng).map(ChaChaRng) - } -} - -impl CryptoRng for ChaChaRng {} - -impl ChaChaRng { - /// Create an ChaCha random number generator using the default - /// fixed key of 8 zero words. - /// - /// # Examples - /// - /// ```rust - /// # #![allow(deprecated)] - /// use rand::{RngCore, ChaChaRng}; - /// - /// let mut ra = ChaChaRng::new_unseeded(); - /// println!("{:?}", ra.next_u32()); - /// println!("{:?}", ra.next_u32()); - /// ``` - /// - /// Since this equivalent to a RNG with a fixed seed, repeated executions - /// of an unseeded RNG will produce the same result. This code sample will - /// consistently produce: - /// - /// - 2917185654 - /// - 2419978656 - #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] - pub fn new_unseeded() -> ChaChaRng { - ChaChaRng::from_seed([0; SEED_WORDS*4]) - } - - /// Sets the internal 128-bit ChaCha counter to a user-provided value. This - /// permits jumping arbitrarily ahead (or backwards) in the pseudorandom - /// stream. - /// - /// The 128 bits used for the counter overlap with the nonce and smaller - /// counter of ChaCha when used as a stream cipher. It is in theory possible - /// to use `set_counter` to obtain the conventional ChaCha pseudorandom - /// stream associated with a particular nonce. This is not a supported use - /// of the RNG, because a nonce set that way is not treated as a constant - /// value but still as part of the counter, besides endian issues. - /// - /// # Examples - /// - /// ```rust - /// use rand::{ChaChaRng, RngCore, SeedableRng}; - /// - /// // Note: Use `FromEntropy` or `ChaChaRng::from_rng()` outside of testing. - /// let mut rng1 = ChaChaRng::from_seed([0; 32]); - /// let mut rng2 = rng1.clone(); - /// - /// // Skip to round 20. Because every round generates 16 `u32` values, this - /// // actually means skipping 320 values. - /// for _ in 0..(20*16) { rng1.next_u32(); } - /// rng2.set_counter(20, 0); - /// assert_eq!(rng1.next_u32(), rng2.next_u32()); - /// ``` - pub fn set_counter(&mut self, counter_low: u64, counter_high: u64) { - self.0.inner_mut().set_counter(counter_low, counter_high); - self.0.reset(); // force recomputation on next use - } - - /// Sets the number of rounds to run the ChaCha core algorithm per block to - /// generate. - /// - /// By default this is set to 20. Other recommended values are 12 and 8, - /// which trade security for performance. `rounds` only supports values - /// that are multiples of 4 and less than or equal to 20. - /// - /// # Examples - /// - /// ```rust - /// use rand::{ChaChaRng, RngCore, SeedableRng}; - /// - /// // Note: Use `FromEntropy` or `ChaChaRng::from_rng()` outside of testing. - /// let mut rng = ChaChaRng::from_seed([0; 32]); - /// rng.set_rounds(8); - /// - /// assert_eq!(rng.next_u32(), 0x2fef003e); - /// ``` - pub fn set_rounds(&mut self, rounds: usize) { - self.0.inner_mut().set_rounds(rounds); - self.0.reset(); // force recomputation on next use - } -} - -/// The core of `ChaChaRng`, used with `BlockRng`. -#[derive(Clone)] -pub struct ChaChaCore { - state: [u32; STATE_WORDS], - rounds: usize, -} - -// Custom Debug implementation that does not expose the internal state -impl fmt::Debug for ChaChaCore { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "ChaChaCore {{}}") - } -} - -macro_rules! quarter_round{ - ($a: expr, $b: expr, $c: expr, $d: expr) => {{ - $a = $a.wrapping_add($b); $d ^= $a; $d = $d.rotate_left(16); - $c = $c.wrapping_add($d); $b ^= $c; $b = $b.rotate_left(12); - $a = $a.wrapping_add($b); $d ^= $a; $d = $d.rotate_left( 8); - $c = $c.wrapping_add($d); $b ^= $c; $b = $b.rotate_left( 7); - }} -} - -macro_rules! double_round{ - ($x: expr) => {{ - // Column round - quarter_round!($x[ 0], $x[ 4], $x[ 8], $x[12]); - quarter_round!($x[ 1], $x[ 5], $x[ 9], $x[13]); - quarter_round!($x[ 2], $x[ 6], $x[10], $x[14]); - quarter_round!($x[ 3], $x[ 7], $x[11], $x[15]); - // Diagonal round - quarter_round!($x[ 0], $x[ 5], $x[10], $x[15]); - quarter_round!($x[ 1], $x[ 6], $x[11], $x[12]); - quarter_round!($x[ 2], $x[ 7], $x[ 8], $x[13]); - quarter_round!($x[ 3], $x[ 4], $x[ 9], $x[14]); - }} -} - -impl BlockRngCore for ChaChaCore { - type Item = u32; - type Results = [u32; STATE_WORDS]; - - fn generate(&mut self, results: &mut Self::Results) { - // For some reason extracting this part into a separate function - // improves performance by 50%. - fn core(results: &mut [u32; STATE_WORDS], - state: &[u32; STATE_WORDS], - rounds: usize) - { - let mut tmp = *state; - for _ in 0..rounds / 2 { - double_round!(tmp); - } - for i in 0..STATE_WORDS { - results[i] = tmp[i].wrapping_add(state[i]); - } - } - - core(results, &self.state, self.rounds); - - // update 128-bit counter - self.state[12] = self.state[12].wrapping_add(1); - if self.state[12] != 0 { return; }; - self.state[13] = self.state[13].wrapping_add(1); - if self.state[13] != 0 { return; }; - self.state[14] = self.state[14].wrapping_add(1); - if self.state[14] != 0 { return; }; - self.state[15] = self.state[15].wrapping_add(1); - } -} - -impl ChaChaCore { - /// Sets the internal 128-bit ChaCha counter to a user-provided value. This - /// permits jumping arbitrarily ahead (or backwards) in the pseudorandom - /// stream. - pub fn set_counter(&mut self, counter_low: u64, counter_high: u64) { - self.state[12] = counter_low as u32; - self.state[13] = (counter_low >> 32) as u32; - self.state[14] = counter_high as u32; - self.state[15] = (counter_high >> 32) as u32; - } - - /// Sets the number of rounds to run the ChaCha core algorithm per block to - /// generate. - pub fn set_rounds(&mut self, rounds: usize) { - assert!([4usize, 8, 12, 16, 20].iter().any(|x| *x == rounds)); - self.rounds = rounds; - } -} - -impl SeedableRng for ChaChaCore { - type Seed = [u8; SEED_WORDS*4]; - - fn from_seed(seed: Self::Seed) -> Self { - let mut seed_le = [0u32; SEED_WORDS]; - le::read_u32_into(&seed, &mut seed_le); - Self { - state: [0x61707865, 0x3320646E, 0x79622D32, 0x6B206574, // constants - seed_le[0], seed_le[1], seed_le[2], seed_le[3], // seed - seed_le[4], seed_le[5], seed_le[6], seed_le[7], // seed - 0, 0, 0, 0], // counter - rounds: 20, - } - } -} - -impl CryptoRng for ChaChaCore {} - -#[cfg(test)] -mod test { - use {RngCore, SeedableRng}; - use super::ChaChaRng; - - #[test] - fn test_chacha_construction() { - let seed = [0,0,0,0,0,0,0,0, - 1,0,0,0,0,0,0,0, - 2,0,0,0,0,0,0,0, - 3,0,0,0,0,0,0,0]; - let mut rng1 = ChaChaRng::from_seed(seed); - assert_eq!(rng1.next_u32(), 137206642); - - let mut rng2 = ChaChaRng::from_rng(rng1).unwrap(); - assert_eq!(rng2.next_u32(), 1325750369); - } - - #[test] - fn test_chacha_true_values_a() { - // Test vectors 1 and 2 from - // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 - let seed = [0u8; 32]; - let mut rng = ChaChaRng::from_seed(seed); - - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected = [0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653, - 0xb819d2bd, 0x1aed8da0, 0xccef36a8, 0xc70d778b, - 0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8, - 0xf4b8436a, 0x1ca11815, 0x69b687c3, 0x8665eeb2]; - assert_eq!(results, expected); - - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected = [0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73, - 0xa0290fcb, 0x6965e348, 0x3e53c612, 0xed7aee32, - 0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874, - 0x281fed31, 0x45fb0a51, 0x1f0ae1ac, 0x6f4d794b]; - assert_eq!(results, expected); - } - - #[test] - fn test_chacha_true_values_b() { - // Test vector 3 from - // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 - let seed = [0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 1]; - let mut rng = ChaChaRng::from_seed(seed); - - // Skip block 0 - for _ in 0..16 { rng.next_u32(); } - - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected = [0x2452eb3a, 0x9249f8ec, 0x8d829d9b, 0xddd4ceb1, - 0xe8252083, 0x60818b01, 0xf38422b8, 0x5aaa49c9, - 0xbb00ca8e, 0xda3ba7b4, 0xc4b592d1, 0xfdf2732f, - 0x4436274e, 0x2561b3c8, 0xebdd4aa6, 0xa0136c00]; - assert_eq!(results, expected); - } - - #[test] - fn test_chacha_true_values_c() { - // Test vector 4 from - // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 - let seed = [0, 0xff, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0]; - let expected = [0xfb4dd572, 0x4bc42ef1, 0xdf922636, 0x327f1394, - 0xa78dea8f, 0x5e269039, 0xa1bebbc1, 0xcaf09aae, - 0xa25ab213, 0x48a6b46c, 0x1b9d9bcb, 0x092c5be6, - 0x546ca624, 0x1bec45d5, 0x87f47473, 0x96f0992e]; - let mut results = [0u32; 16]; - - // Test block 2 by skipping block 0 and 1 - let mut rng1 = ChaChaRng::from_seed(seed); - for _ in 0..32 { rng1.next_u32(); } - for i in results.iter_mut() { *i = rng1.next_u32(); } - assert_eq!(results, expected); - - // Test block 2 by using `set_counter` - let mut rng2 = ChaChaRng::from_seed(seed); - rng2.set_counter(2, 0); - for i in results.iter_mut() { *i = rng2.next_u32(); } - assert_eq!(results, expected); - } - - #[test] - fn test_chacha_multiple_blocks() { - let seed = [0,0,0,0, 1,0,0,0, 2,0,0,0, 3,0,0,0, 4,0,0,0, 5,0,0,0, 6,0,0,0, 7,0,0,0]; - let mut rng = ChaChaRng::from_seed(seed); - - // Store the 17*i-th 32-bit word, - // i.e., the i-th word of the i-th 16-word block - let mut results = [0u32; 16]; - for i in results.iter_mut() { - *i = rng.next_u32(); - for _ in 0..16 { - rng.next_u32(); - } - } - let expected = [0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036, - 0x49884684, 0x64efec72, 0x4be2d186, 0x3615b384, - 0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530, - 0x2c5bad8f, 0x898881dc, 0x5f1c86d9, 0xc1f8e7f4]; - assert_eq!(results, expected); - } - - #[test] - fn test_chacha_true_bytes() { - let seed = [0u8; 32]; - let mut rng = ChaChaRng::from_seed(seed); - let mut results = [0u8; 32]; - rng.fill_bytes(&mut results); - let expected = [118, 184, 224, 173, 160, 241, 61, 144, - 64, 93, 106, 229, 83, 134, 189, 40, - 189, 210, 25, 184, 160, 141, 237, 26, - 168, 54, 239, 204, 139, 119, 13, 199]; - assert_eq!(results, expected); - } - - #[test] - fn test_chacha_set_counter() { - // Test vector 5 from - // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 - // Although we do not support setting a nonce, we try it here anyway so - // we can use this test vector. - let seed = [0u8; 32]; - let mut rng = ChaChaRng::from_seed(seed); - rng.set_counter(0, 2u64 << 56); - - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected = [0x374dc6c2, 0x3736d58c, 0xb904e24a, 0xcd3f93ef, - 0x88228b1a, 0x96a4dfb3, 0x5b76ab72, 0xc727ee54, - 0x0e0e978a, 0xf3145c95, 0x1b748ea8, 0xf786c297, - 0x99c28f5f, 0x628314e8, 0x398a19fa, 0x6ded1b53]; - assert_eq!(results, expected); - } - - #[test] - fn test_chacha_set_rounds() { - let seed = [0u8; 32]; - let mut rng = ChaChaRng::from_seed(seed); - rng.set_rounds(8); - - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - - let expected = [0x2fef003e, 0xd6405f89, 0xe8b85b7f, 0xa1a5091f, - 0xc30e842c, 0x3b7f9ace, 0x88e11b18, 0x1e1a71ef, - 0x72e14c98, 0x416f21b9, 0x6753449f, 0x19566d45, - 0xa3424a31, 0x01b086da, 0xb8fd7b38, 0x42fe0c0e]; - assert_eq!(results, expected); - } - - #[test] - fn test_chacha_clone() { - let seed = [0,0,0,0, 1,0,0,0, 2,0,0,0, 3,0,0,0, 4,0,0,0, 5,0,0,0, 6,0,0,0, 7,0,0,0]; - let mut rng = ChaChaRng::from_seed(seed); - let mut clone = rng.clone(); - for _ in 0..16 { - assert_eq!(rng.next_u64(), clone.next_u64()); - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/prng/hc128.rs b/vendor/rand-8c5b0ac51d/src/prng/hc128.rs deleted file mode 100644 index bd7fa46..0000000 --- a/vendor/rand-8c5b0ac51d/src/prng/hc128.rs +++ /dev/null @@ -1,457 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://www.rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The HC-128 random number generator. - -use core::fmt; -use rand_core::{BlockRngCore, CryptoRng, RngCore, SeedableRng, Error, le}; -use rand_core::impls::BlockRng; - -const SEED_WORDS: usize = 8; // 128 bit key followed by 128 bit iv - -/// A cryptographically secure random number generator that uses the HC-128 -/// algorithm. -/// -/// HC-128 is a stream cipher designed by Hongjun Wu [1], that we use as an RNG. -/// It is selected as one of the "stream ciphers suitable for widespread -/// adoption" by eSTREAM [2]. -/// -/// HC-128 is an array based RNG. In this it is similar to RC-4 and ISAAC before -/// it, but those have never been proven cryptographically secure (or have even -/// been significantly compromised, as in the case of RC-4 [5]). -/// -/// Because HC-128 works with simple indexing into a large array and with a few -/// operations that parallelize well, it has very good performance. The size of -/// the array it needs, 4kb, can however be a disadvantage. -/// -/// This implementation is not based on the version of HC-128 submitted to the -/// eSTREAM contest, but on a later version by the author with a few small -/// improvements from December 15, 2009 [3]. -/// -/// HC-128 has no known weaknesses that are easier to exploit than doing a -/// brute-force search of 2<sup>128</sup>. A very comprehensive analysis of the -/// current state of known attacks / weaknesses of HC-128 is given in [4]. -/// -/// The average cycle length is expected to be -/// 2<sup>1024*32-1</sup> = 2<sup>32767</sup>. -/// We support seeding with a 256-bit array, which matches the 128-bit key -/// concatenated with a 128-bit IV from the stream cipher. -/// -/// ## References -/// [1]: Hongjun Wu (2008). ["The Stream Cipher HC-128"]( -/// http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf). -/// *The eSTREAM Finalists*, LNCS 4986, pp. 39--47, Springer-Verlag. -/// -/// [2]: [eSTREAM: the ECRYPT Stream Cipher Project]( -/// http://www.ecrypt.eu.org/stream/) -/// -/// [3]: Hongjun Wu, [Stream Ciphers HC-128 and HC-256]( -/// https://www.ntu.edu.sg/home/wuhj/research/hc/index.html) -/// -/// [4]: Shashwat Raizada (January 2015),["Some Results On Analysis And -/// Implementation Of HC-128 Stream Cipher"]( -/// http://library.isical.ac.in:8080/jspui/bitstream/123456789/6636/1/TH431.pdf). -/// -/// [5]: Internet Engineering Task Force (Februari 2015), -/// ["Prohibiting RC4 Cipher Suites"](https://tools.ietf.org/html/rfc7465). -#[derive(Clone, Debug)] -pub struct Hc128Rng(BlockRng<Hc128Core>); - -impl RngCore for Hc128Rng { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - self.0.next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - self.0.next_u64() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.0.fill_bytes(dest) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -impl SeedableRng for Hc128Rng { - type Seed = <Hc128Core as SeedableRng>::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - Hc128Rng(BlockRng::<Hc128Core>::from_seed(seed)) - } - - fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { - BlockRng::<Hc128Core>::from_rng(rng).map(Hc128Rng) - } -} - -impl CryptoRng for Hc128Rng {} - -/// The core of `Hc128Rng`, used with `BlockRng`. -#[derive(Clone)] -pub struct Hc128Core { - t: [u32; 1024], - counter1024: usize, -} - -// Custom Debug implementation that does not expose the internal state -impl fmt::Debug for Hc128Core { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "Hc128Core {{}}") - } -} - -impl BlockRngCore for Hc128Core { - type Item = u32; - type Results = [u32; 16]; - - fn generate(&mut self, results: &mut Self::Results) { - assert!