commit 54783b4c22675925fcfcac77cb95193bc5c32d03 Author: Fernando Fernandez Mancera ffmancera@riseup.net Date: Thu Jan 25 20:16:50 2018 +0100
Refactor crypto.[ch] into smaller RSA module.
Add two new files (crypto_rsa.c, crypto_rsa.h) as new module of crypto.[ch]. This new module includes all functions and dependencies related to RSA operations. Those have been removed from crypto.[ch].
All new changes related to RSA operations must be done in these files.
Follows #24658
Signed-off-by: Fernando Fernandez Mancera ffmancera@riseup.net --- src/common/crypto.c | 865 ----------------------------------------------- src/common/crypto.h | 68 +--- src/common/crypto_rsa.c | 878 ++++++++++++++++++++++++++++++++++++++++++++++++ src/common/crypto_rsa.h | 100 ++++++ 4 files changed, 980 insertions(+), 931 deletions(-)
diff --git a/src/common/crypto.c b/src/common/crypto.c index 107b53ad2..bb9820fc2 100644 --- a/src/common/crypto.c +++ b/src/common/crypto.c @@ -88,13 +88,6 @@ ENABLE_GCC_WARNING(redundant-decls) /** Largest strong entropy request */ #define MAX_STRONGEST_RAND_SIZE 256
-/** A public key, or a public/private key-pair. */ -struct crypto_pk_t -{ - int refs; /**< reference count, so we don't have to copy keys */ - RSA *key; /**< The key itself */ -}; - /** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake * while we're waiting for the second.*/ struct crypto_dh_t { @@ -103,30 +96,6 @@ struct crypto_dh_t {
static int tor_check_dh_key(int severity, const BIGNUM *bn);
-/** Return the number of bytes added by padding method <b>padding</b>. - */ -static inline int -crypto_get_rsa_padding_overhead(int padding) -{ - switch (padding) - { - case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD; - default: tor_assert(0); return -1; // LCOV_EXCL_LINE - } -} - -/** Given a padding method <b>padding</b>, return the correct OpenSSL constant. - */ -static inline int -crypto_get_rsa_padding(int padding) -{ - switch (padding) - { - case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING; - default: tor_assert(0); return -1; // LCOV_EXCL_LINE - } -} - /** Boolean: has OpenSSL's crypto been initialized? */ static int crypto_early_initialized_ = 0;
@@ -363,73 +332,6 @@ crypto_thread_cleanup(void) #endif }
-/** used internally: quicly validate a crypto_pk_t object as a private key. - * Return 1 iff the public key is valid, 0 if obviously invalid. - */ -static int -crypto_pk_private_ok(const crypto_pk_t *k) -{ -#ifdef OPENSSL_1_1_API - if (!k || !k->key) - return 0; - - const BIGNUM *p, *q; - RSA_get0_factors(k->key, &p, &q); - return p != NULL; /* XXX/yawning: Should we check q? */ -#else /* !(defined(OPENSSL_1_1_API)) */ - return k && k->key && k->key->p; -#endif /* defined(OPENSSL_1_1_API) */ -} - -/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */ -crypto_pk_t * -crypto_new_pk_from_rsa_(RSA *rsa) -{ - crypto_pk_t *env; - tor_assert(rsa); - env = tor_malloc(sizeof(crypto_pk_t)); - env->refs = 1; - env->key = rsa; - return env; -} - -/** Helper, used by tor-gencert.c. Return the RSA from a - * crypto_pk_t. */ -RSA * -crypto_pk_get_rsa_(crypto_pk_t *env) -{ - return env->key; -} - -/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff - * private is set, include the private-key portion of the key. Return a valid - * pointer on success, and NULL on failure. */ -MOCK_IMPL(EVP_PKEY *, -crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private)) -{ - RSA *key = NULL; - EVP_PKEY *pkey = NULL; - tor_assert(env->key); - if (private) { - if (!(key = RSAPrivateKey_dup(env->key))) - goto error; - } else { - if (!(key = RSAPublicKey_dup(env->key))) - goto error; - } - if (!(pkey = EVP_PKEY_new())) - goto error; - if (!(EVP_PKEY_assign_RSA(pkey, key))) - goto error; - return pkey; - error: - if (pkey) - EVP_PKEY_free(pkey); - if (key) - RSA_free(key); - return NULL; -} - /** Used by tortls.c: Get the DH* from a crypto_dh_t. */ DH * @@ -438,38 +340,6 @@ crypto_dh_get_dh_(crypto_dh_t *dh) return dh->dh; }
-/** Allocate and return storage for a public key. The key itself will not yet - * be set. - */ -MOCK_IMPL(crypto_pk_t *, -crypto_pk_new,(void)) -{ - RSA *rsa; - - rsa = RSA_new(); - tor_assert(rsa); - return crypto_new_pk_from_rsa_(rsa); -} - -/** Release a reference to an asymmetric key; when all the references - * are released, free the key. - */ -void -crypto_pk_free_(crypto_pk_t *env) -{ - if (!env) - return; - - if (--env->refs > 0) - return; - tor_assert(env->refs == 0); - - if (env->key) - RSA_free(env->key); - - tor_free(env); -} - /** Allocate and return a new symmetric cipher using the provided key and iv. * The key is <b>bits</b> bits long; the IV is CIPHER_IV_LEN bytes. Both * must be provided. Key length must be 128, 192, or 256 */ @@ -528,543 +398,6 @@ crypto_cipher_free_(crypto_cipher_t *env)
/* public key crypto */