(self.counter1024 % 16 == 0); - - let cc = self.counter1024 % 512; - let dd = (cc + 16) % 512; - let ee = cc.wrapping_sub(16) % 512; - - if self.counter1024 & 512 == 0 { - // P block - results[0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); - results[1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); - results[2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); - results[3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); - results[4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); - results[5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); - results[6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); - results[7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); - results[8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); - results[9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); - results[10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); - results[11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); - results[12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); - results[13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); - results[14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); - results[15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); - } else { - // Q block - results[0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); - results[1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); - results[2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); - results[3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); - results[4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); - results[5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); - results[6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); - results[7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); - results[8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); - results[9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); - results[10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); - results[11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); - results[12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); - results[13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); - results[14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); - results[15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); - } - self.counter1024 = self.counter1024.wrapping_add(16); - } -} - -impl Hc128Core { - // One step of HC-128, update P and generate 32 bits keystream - #[inline(always)] - fn step_p(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) - -> u32 - { - let (p, q) = self.t.split_at_mut(512); - // FIXME: it would be great if we the bounds checks here could be - // optimized out, and we would not need unsafe. - // This improves performance by about 7%. - unsafe { - let temp0 = p.get_unchecked(i511).rotate_right(23); - let temp1 = p.get_unchecked(i3).rotate_right(10); - let temp2 = p.get_unchecked(i10).rotate_right(8); - *p.get_unchecked_mut(i) = p.get_unchecked(i) - .wrapping_add(temp2) - .wrapping_add(temp0 ^ temp1); - let temp3 = { - // The h1 function in HC-128 - let a = *p.get_unchecked(i12) as u8; - let c = (p.get_unchecked(i12) >> 16) as u8; - q[a as usize].wrapping_add(q[256 + c as usize]) - }; - temp3 ^ p.get_unchecked(i) - } - } - - // One step of HC-128, update Q and generate 32 bits keystream - // Similar to `step_p`, but `p` and `q` are swapped, and the rotates are to - // the left instead of to the right. - #[inline(always)] - fn step_q(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) - -> u32 - { - let (p, q) = self.t.split_at_mut(512); - unsafe { - let temp0 = q.get_unchecked(i511).rotate_left(23); - let temp1 = q.get_unchecked(i3).rotate_left(10); - let temp2 = q.get_unchecked(i10).rotate_left(8); - *q.get_unchecked_mut(i) = q.get_unchecked(i) - .wrapping_add(temp2) - .wrapping_add(temp0 ^ temp1); - let temp3 = { - // The h2 function in HC-128 - let a = *q.get_unchecked(i12) as u8; - let c = (q.get_unchecked(i12) >> 16) as u8; - p[a as usize].wrapping_add(p[256 + c as usize]) - }; - temp3 ^ q.get_unchecked(i) - } - } - - fn sixteen_steps(&mut self) { - assert!(self.counter1024 % 16 == 0); - - let cc = self.counter1024 % 512; - let dd = (cc + 16) % 512; - let ee = cc.wrapping_sub(16) % 512; - - if self.counter1024 < 512 { - // P block - self.t[cc+0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); - self.t[cc+1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); - self.t[cc+2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); - self.t[cc+3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); - self.t[cc+4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); - self.t[cc+5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); - self.t[cc+6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); - self.t[cc+7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); - self.t[cc+8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); - self.t[cc+9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); - self.t[cc+10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); - self.t[cc+11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); - self.t[cc+12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); - self.t[cc+13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); - self.t[cc+14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); - self.t[cc+15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); - } else { - // Q block - self.t[cc+512+0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); - self.t[cc+512+1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); - self.t[cc+512+2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); - self.t[cc+512+3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); - self.t[cc+512+4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); - self.t[cc+512+5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); - self.t[cc+512+6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); - self.t[cc+512+7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); - self.t[cc+512+8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); - self.t[cc+512+9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); - self.t[cc+512+10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); - self.t[cc+512+11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); - self.t[cc+512+12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); - self.t[cc+512+13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); - self.t[cc+512+14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); - self.t[cc+512+15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); - } - self.counter1024 += 16; - } - - // Initialize an HC-128 random number generator. The seed has to be - // 256 bits in length (`[u32; 8]`), matching the 128 bit `key` followed by - // 128 bit `iv` when HC-128 where to be used as a stream cipher. - fn init(seed: [u32; SEED_WORDS]) -> Self { - #[inline] - fn f1(x: u32) -> u32 { - x.rotate_right(7) ^ x.rotate_right(18) ^ (x >> 3) - } - - #[inline] - fn f2(x: u32) -> u32 { - x.rotate_right(17) ^ x.rotate_right(19) ^ (x >> 10) - } - - let mut t = [0u32; 1024]; - - // Expand the key and iv into P and Q - let (key, iv) = seed.split_at(4); - t[..4].copy_from_slice(key); - t[4..8].copy_from_slice(key); - t[8..12].copy_from_slice(iv); - t[12..16].copy_from_slice(iv); - - // Generate the 256 intermediate values W[16] ... W[256+16-1], and - // copy the last 16 generated values to the start op P. - for i in 16..256+16 { - t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) - .wrapping_add(t[i-16]).wrapping_add(i as u32); - } - { - let (p1, p2) = t.split_at_mut(256); - p1[0..16].copy_from_slice(&p2[0..16]); - } - - // Generate both the P and Q tables - for i in 16..1024 { - t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) - .wrapping_add(t[i-16]).wrapping_add(256 + i as u32); - } - - let mut core = Self { t, counter1024: 0 }; - - // run the cipher 1024 steps - for _ in 0..64 { core.sixteen_steps() }; - core.counter1024 = 0; - core - } -} - -impl SeedableRng for Hc128Core { - type Seed = [u8; SEED_WORDS*4]; - - /// Create an HC-128 random number generator with a seed. The seed has to be - /// 256 bits in length, matching the 128 bit `key` followed by 128 bit `iv` - /// when HC-128 where to be used as a stream cipher. - fn from_seed(seed: Self::Seed) -> Self { - let mut seed_u32 = [0u32; SEED_WORDS]; - le::read_u32_into(&seed, &mut seed_u32); - Self::init(seed_u32) - } -} - -impl CryptoRng for Hc128Core {} - -#[cfg(test)] -mod test { - use {RngCore, SeedableRng}; - use super::Hc128Rng; - - #[test] - // Test vector 1 from the paper "The Stream Cipher HC-128" - fn test_hc128_true_values_a() { - let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv - let mut rng = Hc128Rng::from_seed(seed); - - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected = [0x73150082, 0x3bfd03a0, 0xfb2fd77f, 0xaa63af0e, - 0xde122fc6, 0xa7dc29b6, 0x62a68527, 0x8b75ec68, - 0x9036db1e, 0x81896005, 0x00ade078, 0x491fbf9a, - 0x1cdc3013, 0x6c3d6e24, 0x90f664b2, 0x9cd57102]; - assert_eq!(results, expected); - } - - #[test] - // Test vector 2 from the paper "The Stream Cipher HC-128" - fn test_hc128_true_values_b() { - let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key - 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv - let mut rng = Hc128Rng::from_seed(seed); - - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected = [0xc01893d5, 0xb7dbe958, 0x8f65ec98, 0x64176604, - 0x36fc6724, 0xc82c6eec, 0x1b1c38a7, 0xc9b42a95, - 0x323ef123, 0x0a6a908b, 0xce757b68, 0x9f14f7bb, - 0xe4cde011, 0xaeb5173f, 0x89608c94, 0xb5cf46ca]; - assert_eq!(results, expected); - } - - #[test] - // Test vector 3 from the paper "The Stream Cipher HC-128" - fn test_hc128_true_values_c() { - let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv - let mut rng = Hc128Rng::from_seed(seed); - - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected = [0x518251a4, 0x04b4930a, 0xb02af931, 0x0639f032, - 0xbcb4a47a, 0x5722480b, 0x2bf99f72, 0xcdc0e566, - 0x310f0c56, 0xd3cc83e8, 0x663db8ef, 0x62dfe07f, - 0x593e1790, 0xc5ceaa9c, 0xab03806f, 0xc9a6e5a0]; - assert_eq!(results, expected); - } - - #[test] - fn test_hc128_true_values_u64() { - let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv - let mut rng = Hc128Rng::from_seed(seed); - - let mut results = [0u64; 8]; - for i in results.iter_mut() { *i = rng.next_u64(); } - let expected = [0x3bfd03a073150082, 0xaa63af0efb2fd77f, - 0xa7dc29b6de122fc6, 0x8b75ec6862a68527, - 0x818960059036db1e, 0x491fbf9a00ade078, - 0x6c3d6e241cdc3013, 0x9cd5710290f664b2]; - assert_eq!(results, expected); - - // The RNG operates in a P block of 512 results and next a Q block. - // After skipping 2*800 u32 results we end up somewhere in the Q block - // of the second round - for _ in 0..800 { rng.next_u64(); } - - for i in results.iter_mut() { *i = rng.next_u64(); } - let expected = [0xd8c4d6ca84d0fc10, 0xf16a5d91dc66e8e7, - 0xd800de5bc37a8653, 0x7bae1f88c0dfbb4c, - 0x3bfe1f374e6d4d14, 0x424b55676be3fa06, - 0xe3a1e8758cbff579, 0x417f7198c5652bcd]; - assert_eq!(results, expected); - } - - #[test] - fn test_hc128_true_values_bytes() { - let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv - let mut rng = Hc128Rng::from_seed(seed); - let expected = [0x31, 0xf9, 0x2a, 0xb0, 0x32, 0xf0, 0x39, 0x06, - 0x7a, 0xa4, 0xb4, 0xbc, 0x0b, 0x48, 0x22, 0x57, - 0x72, 0x9f, 0xf9, 0x2b, 0x66, 0xe5, 0xc0, 0xcd, - 0x56, 0x0c, 0x0f, 0x31, 0xe8, 0x83, 0xcc, 0xd3, - 0xef, 0xb8, 0x3d, 0x66, 0x7f, 0xe0, 0xdf, 0x62, - 0x90, 0x17, 0x3e, 0x59, 0x9c, 0xaa, 0xce, 0xc5, - 0x6f, 0x80, 0x03, 0xab, 0xa0, 0xe5, 0xa6, 0xc9, - 0x60, 0x95, 0x84, 0x7a, 0xa5, 0x68, 0x5a, 0x84, - 0xea, 0xd5, 0xf3, 0xea, 0x73, 0xa9, 0xad, 0x01, - 0x79, 0x7d, 0xbe, 0x9f, 0xea, 0xe3, 0xf9, 0x74, - 0x0e, 0xda, 0x2f, 0xa0, 0xe4, 0x7b, 0x4b, 0x1b, - 0xdd, 0x17, 0x69, 0x4a, 0xfe, 0x9f, 0x56, 0x95, - 0xad, 0x83, 0x6b, 0x9d, 0x60, 0xa1, 0x99, 0x96, - 0x90, 0x00, 0x66, 0x7f, 0xfa, 0x7e, 0x65, 0xe9, - 0xac, 0x8b, 0x92, 0x34, 0x77, 0xb4, 0x23, 0xd0, - 0xb9, 0xab, 0xb1, 0x47, 0x7d, 0x4a, 0x13, 0x0a]; - - // Pick a somewhat large buffer so we can test filling with the - // remainder from `state.results`, directly filling the buffer, and - // filling the remainder of the buffer. - let mut buffer = [0u8; 16*4*2]; - // Consume a value so that we have a remainder. - assert!(rng.next_u64() == 0x04b4930a518251a4); - rng.fill_bytes(&mut buffer); - - // [u8; 128] doesn't implement PartialEq - assert_eq!(buffer.len(), expected.len()); - for (b, e) in buffer.iter().zip(expected.iter()) { - assert_eq!(b, e); - } - } - - #[test] - fn test_hc128_clone() { - let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv - let mut rng1 = Hc128Rng::from_seed(seed); - let mut rng2 = rng1.clone(); - for _ in 0..16 { - assert_eq!(rng1.next_u32(), rng2.next_u32()); - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/prng/isaac.rs b/vendor/rand-8c5b0ac51d/src/prng/isaac.rs deleted file mode 100644 index 5bf739d..0000000 --- a/vendor/rand-8c5b0ac51d/src/prng/isaac.rs +++ /dev/null @@ -1,482 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The ISAAC random number generator. - -use core::{fmt, slice}; -use core::num::Wrapping as w; -use rand_core::{BlockRngCore, RngCore, SeedableRng, Error, le}; -use rand_core::impls::BlockRng; -use prng::isaac_array::IsaacArray; - -#[allow(non_camel_case_types)] -type w32 = w<u32>; - -const RAND_SIZE_LEN: usize = 8; -const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; - -/// A random number generator that uses the ISAAC algorithm. -/// -/// ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are -/// the principal bitwise operations employed. It is the most advanced of a -/// series of array based random number generator designed by Robert Jenkins -/// in 1996[1][2]. -/// -/// ISAAC is notably fast and produces excellent quality random numbers for -/// non-cryptographic applications. -/// -/// In spite of being designed with cryptographic security in mind, ISAAC hasn't -/// been stringently cryptanalyzed and thus cryptographers do not not -/// consensually trust it to be secure. When looking for a secure RNG, prefer -/// [`Hc128Rng`] instead, which, like ISAAC, is an array-based RNG and one of -/// the stream-ciphers selected the by eSTREAM contest. -/// -/// In 2006 an improvement to ISAAC was suggested by Jean-Philippe Aumasson, -/// named ISAAC+[3]. But because the specification is not complete, because -/// there is no good implementation, and because the suggested bias may not -/// exist, it is not implemented here. -/// -/// ## Overview of the ISAAC algorithm: -/// (in pseudo-code) -/// -/// ```text -/// Input: a, b, c, s[256] // state -/// Output: r[256] // results -/// -/// mix(a,i) = a ^ a << 13 if i = 0 mod 4 -/// a ^ a >> 6 if i = 1 mod 4 -/// a ^ a << 2 if i = 2 mod 4 -/// a ^ a >> 16 if i = 3 mod 4 -/// -/// c = c + 1 -/// b = b + c -/// -/// for i in 0..256 { -/// x = s_[i] -/// a = f(a,i) + s[i+128 mod 256] -/// y = a + b + s[x>>2 mod 256] -/// s[i] = y -/// b = x + s[y>>10 mod 256] -/// r[i] = b -/// } -/// ``` -/// -/// Numbers are generated in blocks of 256. This means the function above only -/// runs once every 256 times you ask for a next random number. In all other -/// circumstances the last element of the results array is returned. -/// -/// ISAAC therefore needs a lot of memory, relative to other non-vrypto RNGs. -/// 2 * 256 * 4 = 2 kb to hold the state and results. -/// -/// ## References -/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number generator*]( -/// http://burtleburtle.net/bob/rand/isaacafa.html) -/// -/// [2]: Bob Jenkins, [*ISAAC and RC4*]( -/// http://burtleburtle.net/bob/rand/isaac.html) -/// -/// [3]: Jean-Philippe Aumasson, [*On the pseudo-random generator ISAAC*]( -/// https://eprint.iacr.org/2006/438) -/// -/// [`Hc128Rng`]: ../hc128/struct.Hc128Rng.html -#[derive(Clone, Debug)] -#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] -pub struct IsaacRng(BlockRng<IsaacCore>); - -impl RngCore for IsaacRng { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - self.0.next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - self.0.next_u64() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.0.fill_bytes(dest) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -impl SeedableRng for IsaacRng { - type Seed = <IsaacCore as SeedableRng>::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - IsaacRng(BlockRng::<IsaacCore>::from_seed(seed)) - } - - fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { - BlockRng::<IsaacCore>::from_rng(rng).map(|rng| IsaacRng(rng)) - } -} - -impl IsaacRng { - /// Create an ISAAC random number generator using the default - /// fixed seed. - /// - /// DEPRECATED. `IsaacRng::new_from_u64(0)` will produce identical results. - #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] - pub fn new_unseeded() -> Self { - Self::new_from_u64(0) - } - - /// Create an ISAAC random number generator using an `u64` as seed. - /// If `seed == 0` this will produce the same stream of random numbers as - /// the reference implementation when used unseeded. - pub fn new_from_u64(seed: u64) -> Self { - IsaacRng(BlockRng::new(IsaacCore::new_from_u64(seed))) - } -} - -/// The core of `IsaacRng`, used with `BlockRng`. -#[derive(Clone)] -#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] -pub struct IsaacCore { - #[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))] - mem: [w32; RAND_SIZE], - a: w32, - b: w32, - c: w32, -} - -// Custom Debug implementation that does not expose the internal state -impl fmt::Debug for IsaacCore { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "IsaacCore {{}}") - } -} - -impl BlockRngCore for IsaacCore { - type Item = u32; - type Results = IsaacArraySelf::Item; - - /// Refills the output buffer, `results`. See also the pseudocode desciption - /// of the algorithm in the [`Isaac64Rng`] documentation. - /// - /// Optimisations used (similar to the reference implementation): - /// - /// - The loop is unrolled 4 times, once for every constant of mix(). - /// - The contents of the main loop are moved to a function `rngstep`, to - /// reduce code duplication. - /// - We use local variables for a and b, which helps with optimisations. - /// - We split the main loop in two, one that operates over 0..128 and one - /// over 128..256. This way we can optimise out the addition and modulus - /// from `s[i+128 mod 256]`. - /// - We maintain one index `i` and add `m` or `m2` as base (m2 for the - /// `s[i+128 mod 256]`), relying on the optimizer to turn it into pointer - /// arithmetic. - /// - We fill `results` backwards. The reference implementation reads values - /// from `results` in reverse. We read them in the normal direction, to - /// make `fill_bytes` a memcopy. To maintain compatibility we fill in - /// reverse. - /// - /// [`IsaacRng`]: struct.IsaacRng.html - fn generate(&mut self, results: &mut IsaacArraySelf::Item) { - self.c += w(1); - // abbreviations - let mut a = self.a; - let mut b = self.b + self.c; - const MIDPOINT: usize = RAND_SIZE / 2; - - #[inline] - fn ind(mem:&[w32; RAND_SIZE], v: w32, amount: usize) -> w32 { - let index = (v >> amount).0 as usize % RAND_SIZE; - mem[index] - } - - #[inline] - fn rngstep(mem: &mut [w32; RAND_SIZE], - results: &mut [u32; RAND_SIZE], - mix: w32, - a: &mut w32, - b: &mut w32, - base: usize, - m: usize, - m2: usize) { - let x = mem[base + m]; - *a = mix + mem[base + m2]; - let y = *a + *b + ind(&mem, x, 2); - mem[base + m] = y; - *b = x + ind(&mem, y, 2 + RAND_SIZE_LEN); - results[RAND_SIZE - 1 - base - m] = (*b).0; - } - - let mut m = 0; - let mut m2 = MIDPOINT; - for i in (0..MIDPOINT/4).map(|i| i * 4) { - rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 6 ), &mut a, &mut b, i + 1, m, m2); - rngstep(&mut self.mem, results, a ^ (a << 2 ), &mut a, &mut b, i + 2, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 16), &mut a, &mut b, i + 3, m, m2); - } - - m = MIDPOINT; - m2 = 0; - for i in (0..MIDPOINT/4).map(|i| i * 4) { - rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 6 ), &mut a, &mut b, i + 1, m, m2); - rngstep(&mut self.mem, results, a ^ (a << 2 ), &mut a, &mut b, i + 2, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 16), &mut a, &mut b, i + 3, m, m2); - } - - self.a = a; - self.b = b; - } -} - -impl IsaacCore { - /// Create a new ISAAC random number generator. - /// - /// The author Bob Jenkins describes how to best initialize ISAAC here: - /// https://rt.cpan.org/Public/Bug/Display.html?id=64324 - /// The answer is included here just in case: - /// - /// "No, you don't need a full 8192 bits of seed data. Normal key sizes will - /// do fine, and they should have their expected strength (eg a 40-bit key - /// will take as much time to brute force as 40-bit keys usually will). You - /// could fill the remainder with 0, but set the last array element to the - /// length of the key provided (to distinguish keys that differ only by - /// different amounts of 0 padding). You do still need to call randinit() to - /// make sure the initial state isn't uniform-looking." - /// "After publishing ISAAC, I wanted to limit the key to half the size of - /// r[], and repeat it twice. That would have made it hard to provide a key - /// that sets the whole internal state to anything convenient. But I'd - /// already published it." - /// - /// And his answer to the question "For my code, would repeating the key - /// over and over to fill 256 integers be a better solution than - /// zero-filling, or would they essentially be the same?": - /// "If the seed is under 32 bytes, they're essentially the same, otherwise - /// repeating the seed would be stronger. randinit() takes a chunk of 32 - /// bytes, mixes it, and combines that with the next 32 bytes, et cetera. - /// Then loops over all the elements the same way a second time." - #[inline] - fn init(mut mem: [w32; RAND_SIZE], rounds: u32) -> Self { - fn mix(a: &mut w32, b: &mut w32, c: &mut w32, d: &mut w32, - e: &mut w32, f: &mut w32, g: &mut w32, h: &mut w32) { - *a ^= *b << 11; *d += *a; *b += *c; - *b ^= *c >> 2; *e += *b; *c += *d; - *c ^= *d << 8; *f += *c; *d += *e; - *d ^= *e >> 16; *g += *d; *e += *f; - *e ^= *f << 10; *h += *e; *f += *g; - *f ^= *g >> 4; *a += *f; *g += *h; - *g ^= *h << 8; *b += *g; *h += *a; - *h ^= *a >> 9; *c += *h; *a += *b; - } - - // These numbers are the result of initializing a...h with the - // fractional part of the golden ratio in binary (0x9e3779b9) - // and applying mix() 4 times. - let mut a = w(0x1367df5a); - let mut b = w(0x95d90059); - let mut c = w(0xc3163e4b); - let mut d = w(0x0f421ad8); - let mut e = w(0xd92a4a78); - let mut f = w(0xa51a3c49); - let mut g = w(0xc4efea1b); - let mut h = w(0x30609119); - - // Normally this should do two passes, to make all of the seed effect - // all of `mem` - for _ in 0..rounds { - for i in (0..RAND_SIZE/8).map(|i| i * 8) { - a += mem[i ]; b += mem[i+1]; - c += mem[i+2]; d += mem[i+3]; - e += mem[i+4]; f += mem[i+5]; - g += mem[i+6]; h += mem[i+7]; - mix(&mut a, &mut b, &mut c, &mut d, - &mut e, &mut f, &mut g, &mut h); - mem[i ] = a; mem[i+1] = b; - mem[i+2] = c; mem[i+3] = d; - mem[i+4] = e; mem[i+5] = f; - mem[i+6] = g; mem[i+7] = h; - } - } - - Self { mem, a: w(0), b: w(0), c: w(0) } - } - - /// Create an ISAAC random number generator using an `u64` as seed. - /// If `seed == 0` this will produce the same stream of random numbers as - /// the reference implementation when used unseeded. - fn new_from_u64(seed: u64) -> Self { - let mut key = [w(0); RAND_SIZE]; - key[0] = w(seed as u32); - key[1] = w((seed >> 32) as u32); - // Initialize with only one pass. - // A second pass does not improve the quality here, because all of the - // seed was already available in the first round. - // Not doing the second pass has the small advantage that if - // `seed == 0` this method produces exactly the same state as the - // reference implementation when used unseeded. - Self::init(key, 1) - } -} - -impl SeedableRng for IsaacCore { - type Seed = [u8; 32]; - - fn from_seed(seed: Self::Seed) -> Self { - let mut seed_u32 = [0u32; 8]; - le::read_u32_into(&seed, &mut seed_u32); - // Convert the seed to `Wrapping<u32>` and zero-extend to `RAND_SIZE`. - let mut seed_extended = [w(0); RAND_SIZE]; - for (x, y) in seed_extended.iter_mut().zip(seed_u32.iter()) { - *x = w(*y); - } - Self::init(seed_extended, 2) - } - - fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { - // Custom `from_rng` implementation that fills a seed with the same size - // as the entire state. - let mut seed = [w(0u32); RAND_SIZE]; - unsafe { - let ptr = seed.as_mut_ptr() as *mut u8; - - let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 4); - rng.try_fill_bytes(slice)?; - } - for i in seed.iter_mut() { - *i = w(i.0.to_le()); - } - - Ok(Self::init(seed, 2)) - } -} - -#[cfg(test)] -mod test { - use {RngCore, SeedableRng}; - use super::IsaacRng; - - #[test] - fn test_isaac_construction() { - // Test that various construction techniques produce a working RNG. - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng1 = IsaacRng::from_seed(seed); - assert_eq!(rng1.next_u32(), 2869442790); - - let mut rng2 = IsaacRng::from_rng(rng1).unwrap(); - assert_eq!(rng2.next_u32(), 3094074039); - } - - #[test] - fn test_isaac_true_values_32() { - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng1 = IsaacRng::from_seed(seed); - let mut results = [0u32; 10]; - for i in results.iter_mut() { *i = rng1.next_u32(); } - let expected = [ - 2558573138, 873787463, 263499565, 2103644246, 3595684709, - 4203127393, 264982119, 2765226902, 2737944514, 3900253796]; - assert_eq!(results, expected); - - let seed = [57,48,0,0, 50,9,1,0, 49,212,0,0, 148,38,0,0, - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng2 = IsaacRng::from_seed(seed); - // skip forward to the 10000th number - for _ in 0..10000 { rng2.next_u32(); } - - for i in results.iter_mut() { *i = rng2.next_u32(); } - let expected = [ - 3676831399, 3183332890, 2834741178, 3854698763, 2717568474, - 1576568959, 3507990155, 179069555, 141456972, 2478885421]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac_true_values_64() { - // As above, using little-endian versions of above values - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng = IsaacRng::from_seed(seed); - let mut results = [0u64; 5]; - for i in results.iter_mut() { *i = rng.next_u64(); } - let expected = [ - 3752888579798383186, 9035083239252078381,18052294697452424037, - 11876559110374379111, 16751462502657800130]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac_true_bytes() { - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng = IsaacRng::from_seed(seed); - let mut results = [0u8; 32]; - rng.fill_bytes(&mut results); - // Same as first values in test_isaac_true_values as bytes in LE order - let expected = [82, 186, 128, 152, 71, 240, 20, 52, - 45, 175, 180, 15, 86, 16, 99, 125, - 101, 203, 81, 214, 97, 162, 134, 250, - 103, 78, 203, 15, 150, 3, 210, 164]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac_new_uninitialized() { - // Compare the results from initializing `IsaacRng` with - // `new_from_u64(0)`, to make sure it is the same as the reference - // implementation when used uninitialized. - // Note: We only test the first 16 integers, not the full 256 of the - // first block. - let mut rng = IsaacRng::new_from_u64(0); - let mut results = [0u32; 16]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected: [u32; 16] = [ - 0x71D71FD2, 0xB54ADAE7, 0xD4788559, 0xC36129FA, - 0x21DC1EA9, 0x3CB879CA, 0xD83B237F, 0xFA3CE5BD, - 0x8D048509, 0xD82E9489, 0xDB452848, 0xCA20E846, - 0x500F972E, 0x0EEFF940, 0x00D6B993, 0xBC12C17F]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac_clone() { - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng1 = IsaacRng::from_seed(seed); - let mut rng2 = rng1.clone(); - for _ in 0..16 { - assert_eq!(rng1.next_u32(), rng2.next_u32()); - } - } - - #[test] - #[cfg(all(feature="serde1", feature="std"))] - fn test_isaac_serde() { - use bincode; - use std::io::{BufWriter, BufReader}; - - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng = IsaacRng::from_seed(seed); - - let buf: Vec<u8> = Vec::new(); - let mut buf = BufWriter::new(buf); - bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); - - let buf = buf.into_inner().unwrap(); - let mut read = BufReader::new(&buf[..]); - let mut deserialized: IsaacRng = bincode::deserialize_from(&mut read).expect("Could not deserialize"); - - for _ in 0..300 { // more than the 256 buffered results - assert_eq!(rng.next_u32(), deserialized.next_u32()); - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/prng/isaac64.rs b/vendor/rand-8c5b0ac51d/src/prng/isaac64.rs deleted file mode 100644 index 35376fb..0000000 --- a/vendor/rand-8c5b0ac51d/src/prng/isaac64.rs +++ /dev/null @@ -1,474 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The ISAAC-64 random number generator. - -use core::{fmt, slice}; -use core::num::Wrapping as w; -use rand_core::{BlockRngCore, RngCore, SeedableRng, Error, le}; -use rand_core::impls::BlockRng64; -use prng::isaac_array::IsaacArray; - -#[allow(non_camel_case_types)] -type w64 = w<u64>; - -const RAND_SIZE_LEN: usize = 8; -const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; - -/// A random number generator that uses ISAAC-64, the 64-bit variant of the -/// ISAAC algorithm. -/// -/// ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are -/// the principal bitwise operations employed. It is the most advanced of a -/// series of array based random number generator designed by Robert Jenkins -/// in 1996[1]. -/// -/// ISAAC-64 is mostly similar to ISAAC. Because it operates on 64-bit integers -/// instead of 32-bit, it uses twice as much memory to hold its state and -/// results. Also it uses different constants for shifts and indirect indexing, -/// optimized to give good results for 64bit arithmetic. -/// -/// ISAAC-64 is notably fast and produces excellent quality random numbers for -/// non-cryptographic applications. -/// -/// In spite of being designed with cryptographic security in mind, ISAAC hasn't -/// been stringently cryptanalyzed and thus cryptographers do not not -/// consensually trust it to be secure. When looking for a secure RNG, prefer -/// [`Hc128Rng`] instead, which, like ISAAC, is an array-based RNG and one of -/// the stream-ciphers selected the by eSTREAM contest. -/// -/// ## Overview of the ISAAC-64 algorithm: -/// (in pseudo-code) -/// -/// ```text -/// Input: a, b, c, s[256] // state -/// Output: r[256] // results -/// -/// mix(a,i) = !(a ^ a << 21) if i = 0 mod 4 -/// a ^ a >> 5 if i = 1 mod 4 -/// a ^ a << 12 if i = 2 mod 4 -/// a ^ a >> 33 if i = 3 mod 4 -/// -/// c = c + 1 -/// b = b + c -/// -/// for i in 0..256 { -/// x = s_[i] -/// a = mix(a,i) + s[i+128 mod 256] -/// y = a + b + s[x>>3 mod 256] -/// s[i] = y -/// b = x + s[y>>11 mod 256] -/// r[i] = b -/// } -/// ``` -/// -/// See for more information the documentation of [`IsaacRng`]. -/// -/// [1]: Bob Jenkins, [*ISAAC and RC4*]( -/// http://burtleburtle.net/bob/rand/isaac.html) -/// -/// [`IsaacRng`]: ../isaac/struct.IsaacRng.html -/// [`Hc128Rng`]: ../hc128/struct.Hc128Rng.html -#[derive(Clone, Debug)] -#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] -pub struct Isaac64Rng(BlockRng64<Isaac64Core>); - -impl RngCore for Isaac64Rng { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - self.0.next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - self.0.next_u64() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.0.fill_bytes(dest) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -impl SeedableRng for Isaac64Rng { - type Seed = <Isaac64Core as SeedableRng>::Seed; - - fn from_seed(seed: Self::Seed) -> Self { - Isaac64Rng(BlockRng64::<Isaac64Core>::from_seed(seed)) - } - - fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> { - BlockRng64::<Isaac64Core>::from_rng(rng).map(|rng| Isaac64Rng(rng)) - } -} - -impl Isaac64Rng { - /// Create a 64-bit ISAAC random number generator using the - /// default fixed seed. - /// - /// DEPRECATED. `Isaac64Rng::new_from_u64(0)` will produce identical results. - #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] - pub fn new_unseeded() -> Self { - Self::new_from_u64(0) - } - - /// Create an ISAAC-64 random number generator using an `u64` as seed. - /// If `seed == 0` this will produce the same stream of random numbers as - /// the reference implementation when used unseeded. - pub fn new_from_u64(seed: u64) -> Self { - Isaac64Rng(BlockRng64::new(Isaac64Core::new_from_u64(seed))) - } -} - -/// The core of `Isaac64Rng`, used with `BlockRng`. -#[derive(Clone)] -#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] -pub struct Isaac64Core { - #[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))] - mem: [w64; RAND_SIZE], - a: w64, - b: w64, - c: w64, -} - -// Custom Debug implementation that does not expose the internal state -impl fmt::Debug for Isaac64Core { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "Isaac64Core {{}}") - } -} - -impl BlockRngCore for Isaac64Core { - type Item = u64; - type Results = IsaacArraySelf::Item; - - /// Refills the output buffer, `results`. See also the pseudocode desciption - /// of the algorithm in the [`Isaac64Rng`] documentation. - /// - /// Optimisations used (similar to the reference implementation): - /// - /// - The loop is unrolled 4 times, once for every constant of mix(). - /// - The contents of the main loop are moved to a function `rngstep`, to - /// reduce code duplication. - /// - We use local variables for a and b, which helps with optimisations. - /// - We split the main loop in two, one that operates over 0..128 and one - /// over 128..256. This way we can optimise out the addition and modulus - /// from `s[i+128 mod 256]`. - /// - We maintain one index `i` and add `m` or `m2` as base (m2 for the - /// `s[i+128 mod 256]`), relying on the optimizer to turn it into pointer - /// arithmetic. - /// - We fill `results` backwards. The reference implementation reads values - /// from `results` in reverse. We read them in the normal direction, to - /// make `fill_bytes` a memcopy. To maintain compatibility we fill in - /// reverse. - /// - /// [`Isaac64Rng`]: struct.Isaac64Rng.html - fn generate(&mut self, results: &mut IsaacArraySelf::Item) { - self.c += w(1); - // abbreviations - let mut a = self.a; - let mut b = self.b + self.c; - const MIDPOINT: usize = RAND_SIZE / 2; - - #[inline] - fn ind(mem:&[w64; RAND_SIZE], v: w64, amount: usize) -> w64 { - let index = (v >> amount).0 as usize % RAND_SIZE; - mem[index] - } - - #[inline] - fn rngstep(mem: &mut [w64; RAND_SIZE], - results: &mut [u64; RAND_SIZE], - mix: w64, - a: &mut w64, - b: &mut w64, - base: usize, - m: usize, - m2: usize) { - let x = mem[base + m]; - *a = mix + mem[base + m2]; - let y = *a + *b + ind(&mem, x, 3); - mem[base + m] = y; - *b = x + ind(&mem, y, 3 + RAND_SIZE_LEN); - results[RAND_SIZE - 1 - base - m] = (*b).0; - } - - let mut m = 0; - let mut m2 = MIDPOINT; - for i in (0..MIDPOINT/4).map(|i| i * 4) { - rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 5 ), &mut a, &mut b, i + 1, m, m2); - rngstep(&mut self.mem, results, a ^ (a << 12), &mut a, &mut b, i + 2, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 33), &mut a, &mut b, i + 3, m, m2); - } - - m = MIDPOINT; - m2 = 0; - for i in (0..MIDPOINT/4).map(|i| i * 4) { - rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 5 ), &mut a, &mut b, i + 1, m, m2); - rngstep(&mut self.mem, results, a ^ (a << 12), &mut a, &mut b, i + 2, m, m2); - rngstep(&mut self.mem, results, a ^ (a >> 33), &mut a, &mut b, i + 3, m, m2); - } - - self.a = a; - self.b = b; - } -} - -impl Isaac64Core { - /// Create a new ISAAC-64 random number generator. - fn init(mut mem: [w64; RAND_SIZE], rounds: u32) -> Self { - fn mix(a: &mut w64, b: &mut w64, c: &mut w64, d: &mut w64, - e: &mut w64, f: &mut w64, g: &mut w64, h: &mut w64) { - *a -= *e; *f ^= *h >> 9; *h += *a; - *b -= *f; *g ^= *a << 9; *a += *b; - *c -= *g; *h ^= *b >> 23; *b += *c; - *d -= *h; *a ^= *c << 15; *c += *d; - *e -= *a; *b ^= *d >> 14; *d += *e; - *f -= *b; *c ^= *e << 20; *e += *f; - *g -= *c; *d ^= *f >> 17; *f += *g; - *h -= *d; *e ^= *g << 14; *g += *h; - } - - // These numbers are the result of initializing a...h with the - // fractional part of the golden ratio in binary (0x9e3779b97f4a7c13) - // and applying mix() 4 times. - let mut a = w(0x647c4677a2884b7c); - let mut b = w(0xb9f8b322c73ac862); - let mut c = w(0x8c0ea5053d4712a0); - let mut d = w(0xb29b2e824a595524); - let mut e = w(0x82f053db8355e0ce); - let mut f = w(0x48fe4a0fa5a09315); - let mut g = w(0xae985bf2cbfc89ed); - let mut h = w(0x98f5704f6c44c0ab); - - // Normally this should do two passes, to make all of the seed effect - // all of `mem` - for _ in 0..rounds { - for i in (0..RAND_SIZE/8).map(|i| i * 8) { - a += mem[i ]; b += mem[i+1]; - c += mem[i+2]; d += mem[i+3]; - e += mem[i+4]; f += mem[i+5]; - g += mem[i+6]; h += mem[i+7]; - mix(&mut a, &mut b, &mut c, &mut d, - &mut e, &mut f, &mut g, &mut h); - mem[i ] = a; mem[i+1] = b; - mem[i+2] = c; mem[i+3] = d; - mem[i+4] = e; mem[i+5] = f; - mem[i+6] = g; mem[i+7] = h; - } - } - - Self { mem, a: w(0), b: w(0), c: w(0) } - } - - /// Create an ISAAC-64 random number generator using an `u64` as seed. - /// If `seed == 0` this will produce the same stream of random numbers as - /// the reference implementation when used unseeded. - pub fn new_from_u64(seed: u64) -> Self { - let mut key = [w(0); RAND_SIZE]; - key[0] = w(seed); - // Initialize with only one pass. - // A second pass does not improve the quality here, because all of the - // seed was already available in the first round. - // Not doing the second pass has the small advantage that if - // `seed == 0` this method produces exactly the same state as the - // reference implementation when used unseeded. - Self::init(key, 1) - } -} - -impl SeedableRng for Isaac64Core { - type Seed = [u8; 32]; - - fn from_seed(seed: Self::Seed) -> Self { - let mut seed_u64 = [0u64; 4]; - le::read_u64_into(&seed, &mut seed_u64); - // Convert the seed to `Wrapping<u64>` and zero-extend to `RAND_SIZE`. - let mut seed_extended = [w(0); RAND_SIZE]; - for (x, y) in seed_extended.iter_mut().zip(seed_u64.iter()) { - *x = w(*y); - } - Self::init(seed_extended, 2) - } - - fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { - // Custom `from_rng` implementation that fills a seed with the same size - // as the entire state. - let mut seed = [w(0u64); RAND_SIZE]; - unsafe { - let ptr = seed.as_mut_ptr() as *mut u8; - let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 8); - rng.try_fill_bytes(slice)?; - } - for i in seed.iter_mut() { - *i = w(i.0.to_le()); - } - - Ok(Self::init(seed, 2)) - } -} - -#[cfg(test)] -mod test { - use {RngCore, SeedableRng}; - use super::Isaac64Rng; - - #[test] - fn test_isaac64_construction() { - // Test that various construction techniques produce a working RNG. - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng1 = Isaac64Rng::from_seed(seed); - assert_eq!(rng1.next_u64(), 14964555543728284049); - - let mut rng2 = Isaac64Rng::from_rng(rng1).unwrap(); - assert_eq!(rng2.next_u64(), 919595328260451758); - } - - #[test] - fn test_isaac64_true_values_64() { - let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, - 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; - let mut rng1 = Isaac64Rng::from_seed(seed); - let mut results = [0u64; 10]; - for i in results.iter_mut() { *i = rng1.next_u64(); } - let expected = [ - 15071495833797886820, 7720185633435529318, - 10836773366498097981, 5414053799617603544, - 12890513357046278984, 17001051845652595546, - 9240803642279356310, 12558996012687158051, - 14673053937227185542, 1677046725350116783]; - assert_eq!(results, expected); - - let seed = [57,48,0,0, 0,0,0,0, 50,9,1,0, 0,0,0,0, - 49,212,0,0, 0,0,0,0, 148,38,0,0, 0,0,0,0]; - let mut rng2 = Isaac64Rng::from_seed(seed); - // skip forward to the 10000th number - for _ in 0..10000 { rng2.next_u64(); } - - for i in results.iter_mut() { *i = rng2.next_u64(); } - let expected = [ - 18143823860592706164, 8491801882678285927, 2699425367717515619, - 17196852593171130876, 2606123525235546165, 15790932315217671084, - 596345674630742204, 9947027391921273664, 11788097613744130851, - 10391409374914919106]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac64_true_values_32() { - let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, - 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; - let mut rng = Isaac64Rng::from_seed(seed); - let mut results = [0u32; 12]; - for i in results.iter_mut() { *i = rng.next_u32(); } - // Subset of above values, as an LE u32 sequence - let expected = [ - 3477963620, 3509106075, - 687845478, 1797495790, - 227048253, 2523132918, - 4044335064, 1260557630, - 4079741768, 3001306521, - 69157722, 3958365844]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac64_true_values_mixed() { - let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, - 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; - let mut rng = Isaac64Rng::from_seed(seed); - // Test alternating between `next_u64` and `next_u32` works as expected. - // Values are the same as `test_isaac64_true_values` and - // `test_isaac64_true_values_32`. - assert_eq!(rng.next_u64(), 15071495833797886820); - assert_eq!(rng.next_u32(), 687845478); - assert_eq!(rng.next_u32(), 1797495790); - assert_eq!(rng.next_u64(), 10836773366498097981); - assert_eq!(rng.next_u32(), 4044335064); - // Skip one u32 - assert_eq!(rng.next_u64(), 12890513357046278984); - assert_eq!(rng.next_u32(), 69157722); - } - - #[test] - fn test_isaac64_true_bytes() { - let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, - 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; - let mut rng = Isaac64Rng::from_seed(seed); - let mut results = [0u8; 32]; - rng.fill_bytes(&mut results); - // Same as first values in test_isaac64_true_values as bytes in LE order - let expected = [100, 131, 77, 207, 155, 181, 40, 209, - 102, 176, 255, 40, 238, 155, 35, 107, - 61, 123, 136, 13, 246, 243, 99, 150, - 216, 167, 15, 241, 62, 149, 34, 75]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac64_new_uninitialized() { - // Compare the results from initializing `IsaacRng` with - // `new_from_u64(0)`, to make sure it is the same as the reference - // implementation when used uninitialized. - // Note: We only test the first 16 integers, not the full 256 of the - // first block. - let mut rng = Isaac64Rng::new_from_u64(0); - let mut results = [0u64; 16]; - for i in results.iter_mut() { *i = rng.next_u64(); } - let expected: [u64; 16] = [ - 0xF67DFBA498E4937C, 0x84A5066A9204F380, 0xFEE34BD5F5514DBB, - 0x4D1664739B8F80D6, 0x8607459AB52A14AA, 0x0E78BC5A98529E49, - 0xFE5332822AD13777, 0x556C27525E33D01A, 0x08643CA615F3149F, - 0xD0771FAF3CB04714, 0x30E86F68A37B008D, 0x3074EBC0488A3ADF, - 0x270645EA7A2790BC, 0x5601A0A8D3763C6A, 0x2F83071F53F325DD, - 0xB9090F3D42D2D2EA]; - assert_eq!(results, expected); - } - - #[test] - fn test_isaac64_clone() { - let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0, - 200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0]; - let mut rng1 = Isaac64Rng::from_seed(seed); - let mut rng2 = rng1.clone(); - for _ in 0..16 { - assert_eq!(rng1.next_u64(), rng2.next_u64()); - } - } - - #[test] - #[cfg(all(feature="serde1", feature="std"))] - fn test_isaac64_serde() { - use bincode; - use std::io::{BufWriter, BufReader}; - - let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, - 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng = Isaac64Rng::from_seed(seed); - - let buf: Vec<u8> = Vec::new(); - let mut buf = BufWriter::new(buf); - bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); - - let buf = buf.into_inner().unwrap(); - let mut read = BufReader::new(&buf[..]); - let mut deserialized: Isaac64Rng = bincode::deserialize_from(&mut read).expect("Could not deserialize"); - - for _ in 0..300 { // more than the 256 buffered results - assert_eq!(rng.next_u64(), deserialized.next_u64()); - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs b/vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs deleted file mode 100644 index 327cfbf..0000000 --- a/vendor/rand-8c5b0ac51d/src/prng/isaac_array.rs +++ /dev/null @@ -1,130 +0,0 @@ -// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! ISAAC helper functions for 256-element arrays. - -// Terrible workaround because arrays with more than 32 elements do not -// implement `AsRef`, `Default`, `Serialize`, `Deserialize`, or any other -// traits for that matter. - -#[cfg(feature="serde1")] use serde::{Serialize, Deserialize}; - -const RAND_SIZE_LEN: usize = 8; -const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; - - -#[derive(Copy, Clone)] -#[allow(missing_debug_implementations)] -#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] -pub struct IsaacArray<T> { - #[cfg_attr(feature="serde1",serde(with="isaac_array_serde"))] - #[cfg_attr(feature="serde1", serde(bound( - serialize = "T: Serialize", - deserialize = "T: Deserialize<'de> + Copy + Default")))] - inner: [T; RAND_SIZE] -} - -impl<T> ::core::convert::AsRef<[T]> for IsaacArray<T> { - #[inline(always)] - fn as_ref(&self) -> &[T] { - &self.inner[..] - } -} - -impl<T> ::core::ops::Deref for IsaacArray<T> { - type Target = [T; RAND_SIZE]; - #[inline(always)] - fn deref(&self) -> &Self::Target { - &self.inner - } -} - -impl<T> ::core::ops::DerefMut for IsaacArray<T> { - #[inline(always)] - fn deref_mut(&mut self) -> &mut [T; RAND_SIZE] { - &mut self.inner - } -} - -impl<T> ::core::default::Default for IsaacArray<T> where T: Copy + Default { - fn default() -> IsaacArray<T> { - IsaacArray { inner: [T::default(); RAND_SIZE] } - } -} - - -#[cfg(feature="serde1")] -pub(super) mod isaac_array_serde { - const RAND_SIZE_LEN: usize = 8; - const RAND_SIZE: usize = 1 << RAND_SIZE_LEN; - - use serde::{Deserialize, Deserializer, Serialize, Serializer}; - use serde::de::{Visitor,SeqAccess}; - use serde::de; - - use core::fmt; - - pub fn serialize<T, S>(arr: &[T;RAND_SIZE], ser: S) -> Result<S::Ok, S::Error> - where - T: Serialize, - S: Serializer - { - use serde::ser::SerializeTuple; - - let mut seq = ser.serialize_tuple(RAND_SIZE)?; - - for e in arr.iter() { - seq.serialize_element(&e)?; - } - - seq.end() - } - - #[inline] - pub fn deserialize<'de, T, D>(de: D) -> Result<[T;RAND_SIZE], D::Error> - where - T: Deserialize<'de>+Default+Copy, - D: Deserializer<'de>, - { - use core::marker::PhantomData; - struct ArrayVisitor<T> { - _pd: PhantomData<T>, - }; - impl<'de,T> Visitor<'de> for ArrayVisitor<T> - where - T: Deserialize<'de>+Default+Copy - { - type Value = [T; RAND_SIZE]; - - fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { - formatter.write_str("Isaac state array") - } - - #[inline] - fn visit_seq<A>(self, mut seq: A) -> Result<[T; RAND_SIZE], A::Error> - where - A: SeqAccess<'de>, - { - let mut out = [Default::default();RAND_SIZE]; - - for i in 0..RAND_SIZE { - match seq.next_element()? { - Some(val) => out[i] = val, - None => return Err(de::Error::invalid_length(i, &self)), - }; - } - - Ok(out) - } - } - - de.deserialize_tuple(RAND_SIZE, ArrayVisitor{_pd: PhantomData}) - } -} diff --git a/vendor/rand-8c5b0ac51d/src/prng/mod.rs b/vendor/rand-8c5b0ac51d/src/prng/mod.rs deleted file mode 100644 index c4bd003..0000000 --- a/vendor/rand-8c5b0ac51d/src/prng/mod.rs +++ /dev/null @@ -1,55 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Pseudo random number generators are algorithms to produce *apparently -//! random* numbers deterministically, and usually fairly quickly. -//! -//! So long as the algorithm is computationally secure, is initialised with -//! sufficient entropy (i.e. unknown by an attacker), and its internal state is -//! also protected (unknown to an attacker), the output will also be -//! *computationally secure*. Computationally Secure Pseudo Random Number -//! Generators (CSPRNGs) are thus suitable sources of random numbers for -//! cryptography. There are a couple of gotchas here, however. First, the seed -//! used for initialisation must be unknown. Usually this should be provided by -//! the operating system and should usually be secure, however this may not -//! always be the case (especially soon after startup). Second, user-space -//! memory may be vulnerable, for example when written to swap space, and after -//! forking a child process should reinitialise any user-space PRNGs. For this -//! reason it may be preferable to source random numbers directly from the OS -//! for cryptographic applications. -//! -//! PRNGs are also widely used for non-cryptographic uses: randomised -//! algorithms, simulations, games. In these applications it is usually not -//! important for numbers to be cryptographically *unguessable*, but even -//! distribution and independence from other samples (from the point of view -//! of someone unaware of the algorithm used, at least) may still be important. -//! Good PRNGs should satisfy these properties, but do not take them for -//! granted; Wikipedia's article on -//! [Pseudorandom number generators](https://en.wikipedia.org/wiki/Pseudorandom_number_generator) -//! provides some background on this topic. -//! -//! Care should be taken when seeding (initialising) PRNGs. Some PRNGs have -//! short periods for some seeds. If one PRNG is seeded from another using the -//! same algorithm, it is possible that both will yield the same sequence of -//! values (with some lag). - -pub mod chacha; -pub mod hc128; -pub mod isaac; -pub mod isaac64; -mod xorshift; - -mod isaac_array; - -pub use self::chacha::ChaChaRng; -pub use self::hc128::Hc128Rng; -pub use self::isaac::IsaacRng; -pub use self::isaac64::Isaac64Rng; -pub use self::xorshift::XorShiftRng; diff --git a/vendor/rand-8c5b0ac51d/src/prng/xorshift.rs b/vendor/rand-8c5b0ac51d/src/prng/xorshift.rs deleted file mode 100644 index 5f96170..0000000 --- a/vendor/rand-8c5b0ac51d/src/prng/xorshift.rs +++ /dev/null @@ -1,226 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Xorshift generators - -use core::num::Wrapping as w; -use core::{fmt, slice}; -use rand_core::{RngCore, SeedableRng, Error, impls, le}; - -/// An Xorshift[1] random number -/// generator. -/// -/// The Xorshift algorithm is not suitable for cryptographic purposes -/// but is very fast. If you do not know for sure that it fits your -/// requirements, use a more secure one such as `IsaacRng` or `OsRng`. -/// -/// [1]: Marsaglia, George (July 2003). ["Xorshift -/// RNGs"](https://www.jstatsoft.org/v08/i14/paper). *Journal of -/// Statistical Software*. Vol. 8 (Issue 14). -#[derive(Clone)] -#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))] -pub struct XorShiftRng { - x: w<u32>, - y: w<u32>, - z: w<u32>, - w: w<u32>, -} - -// Custom Debug implementation that does not expose the internal state -impl fmt::Debug for XorShiftRng { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "XorShiftRng {{}}") - } -} - -impl XorShiftRng { - /// Creates a new XorShiftRng instance which is not seeded. - /// - /// The initial values of this RNG are constants, so all generators created - /// by this function will yield the same stream of random numbers. It is - /// highly recommended that this is created through `SeedableRng` instead of - /// this function - #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")] - pub fn new_unseeded() -> XorShiftRng { - XorShiftRng { - x: w(0x193a6754), - y: w(0xa8a7d469), - z: w(0x97830e05), - w: w(0x113ba7bb), - } - } -} - -impl RngCore for XorShiftRng { - #[inline] - fn next_u32(&mut self) -> u32 { - let x = self.x; - let t = x ^ (x << 11); - self.x = self.y; - self.y = self.z; - self.z = self.w; - let w_ = self.w; - self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8)); - self.w.0 - } - - #[inline] - fn next_u64(&mut self) -> u64 { - impls::next_u64_via_u32(self) - } - - #[inline] - fn fill_bytes(&mut self, dest: &mut [u8]) { - impls::fill_bytes_via_next(self, dest) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - Ok(self.fill_bytes(dest)) - } -} - -impl SeedableRng for XorShiftRng { - type Seed = [u8; 16]; - - fn from_seed(seed: Self::Seed) -> Self { - let mut seed_u32 = [0u32; 4]; - le::read_u32_into(&seed, &mut seed_u32); - - // Xorshift cannot be seeded with 0 and we cannot return an Error, but - // also do not wish to panic (because a random seed can legitimately be - // 0); our only option is therefore to use a preset value. - if seed_u32.iter().all(|&x| x == 0) { - seed_u32 = [0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED]; - } - - XorShiftRng { - x: w(seed_u32[0]), - y: w(seed_u32[1]), - z: w(seed_u32[2]), - w: w(seed_u32[3]), - } - } - - fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> { - let mut seed_u32 = [0u32; 4]; - loop { - unsafe { - let ptr = seed_u32.as_mut_ptr() as *mut u8; - - let slice = slice::from_raw_parts_mut(ptr, 4 * 4); - rng.try_fill_bytes(slice)?; - } - if !seed_u32.iter().all(|&x| x == 0) { break; } - } - - Ok(XorShiftRng { - x: w(seed_u32[0]), - y: w(seed_u32[1]), - z: w(seed_u32[2]), - w: w(seed_u32[3]), - }) - } -} - -#[cfg(test)] -mod tests { - use {RngCore, SeedableRng}; - use super::XorShiftRng; - - #[test] - fn test_xorshift_construction() { - // Test that various construction techniques produce a working RNG. - let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16]; - let mut rng1 = XorShiftRng::from_seed(seed); - assert_eq!(rng1.next_u64(), 4325440999699518727); - - let _rng2 = XorShiftRng::from_rng(rng1).unwrap(); - // Note: we cannot test the state of _rng2 because from_rng does not - // fix Endianness. This is allowed in the trait specification. - } - - #[test] - fn test_xorshift_true_values() { - let seed = [16,15,14,13, 12,11,10,9, 8,7,6,5, 4,3,2,1]; - let mut rng = XorShiftRng::from_seed(seed); - - let mut results = [0u32; 9]; - for i in results.iter_mut() { *i = rng.next_u32(); } - let expected: [u32; 9] = [ - 2081028795, 620940381, 269070770, 16943764, 854422573, 29242889, - 1550291885, 1227154591, 271695242]; - assert_eq!(results, expected); - - let mut results = [0u64; 9]; - for i in results.iter_mut() { *i = rng.next_u64(); } - let expected: [u64; 9] = [ - 9247529084182843387, 8321512596129439293, 14104136531997710878, - 6848554330849612046, 343577296533772213, 17828467390962600268, - 9847333257685787782, 7717352744383350108, 1133407547287910111]; - assert_eq!(results, expected); - - let mut results = [0u8; 32]; - rng.fill_bytes(&mut results); - let expected = [102, 57, 212, 16, 233, 130, 49, 183, - 158, 187, 44, 203, 63, 149, 45, 17, - 117, 129, 131, 160, 70, 121, 158, 155, - 224, 209, 192, 53, 10, 62, 57, 72]; - assert_eq!(results, expected); - } - - #[test] - fn test_xorshift_zero_seed() { - // Xorshift does not work with an all zero seed. - // Assert it does not panic. - let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng = XorShiftRng::from_seed(seed); - let a = rng.next_u64(); - let b = rng.next_u64(); - assert!(a != 0); - assert!(b != a); - } - - #[test] - fn test_xorshift_clone() { - let seed = [1,2,3,4, 5,5,7,8, 8,7,6,5, 4,3,2,1]; - let mut rng1 = XorShiftRng::from_seed(seed); - let mut rng2 = rng1.clone(); - for _ in 0..16 { - assert_eq!(rng1.next_u64(), rng2.next_u64()); - } - } - - #[cfg(all(feature="serde1", feature="std"))] - #[test] - fn test_xorshift_serde() { - use bincode; - use std::io::{BufWriter, BufReader}; - - let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16]; - let mut rng = XorShiftRng::from_seed(seed); - - let buf: Vec<u8> = Vec::new(); - let mut buf = BufWriter::new(buf); - bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); - - let buf = buf.into_inner().unwrap(); - let mut read = BufReader::new(&buf[..]); - let mut deserialized: XorShiftRng = bincode::deserialize_from(&mut read).expect("Could not deserialize"); - - assert_eq!(rng.x, deserialized.x); - assert_eq!(rng.y, deserialized.y); - assert_eq!(rng.z, deserialized.z); - assert_eq!(rng.w, deserialized.w); - - for _ in 0..16 { - assert_eq!(rng.next_u64(), deserialized.next_u64()); - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/read.rs b/vendor/rand-8c5b0ac51d/src/read.rs deleted file mode 100644 index a6ab6f5..0000000 --- a/vendor/rand-8c5b0ac51d/src/read.rs +++ /dev/null @@ -1,129 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! A wrapper around any Read to treat it as an RNG. - -use std::io::Read; - -use rand_core::{RngCore, Error, ErrorKind, impls}; - - -/// An RNG that reads random bytes straight from a `Read`. -/// -/// This will work best with an infinite reader, but that is not required. -/// -/// # Panics -/// -/// `ReadRng` uses `std::io::read_exact`, which retries on interrupts. All other -/// errors from the underlying reader, including when it does not have enough -/// data, will only be reported through `try_fill_bytes`. The other `RngCore` -/// methods will panic in case of an error error. -/// -/// # Example -/// -/// ```rust -/// use rand::{read, Rng}; -/// -/// let data = vec![1, 2, 3, 4, 5, 6, 7, 8]; -/// let mut rng = read::ReadRng::new(&data[..]); -/// println!("{:x}", rng.gen::<u32>()); -/// ``` -#[derive(Debug)] -pub struct ReadRng<R> { - reader: R -} - -impl<R: Read> ReadRng<R> { - /// Create a new `ReadRng` from a `Read`. - pub fn new(r: R) -> ReadRng<R> { - ReadRng { - reader: r - } - } -} - -impl<R: Read> RngCore for ReadRng<R> { - fn next_u32(&mut self) -> u32 { - impls::next_u32_via_fill(self) - } - - fn next_u64(&mut self) -> u64 { - impls::next_u64_via_fill(self) - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.try_fill_bytes(dest).unwrap_or_else(|err| - panic!("reading random bytes from Read implementation failed; error: {}", err)); - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - if dest.len() == 0 { return Ok(()); } - // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. - self.reader.read_exact(dest).map_err(|err| { - match err.kind() { - ::std::io::ErrorKind::UnexpectedEof => Error::with_cause( - ErrorKind::Unavailable, - "not enough bytes available, reached end of source", err), - _ => Error::with_cause(ErrorKind::Unavailable, - "error reading from Read source", err) - } - }) - } -} - -#[cfg(test)] -mod test { - use super::ReadRng; - use {RngCore, ErrorKind}; - - #[test] - fn test_reader_rng_u64() { - // transmute from the target to avoid endianness concerns. - let v = vec![0u8, 0, 0, 0, 0, 0, 0, 1, - 0 , 0, 0, 0, 0, 0, 0, 2, - 0, 0, 0, 0, 0, 0, 0, 3]; - let mut rng = ReadRng::new(&v[..]); - - assert_eq!(rng.next_u64(), 1_u64.to_be()); - assert_eq!(rng.next_u64(), 2_u64.to_be()); - assert_eq!(rng.next_u64(), 3_u64.to_be()); - } - - #[test] - fn test_reader_rng_u32() { - let v = vec![0u8, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3]; - let mut rng = ReadRng::new(&v[..]); - - assert_eq!(rng.next_u32(), 1_u32.to_be()); - assert_eq!(rng.next_u32(), 2_u32.to_be()); - assert_eq!(rng.next_u32(), 3_u32.to_be()); - } - - #[test] - fn test_reader_rng_fill_bytes() { - let v = [1u8, 2, 3, 4, 5, 6, 7, 8]; - let mut w = [0u8; 8]; - - let mut rng = ReadRng::new(&v[..]); - rng.fill_bytes(&mut w); - - assert!(v == w); - } - - #[test] - fn test_reader_rng_insufficient_bytes() { - let v = [1u8, 2, 3, 4, 5, 6, 7, 8]; - let mut w = [0u8; 9]; - - let mut rng = ReadRng::new(&v[..]); - - assert!(rng.try_fill_bytes(&mut w).err().unwrap().kind == ErrorKind::Unavailable); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/reseeding.rs b/vendor/rand-8c5b0ac51d/src/reseeding.rs deleted file mode 100644 index 0f7f049..0000000 --- a/vendor/rand-8c5b0ac51d/src/reseeding.rs +++ /dev/null @@ -1,260 +0,0 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! A wrapper around another PRNG that reseeds it after it -//! generates a certain number of random bytes. - -use core::mem::size_of; - -use rand_core::{RngCore, BlockRngCore, CryptoRng, SeedableRng, Error, ErrorKind}; -use rand_core::impls::BlockRng; - -/// A wrapper around any PRNG which reseeds the underlying PRNG after it has -/// generated a certain number of random bytes. -/// -/// When the RNG gets cloned, the clone is reseeded on first use. -/// -/// Reseeding is never strictly *necessary*. Cryptographic PRNGs don't have a -/// limited number of bytes they can output, or at least not a limit reachable -/// in any practical way. There is no such thing as 'running out of entropy'. -/// -/// Some small non-cryptographic PRNGs can have very small periods, for -/// example less than 2<sup>64</sup>. Would reseeding help to ensure that you do -/// not wrap around at the end of the period? A period of 2<sup>64</sup> still -/// takes several centuries of CPU-years on current hardware. Reseeding will -/// actually make things worse, because the reseeded PRNG will just continue -/// somewhere else *in the same period*, with a high chance of overlapping with -/// previously used parts of it. -/// -/// # When should you use `ReseedingRng`? -/// -/// - Reseeding can be seen as some form of 'security in depth'. Even if in the -/// future a cryptographic weakness is found in the CSPRNG being used, -/// occasionally reseeding should make exploiting it much more difficult or -/// even impossible. -/// - It can be used as a poor man's cryptography (not recommended, just use a -/// good CSPRNG). Previous implementations of `thread_rng` for example used -/// `ReseedingRng` with the ISAAC RNG. That algorithm, although apparently -/// strong and with no known attack, does not come with any proof of security -/// and does not meet the current standards for a cryptographically secure -/// PRNG. By reseeding it frequently (every 32 kiB) it seems safe to assume -/// there is no attack that can operate on the tiny window between reseeds. -/// -/// # Error handling -/// -/// Although extremely unlikely, reseeding the wrapped PRNG can fail. -/// `ReseedingRng` will never panic but try to handle the error intelligently -/// through some combination of retrying and delaying reseeding until later. -/// If handling the source error fails `ReseedingRng` will continue generating -/// data from the wrapped PRNG without reseeding. -#[derive(Debug)] -pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>) -where R: BlockRngCore + SeedableRng, - Rsdr: RngCore; - -impl<R, Rsdr> ReseedingRng<R, Rsdr> -where R: BlockRngCore + SeedableRng, - Rsdr: RngCore -{ - /// Create a new `ReseedingRng` with the given parameters. - /// - /// # Arguments - /// - /// * `rng`: the random number generator to use. - /// * `threshold`: the number of generated bytes after which to reseed the RNG. - /// * `reseeder`: the RNG to use for reseeding. - pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { - ReseedingRng(BlockRng::new(ReseedingCore::new(rng, threshold, reseeder))) - } - - /// Reseed the internal PRNG. - pub fn reseed(&mut self) -> Result<(), Error> { - self.0.inner_mut().reseed() - } -} - -// TODO: this should be implemented for any type where the inner type -// implements RngCore, but we can't specify that because ReseedingCore is private -impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr> -where R: BlockRngCore<Item = u32> + SeedableRng, - <R as BlockRngCore>::Results: AsRef<[u32]> -{ - #[inline(always)] - fn next_u32(&mut self) -> u32 { - self.0.next_u32() - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - self.0.next_u64() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - self.0.fill_bytes(dest) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr> -where R: BlockRngCore + SeedableRng + Clone, - Rsdr: RngCore + Clone -{ - fn clone(&self) -> ReseedingRng<R, Rsdr> { - // Recreating `BlockRng` seems easier than cloning it and resetting - // the index. - ReseedingRng(BlockRng::new(self.0.inner().clone())) - } -} - -impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr> -where R: BlockRngCore + SeedableRng + CryptoRng, - Rsdr: RngCore + CryptoRng {} - -#[derive(Debug)] -struct ReseedingCore<R, Rsdr> { - inner: R, - reseeder: Rsdr, - threshold: i64, - bytes_until_reseed: i64, -} - -impl<R, Rsdr> BlockRngCore for ReseedingCore<R, Rsdr> -where R: BlockRngCore + SeedableRng, - Rsdr: RngCore -{ - type Item = <R as BlockRngCore>::Item; - type Results = <R as BlockRngCore>::Results; - - fn generate(&mut self, results: &mut Self::Results) { - if self.bytes_until_reseed <= 0 { - // We get better performance by not calling only `auto_reseed` here - // and continuing with the rest of the function, but by directly - // returning from a non-inlined function. - return self.reseed_and_generate(results); - } - let num_bytes = results.as_ref().len() * size_of::Self::Item(); - self.bytes_until_reseed -= num_bytes as i64; - self.inner.generate(results); - } -} - -impl<R, Rsdr> ReseedingCore<R, Rsdr> -where R: BlockRngCore + SeedableRng, - Rsdr: RngCore -{ - /// Create a new `ReseedingCore` with the given parameters. - /// - /// # Arguments - /// - /// * `rng`: the random number generator to use. - /// * `threshold`: the number of generated bytes after which to reseed the RNG. - /// * `reseeder`: the RNG to use for reseeding. - pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { - assert!(threshold <= ::core::i64::MAX as u64); - ReseedingCore { - inner: rng, - reseeder, - threshold: threshold as i64, - bytes_until_reseed: threshold as i64, - } - } - - /// Reseed the internal PRNG. - fn reseed(&mut self) -> Result<(), Error> { - R::from_rng(&mut self.reseeder).map(|result| { - self.bytes_until_reseed = self.threshold; - self.inner = result - }) - } - - #[inline(never)] - fn reseed_and_generate(&mut self, - results: &mut <Self as BlockRngCore>::Results) - { - trace!("Reseeding RNG after {} generated bytes", - self.threshold - self.bytes_until_reseed); - let threshold = if let Err(e) = self.reseed() { - let delay = match e.kind { - ErrorKind::Transient => 0, - kind @ _ if kind.should_retry() => self.threshold >> 8, - _ => self.threshold, - }; - warn!("Reseeding RNG delayed reseeding by {} bytes due to \ - error from source: {}", delay, e); - delay - } else { - self.threshold - }; - - let num_bytes = results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>(); - self.bytes_until_reseed = threshold - num_bytes as i64; - self.inner.generate(results); - } -} - -impl<R, Rsdr> Clone for ReseedingCore<R, Rsdr> -where R: BlockRngCore + SeedableRng + Clone, - Rsdr: RngCore + Clone -{ - fn clone(&self) -> ReseedingCore<R, Rsdr> { - ReseedingCore { - inner: self.inner.clone(), - reseeder: self.reseeder.clone(), - threshold: self.threshold, - bytes_until_reseed: 0, // reseed clone on first use - } - } -} - -impl<R, Rsdr> CryptoRng for ReseedingCore<R, Rsdr> -where R: BlockRngCore + SeedableRng + CryptoRng, - Rsdr: RngCore + CryptoRng {} - -#[cfg(test)] -mod test { - use {Rng, SeedableRng}; - use prng::chacha::ChaChaCore; - use mock::StepRng; - use super::ReseedingRng; - - #[test] - fn test_reseeding() { - let mut zero = StepRng::new(0, 0); - let rng = ChaChaCore::from_rng(&mut zero).unwrap(); - let mut reseeding = ReseedingRng::new(rng, 32*4, zero); - - // Currently we only support for arrays up to length 32. - // TODO: cannot generate seq via Rng::gen because it uses different alg - let mut buf = [0u32; 32]; // Needs to be a multiple of the RNGs result - // size to test exactly. - reseeding.fill(&mut buf); - let seq = buf; - for _ in 0..10 { - reseeding.fill(&mut buf); - assert_eq!(buf, seq); - } - } - - #[test] - fn test_clone_reseeding() { - let mut zero = StepRng::new(0, 0); - let rng = ChaChaCore::from_rng(&mut zero).unwrap(); - let mut rng1 = ReseedingRng::new(rng, 32*4, zero); - - let first: u32 = rng1.gen(); - for _ in 0..10 { let _ = rng1.gen::<u32>(); } - - let mut rng2 = rng1.clone(); - assert_eq!(first, rng2.gen::<u32>()); - } -} diff --git a/vendor/rand-8c5b0ac51d/src/seq.rs b/vendor/rand-8c5b0ac51d/src/seq.rs deleted file mode 100644 index 1a128ce..0000000 --- a/vendor/rand-8c5b0ac51d/src/seq.rs +++ /dev/null @@ -1,335 +0,0 @@ -// Copyright 2017 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Functions for randomly accessing and sampling sequences. - -use super::Rng; - -// This crate is only enabled when either std or alloc is available. -// BTreeMap is not as fast in tests, but better than nothing. -#[cfg(feature="std")] use std::collections::HashMap; -#[cfg(not(feature="std"))] use alloc::btree_map::BTreeMap; - -#[cfg(not(feature="std"))] use alloc::Vec; - -/// Randomly sample `amount` elements from a finite iterator. -/// -/// The following can be returned: -/// -/// - `Ok`: `Vec` of `amount` non-repeating randomly sampled elements. The order is not random. -/// - `Err`: `Vec` of all the elements from `iterable` in sequential order. This happens when the -/// length of `iterable` was less than `amount`. This is considered an error since exactly -/// `amount` elements is typically expected. -/// -/// This implementation uses `O(len(iterable))` time and `O(amount)` memory. -/// -/// # Example -/// -/// ```rust -/// use rand::{thread_rng, seq}; -/// -/// let mut rng = thread_rng(); -/// let sample = seq::sample_iter(&mut rng, 1..100, 5).unwrap(); -/// println!("{:?}", sample); -/// ``` -pub fn sample_iter<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Result<Vec<T>, Vec<T>> - where I: IntoIterator<Item=T>, - R: Rng + ?Sized, -{ - let mut iter = iterable.into_iter(); - let mut reservoir = Vec::with_capacity(amount); - reservoir.extend(iter.by_ref().take(amount)); - - // Continue unless the iterator was exhausted - // - // note: this prevents iterators that "restart" from causing problems. - // If the iterator stops once, then so do we. - if reservoir.len() == amount { - for (i, elem) in iter.enumerate() { - let k = rng.gen_range(0, i + 1 + amount); - if let Some(spot) = reservoir.get_mut(k) { - *spot = elem; - } - } - Ok(reservoir) - } else { - // Don't hang onto extra memory. There is a corner case where - // `amount` was much less than `len(iterable)`. - reservoir.shrink_to_fit(); - Err(reservoir) - } -} - -/// Randomly sample exactly `amount` values from `slice`. -/// -/// The values are non-repeating and in random order. -/// -/// This implementation uses `O(amount)` time and memory. -/// -/// Panics if `amount > slice.len()` -/// -/// # Example -/// -/// ```rust -/// use rand::{thread_rng, seq}; -/// -/// let mut rng = thread_rng(); -/// let values = vec![5, 6, 1, 3, 4, 6, 7]; -/// println!("{:?}", seq::sample_slice(&mut rng, &values, 3)); -/// ``` -pub fn sample_slice<R, T>(rng: &mut R, slice: &[T], amount: usize) -> Vec<T> - where R: Rng + ?Sized, - T: Clone -{ - let indices = sample_indices(rng, slice.len(), amount); - - let mut out = Vec::with_capacity(amount); - out.extend(indices.iter().map(|i| slice[*i].clone())); - out -} - -/// Randomly sample exactly `amount` references from `slice`. -/// -/// The references are non-repeating and in random order. -/// -/// This implementation uses `O(amount)` time and memory. -/// -/// Panics if `amount > slice.len()` -/// -/// # Example -/// -/// ```rust -/// use rand::{thread_rng, seq}; -/// -/// let mut rng = thread_rng(); -/// let values = vec![5, 6, 1, 3, 4, 6, 7]; -/// println!("{:?}", seq::sample_slice_ref(&mut rng, &values, 3)); -/// ``` -pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T> - where R: Rng + ?Sized -{ - let indices = sample_indices(rng, slice.len(), amount); - - let mut out = Vec::with_capacity(amount); - out.extend(indices.iter().map(|i| &slice[*i])); - out -} - -/// Randomly sample exactly `amount` indices from `0..length`. -/// -/// The values are non-repeating and in random order. -/// -/// This implementation uses `O(amount)` time and memory. -/// -/// This method is used internally by the slice sampling methods, but it can sometimes be useful to -/// have the indices themselves so this is provided as an alternative. -/// -/// Panics if `amount > length` -pub fn sample_indices<R>(rng: &mut R, length: usize, amount: usize) -> Vec<usize> - where R: Rng + ?Sized, -{ - if amount > length { - panic!("`amount` must be less than or equal to `slice.len()`"); - } - - // We are going to have to allocate at least `amount` for the output no matter what. However, - // if we use the `cached` version we will have to allocate `amount` as a HashMap as well since - // it inserts an element for every loop. - // - // Therefore, if `amount >= length / 2` then inplace will be both faster and use less memory. - // In fact, benchmarks show the inplace version is faster for length up to about 20 times - // faster than amount. - // - // TODO: there is probably even more fine-tuning that can be done here since - // `HashMap::with_capacity(amount)` probably allocates more than `amount` in practice, - // and a trade off could probably be made between memory/cpu, since hashmap operations - // are slower than array index swapping. - if amount >= length / 20 { - sample_indices_inplace(rng, length, amount) - } else { - sample_indices_cache(rng, length, amount) - } -} - -/// Sample an amount of indices using an inplace partial fisher yates method. -/// -/// This allocates the entire `length` of indices and randomizes only the first `amount`. -/// It then truncates to `amount` and returns. -/// -/// This is better than using a `HashMap` "cache" when `amount >= length / 2` -/// since it does not require allocating an extra cache and is much faster. -fn sample_indices_inplace<R>(rng: &mut R, length: usize, amount: usize) -> Vec<usize> - where R: Rng + ?Sized, -{ - debug_assert!(amount <= length); - let mut indices: Vec<usize> = Vec::with_capacity(length); - indices.extend(0..length); - for i in 0..amount { - let j: usize = rng.gen_range(i, length); - indices.swap(i, j); - } - indices.truncate(amount); - debug_assert_eq!(indices.len(), amount); - indices -} - - -/// This method performs a partial fisher-yates on a range of indices using a -/// `HashMap` as a cache to record potential collisions. -/// -/// The cache avoids allocating the entire `length` of values. This is especially useful when -/// `amount <<< length`, i.e. select 3 non-repeating from `1_000_000` -fn sample_indices_cache<R>( - rng: &mut R, - length: usize, - amount: usize, -) -> Vec<usize> - where R: Rng + ?Sized, -{ - debug_assert!(amount <= length); - #[cfg(feature="std")] let mut cache = HashMap::with_capacity(amount); - #[cfg(not(feature="std"))] let mut cache = BTreeMap::new(); - let mut out = Vec::with_capacity(amount); - for i in 0..amount { - let j: usize = rng.gen_range(i, length); - - // equiv: let tmp = slice[i]; - let tmp = match cache.get(&i) { - Some(e) => *e, - None => i, - }; - - // equiv: slice[i] = slice[j]; - let x = match cache.get(&j) { - Some(x) => *x, - None => j, - }; - - // equiv: slice[j] = tmp; - cache.insert(j, tmp); - - // note that in the inplace version, slice[i] is automatically "returned" value - out.push(x); - } - debug_assert_eq!(out.len(), amount); - out -} - -#[cfg(test)] -mod test { - use super::*; - use {XorShiftRng, Rng, SeedableRng}; - #[cfg(not(feature="std"))] - use alloc::Vec; - - #[test] - fn test_sample_iter() { - let min_val = 1; - let max_val = 100; - - let mut r = ::test::rng(401); - let vals = (min_val..max_val).collect::<Vec<i32>>(); - let small_sample = sample_iter(&mut r, vals.iter(), 5).unwrap(); - let large_sample = sample_iter(&mut r, vals.iter(), vals.len() + 5).unwrap_err(); - - assert_eq!(small_sample.len(), 5); - assert_eq!(large_sample.len(), vals.len()); - // no randomization happens when amount >= len - assert_eq!(large_sample, vals.iter().collect::<Vec<_>>()); - - assert!(small_sample.iter().all(|e| { - **e >= min_val && **e <= max_val - })); - } - #[test] - fn test_sample_slice_boundaries() { - let empty: &[u8] = &[]; - - let mut r = ::test::rng(402); - - // sample 0 items - assert_eq!(&sample_slice(&mut r, empty, 0)[..], [0u8; 0]); - assert_eq!(&sample_slice(&mut r, &[42, 2, 42], 0)[..], [0u8; 0]); - - // sample 1 item - assert_eq!(&sample_slice(&mut r, &[42], 1)[..], [42]); - let v = sample_slice(&mut r, &[1, 42], 1)[0]; - assert!(v == 1 || v == 42); - - // sample "all" the items - let v = sample_slice(&mut r, &[42, 133], 2); - assert!(&v[..] == [42, 133] || v[..] == [133, 42]); - - assert_eq!(&sample_indices_inplace(&mut r, 0, 0)[..], [0usize; 0]); - assert_eq!(&sample_indices_inplace(&mut r, 1, 0)[..], [0usize; 0]); - assert_eq!(&sample_indices_inplace(&mut r, 1, 1)[..], [0]); - - assert_eq!(&sample_indices_cache(&mut r, 0, 0)[..], [0usize; 0]); - assert_eq!(&sample_indices_cache(&mut r, 1, 0)[..], [0usize; 0]); - assert_eq!(&sample_indices_cache(&mut r, 1, 1)[..], [0]); - - // Make sure lucky 777's aren't lucky - let slice = &[42, 777]; - let mut num_42 = 0; - let total = 1000; - for _ in 0..total { - let v = sample_slice(&mut r, slice, 1); - assert_eq!(v.len(), 1); - let v = v[0]; - assert!(v == 42 || v == 777); - if v == 42 { - num_42 += 1; - } - } - let ratio_42 = num_42 as f64 / 1000 as f64; - assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42); - } - - #[test] - fn test_sample_slice() { - let xor_rng = XorShiftRng::from_seed; - - let max_range = 100; - let mut r = ::test::rng(403); - - for length in 1usize..max_range { - let amount = r.gen_range(0, length); - let mut seed = [0u8; 16]; - r.fill(&mut seed); - - // assert that the two index methods give exactly the same result - let inplace = sample_indices_inplace( - &mut xor_rng(seed), length, amount); - let cache = sample_indices_cache( - &mut xor_rng(seed), length, amount); - assert_eq!(inplace, cache); - - // assert the basics work - let regular = sample_indices( - &mut xor_rng(seed), length, amount); - assert_eq!(regular.len(), amount); - assert!(regular.iter().all(|e| *e < length)); - assert_eq!(regular, inplace); - - // also test that sampling the slice works - let vec: Vec<usize> = (0..length).collect(); - { - let result = sample_slice(&mut xor_rng(seed), &vec, amount); - assert_eq!(result, regular); - } - - { - let result = sample_slice_ref(&mut xor_rng(seed), &vec, amount); - let expected = regular.iter().map(|v| v).collect::<Vec<_>>(); - assert_eq!(result, expected); - } - } - } -} diff --git a/vendor/rand-8c5b0ac51d/src/thread_rng.rs b/vendor/rand-8c5b0ac51d/src/thread_rng.rs deleted file mode 100644 index 1b93a8c..0000000 --- a/vendor/rand-8c5b0ac51d/src/thread_rng.rs +++ /dev/null @@ -1,206 +0,0 @@ -// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Thread-local random number generator - -use std::cell::UnsafeCell; -use std::rc::Rc; - -use {RngCore, CryptoRng, SeedableRng, EntropyRng}; -use prng::hc128::Hc128Core; -use {Distribution, Standard, Rng, Error}; -use reseeding::ReseedingRng; - -// Rationale for using `UnsafeCell` in `ThreadRng`: -// -// Previously we used a `RefCell`, with an overhead of ~15%. There will only -// ever be one mutable reference to the interior of the `UnsafeCell`, because -// we only have such a reference inside `next_u32`, `next_u64`, etc. Within a -// single thread (which is the definition of `ThreadRng`), there will only ever -// be one of these methods active at a time. -// -// A possible scenario where there could be multiple mutable references is if -// `ThreadRng` is used inside `next_u32` and co. But the implementation is -// completely under our control. We just have to ensure none of them use -// `ThreadRng` internally, which is nonsensical anyway. We should also never run -// `ThreadRng` in destructors of its implementation, which is also nonsensical. -// -// The additional `Rc` is not strictly neccesary, and could be removed. For now -// it ensures `ThreadRng` stays `!Send` and `!Sync`, and implements `Clone`. - - -// Number of generated bytes after which to reseed `TreadRng`. -// -// The time it takes to reseed HC-128 is roughly equivalent to generating 7 KiB. -// We pick a treshold here that is large enough to not reduce the average -// performance too much, but also small enough to not make reseeding something -// that basically never happens. -const THREAD_RNG_RESEED_THRESHOLD: u64 = 32*1024*1024; // 32 MiB - -/// The type returned by [`thread_rng`], essentially just a reference to the -/// PRNG in thread-local memory. -/// -/// Cloning this handle just produces a new reference to the same thread-local -/// generator. -/// -/// [`thread_rng`]: fn.thread_rng.html -#[derive(Clone, Debug)] -pub struct ThreadRng { - rng: Rc<UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>>>, -} - -thread_local!( - static THREAD_RNG_KEY: Rc<UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>>> = { - let mut entropy_source = EntropyRng::new(); - let r = Hc128Core::from_rng(&mut entropy_source).unwrap_or_else(|err| - panic!("could not initialize thread_rng: {}", err)); - let rng = ReseedingRng::new(r, - THREAD_RNG_RESEED_THRESHOLD, - entropy_source); - Rc::new(UnsafeCell::new(rng)) - } -); - -/// Retrieve the lazily-initialized thread-local random number -/// generator, seeded by the system. Intended to be used in method -/// chaining style, e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g. -/// `let mut rng = thread_rng();`. -/// -/// `ThreadRng` uses [`ReseedingRng`] wrapping the same PRNG as [`StdRng`], -/// which is reseeded after generating 32 MiB of random data. A single instance -/// is cached per thread and the returned `ThreadRng` is a reference to this -/// instance — hence `ThreadRng` is neither `Send` nor `Sync` but is safe to use -/// within a single thread. This RNG is seeded and reseeded via [`EntropyRng`] -/// as required. -/// -/// Note that the reseeding is done as an extra precaution against entropy -/// leaks and is in theory unnecessary — to predict `thread_rng`'s output, an -/// attacker would have to either determine most of the RNG's seed or internal -/// state, or crack the algorithm used. -/// -/// Like [`StdRng`], `ThreadRng` is a cryptographically secure PRNG. The current -/// algorithm used is [HC-128], which is an array-based PRNG that trades memory -/// usage for better performance. This makes it similar to ISAAC, the algorithm -/// used in `ThreadRng` before rand 0.5. -/// -/// [`ReseedingRng`]: reseeding/struct.ReseedingRng.html -/// [`StdRng`]: struct.StdRng.html -/// [`EntropyRng`]: struct.EntropyRng.html -/// [HC-128]: prng/hc128/struct.Hc128Rng.html -pub fn thread_rng() -> ThreadRng { - ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) } -} - -impl RngCore for ThreadRng { - #[inline(always)] - fn next_u32(&mut self) -> u32 { - unsafe { (*self.rng.get()).next_u32() } - } - - #[inline(always)] - fn next_u64(&mut self) -> u64 { - unsafe { (*self.rng.get()).next_u64() } - } - - fn fill_bytes(&mut self, bytes: &mut [u8]) { - unsafe { (*self.rng.get()).fill_bytes(bytes) } - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - unsafe { (*self.rng.get()).try_fill_bytes(dest) } - } -} - -impl CryptoRng for ThreadRng {} - -/// DEPRECATED: use `thread_rng().gen()` instead. -/// -/// Generates a random value using the thread-local random number generator. -/// -/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for -/// documentation of the entropy source and [`Rand`] for documentation of -/// distributions and type-specific generation. -/// -/// # Examples -/// -/// ``` -/// # #![allow(deprecated)] -/// let x = rand::random::<u8>(); -/// println!("{}", x); -/// -/// let y = rand::random::<f64>(); -/// println!("{}", y); -/// -/// if rand::random() { // generates a boolean -/// println!("Better lucky than good!"); -/// } -/// ``` -/// -/// If you're calling `random()` in a loop, caching the generator as in the -/// following example can increase performance. -/// -/// ``` -/// # #![allow(deprecated)] -/// use rand::Rng; -/// -/// let mut v = vec![1, 2, 3]; -/// -/// for x in v.iter_mut() { -/// *x = rand::random() -/// } -/// -/// // can be made faster by caching thread_rng -/// -/// let mut rng = rand::thread_rng(); -/// -/// for x in v.iter_mut() { -/// *x = rng.gen(); -/// } -/// ``` -/// -/// [`thread_rng`]: fn.thread_rng.html -/// [`Rand`]: trait.Rand.html -#[deprecated(since="0.5.0", note="removed in favor of thread_rng().gen()")] -#[inline] -pub fn random<T>() -> T where Standard: Distribution<T> { - thread_rng().gen() -} - -#[cfg(test)] -mod test { - #[test] - #[cfg(not(feature="stdweb"))] - fn test_thread_rng() { - use Rng; - let mut r = ::thread_rng(); - r.gen::<i32>(); - let mut v = [1, 1, 1]; - r.shuffle(&mut v); - let b: &[_] = &[1, 1, 1]; - assert_eq!(v, b); - assert_eq!(r.gen_range(0, 1), 0); - } - - #[test] - #[allow(deprecated)] - fn test_random() { - use super::random; - // not sure how to test this aside from just getting some values - let _n : usize = random(); - let _f : f32 = random(); - let _o : Option<Option<i8>> = random(); - let _many : ((), - (usize, - isize, - Option<(u32, (bool,))>), - (u8, i8, u16, i16, u32, i32, u64, i64), - (f32, (f64, (f64,)))) = random(); - } -} diff --git a/vendor/rand-8c5b0ac51d/utils/ci/install.sh b/vendor/rand-8c5b0ac51d/utils/ci/install.sh deleted file mode 100644 index 8e636e1..0000000 --- a/vendor/rand-8c5b0ac51d/utils/ci/install.sh +++ /dev/null @@ -1,49 +0,0 @@ -# From https://github.com/japaric/trust - -set -ex - -main() { - local target= - if [ $TRAVIS_OS_NAME = linux ]; then - target=x86_64-unknown-linux-musl - sort=sort - else - target=x86_64-apple-darwin - sort=gsort # for `sort --sort-version`, from brew's coreutils. - fi - - # Builds for iOS are done on OSX, but require the specific target to be - # installed. - case $TARGET in - aarch64-apple-ios) - rustup target install aarch64-apple-ios - ;; - armv7-apple-ios) - rustup target install armv7-apple-ios - ;; - armv7s-apple-ios) - rustup target install armv7s-apple-ios - ;; - i386-apple-ios) - rustup target install i386-apple-ios - ;; - x86_64-apple-ios) - rustup target install x86_64-apple-ios - ;; - esac - - # This fetches latest stable release - local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \ - | cut -d/ -f3 \ - | grep -E '^v[0.1.0-9.]+$' \ - | $sort --version-sort \ - | tail -n1) - curl -LSfs https://japaric.github.io/trust/install.sh | \ - sh -s -- \ - --force \ - --git japaric/cross \ - --tag $tag \ - --target $target -} - -main diff --git a/vendor/rand-8c5b0ac51d/utils/ci/script.sh b/vendor/rand-8c5b0ac51d/utils/ci/script.sh deleted file mode 100644 index a34dc5f..0000000 --- a/vendor/rand-8c5b0ac51d/utils/ci/script.sh +++ /dev/null @@ -1,27 +0,0 @@ -# Derived from https://github.com/japaric/trust - -set -ex - -main() { - if [ ! -z $DISABLE_TESTS ]; then - cross build --all --no-default-features --target $TARGET --release - if [ -z $DISABLE_STD ]; then - cross build --features log,serde1 --target $TARGET - fi - return - fi - - if [ ! -z $NIGHTLY ]; then - cross test --all --tests --no-default-features --features alloc --target $TARGET - cross test --features serde1,log,nightly --target $TARGET - cross test --all --benches --target $TARGET - else - cross test --all --tests --no-default-features --target $TARGET - cross test --features serde1,log --target $TARGET - fi -} - -# we don't run the "test phase" when doing deploys -if [ -z $TRAVIS_TAG ]; then - main -fi diff --git a/vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py b/vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py deleted file mode 100755 index 9973b83..0000000 --- a/vendor/rand-8c5b0ac51d/utils/ziggurat_tables.py +++ /dev/null @@ -1,127 +0,0 @@ -#!/usr/bin/env python -# -# Copyright 2013 The Rust Project Developers. See the COPYRIGHT -# file at the top-level directory of this distribution and at -# https://rust-lang.org/COPYRIGHT. -# -# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -# https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -# <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -# option. This file may not be copied, modified, or distributed -# except according to those terms. - -# This creates the tables used for distributions implemented using the -# ziggurat algorithm in `rand::distributions;`. They are -# (basically) the tables as used in the ZIGNOR variant (Doornik 2005). -# They are changed rarely, so the generated file should be checked in -# to git. -# -# It creates 3 tables: X as in the paper, F which is f(x_i), and -# F_DIFF which is f(x_i) - f(x_{i-1}). The latter two are just cached -# values which is not done in that paper (but is done in other -# variants). Note that the adZigR table is unnecessary because of -# algebra. -# -# It is designed to be compatible with Python 2 and 3. - -from math import exp, sqrt, log, floor -import random - -# The order should match the return value of `tables` -TABLE_NAMES = ['X', 'F'] - -# The actual length of the table is 1 more, to stop -# index-out-of-bounds errors. This should match the bitwise operation -# to find `i` in `zigurrat` in `libstd/rand/mod.rs`. Also the *_R and -# *_V constants below depend on this value. -TABLE_LEN = 256 - -# equivalent to `zigNorInit` in Doornik2005, but generalised to any -# distribution. r = dR, v = dV, f = probability density function, -# f_inv = inverse of f -def tables(r, v, f, f_inv): - # compute the x_i - xvec = [0]*(TABLE_LEN+1) - - xvec[0] = v / f(r) - xvec[1] = r - - for i in range(2, TABLE_LEN): - last = xvec[i-1] - xvec[i] = f_inv(v / last + f(last)) - - # cache the f's - fvec = [0]*(TABLE_LEN+1) - for i in range(TABLE_LEN+1): - fvec[i] = f(xvec[i]) - - return xvec, fvec - -# Distributions -# N(0, 1) -def norm_f(x): - return exp(-x*x/2.0) -def norm_f_inv(y): - return sqrt(-2.0*log(y)) - -NORM_R = 3.6541528853610088 -NORM_V = 0.00492867323399 - -NORM = tables(NORM_R, NORM_V, - norm_f, norm_f_inv) - -# Exp(1) -def exp_f(x): - return exp(-x) -def exp_f_inv(y): - return -log(y) - -EXP_R = 7.69711747013104972 -EXP_V = 0.0039496598225815571993 - -EXP = tables(EXP_R, EXP_V, - exp_f, exp_f_inv) - - -# Output the tables/constants/types - -def render_static(name, type, value): - # no space or - return 'pub static %s: %s =%s;\n' % (name, type, value) - -# static `name`: [`type`, .. `len(values)`] = -# [values[0], ..., values[3], -# values[4], ..., values[7], -# ... ]; -def render_table(name, values): - rows = [] - # 4 values on each row - for i in range(0, len(values), 4): - row = values[i:i+4] - rows.append(', '.join('%.18f' % f for f in row)) - - rendered = '\n [%s]' % ',\n '.join(rows) - return render_static(name, '[f64, .. %d]' % len(values), rendered) - - -with open('ziggurat_tables.rs', 'w') as f: - f.write('''// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// https://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0%3E or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT%3E, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -// Tables for distributions which are sampled using the ziggurat -// algorithm. Autogenerated by `ziggurat_tables.py`. - -pub type ZigTable = &'static [f64, .. %d]; -''' % (TABLE_LEN + 1)) - for name, tables, r in [('NORM', NORM, NORM_R), - ('EXP', EXP, EXP_R)]: - f.write(render_static('ZIG_%s_R' % name, 'f64', ' %.18f' % r)) - for (tabname, table) in zip(TABLE_NAMES, tables): - f.write(render_table('ZIG_%s_%s' % (name, tabname), table))
tor-commits@lists.torproject.org