-/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>. - * Return 0 on success, -1 on failure. - */ -MOCK_IMPL(int, -crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)) -{ - tor_assert(env); - - if (env->key) { - RSA_free(env->key); - env->key = NULL; - } - - { - BIGNUM *e = BN_new(); - RSA *r = NULL; - if (!e) - goto done; - if (! BN_set_word(e, 65537)) - goto done; - r = RSA_new(); - if (!r) - goto done; - if (RSA_generate_key_ex(r, bits, e, NULL) == -1) - goto done; - - env->key = r; - r = NULL; - done: - if (e) - BN_clear_free(e); - if (r) - RSA_free(r); - } - - if (!env->key) { - crypto_log_errors(LOG_WARN, "generating RSA key"); - return -1; - } - - return 0; -} - -/** A PEM callback that always reports a failure to get a password */ -static int -pem_no_password_cb(char *buf, int size, int rwflag, void *u) -{ - (void)buf; - (void)size; - (void)rwflag; - (void)u; - return 0; -} - -/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b> - * into <b>env</b>. Return 0 on success, -1 on failure. If len is -1, - * the string is nul-terminated. - */ -int -crypto_pk_read_private_key_from_string(crypto_pk_t *env, - const char *s, ssize_t len) -{ - BIO *b; - - tor_assert(env); - tor_assert(s); - tor_assert(len < INT_MAX && len < SSIZE_T_CEILING); - - /* Create a read-only memory BIO, backed by the string 's' */ - b = BIO_new_mem_buf((char*)s, (int)len); - if (!b) - return -1; - - if (env->key) - RSA_free(env->key); - - env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL); - - BIO_free(b); - - if (!env->key) { - crypto_log_errors(LOG_WARN, "Error parsing private key"); - return -1; - } - return 0; -} - -/** Read a PEM-encoded private key from the file named by - * <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure. - */ -int -crypto_pk_read_private_key_from_filename(crypto_pk_t *env, - const char *keyfile) -{ - char *contents; - int r; - - /* Read the file into a string. */ - contents = read_file_to_str(keyfile, 0, NULL); - if (!contents) { - log_warn(LD_CRYPTO, "Error reading private key from "%s"", keyfile); - return -1; - } - - /* Try to parse it. */ - r = crypto_pk_read_private_key_from_string(env, contents, -1); - memwipe(contents, 0, strlen(contents)); - tor_free(contents); - if (r) - return -1; /* read_private_key_from_string already warned, so we don't.*/ - - /* Make sure it's valid. */ - if (crypto_pk_check_key(env) <= 0) - return -1; - - return 0; -} - -/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on - * success, -1 on failure. */ -static int -crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest, - size_t *len, int is_public) -{ - BUF_MEM *buf; - BIO *b; - int r; - - tor_assert(env); - tor_assert(env->key); - tor_assert(dest); - - b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ - if (!b) - return -1; - - /* Now you can treat b as if it were a file. Just use the - * PEM_*_bio_* functions instead of the non-bio variants. - */ - if (is_public) - r = PEM_write_bio_RSAPublicKey(b, env->key); - else - r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL); - - if (!r) { - crypto_log_errors(LOG_WARN, "writing RSA key to string"); - BIO_free(b); - return -1; - } - - BIO_get_mem_ptr(b, &buf); - - *dest = tor_malloc(buf->length+1); - memcpy(*dest, buf->data, buf->length); - (*dest)[buf->length] = 0; /* nul terminate it */ - *len = buf->length; - - BIO_free(b); - - return 0; -} - -/** PEM-encode the public key portion of <b>env</b> and write it to a - * newly allocated string. On success, set *<b>dest</b> to the new - * string, *<b>len</b> to the string's length, and return 0. On - * failure, return -1. - */ -int -crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest, - size_t *len) -{ - return crypto_pk_write_key_to_string_impl(env, dest, len, 1); -} - -/** PEM-encode the private key portion of <b>env</b> and write it to a - * newly allocated string. On success, set *<b>dest</b> to the new - * string, *<b>len</b> to the string's length, and return 0. On - * failure, return -1. - */ -int -crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest, - size_t *len) -{ - return crypto_pk_write_key_to_string_impl(env, dest, len, 0); -} - -/** Read a PEM-encoded public key from the first <b>len</b> characters of - * <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on - * failure. - */ -int -crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src, - size_t len) -{ - BIO *b; - - tor_assert(env); - tor_assert(src); - tor_assert(len<INT_MAX); - - b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ - if (!b) - return -1; - - BIO_write(b, src, (int)len); - - if (env->key) - RSA_free(env->key); - env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL); - BIO_free(b); - if (!env->key) { - crypto_log_errors(LOG_WARN, "reading public key from string"); - return -1; - } - - return 0; -} - -/** Write the private key from <b>env</b> into the file named by <b>fname</b>, - * PEM-encoded. Return 0 on success, -1 on failure. - */ -int -crypto_pk_write_private_key_to_filename(crypto_pk_t *env, - const char *fname) -{ - BIO *bio; - char *cp; - long len; - char *s; - int r; - - tor_assert(crypto_pk_private_ok(env)); - - if (!(bio = BIO_new(BIO_s_mem()))) - return -1; - if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL) - == 0) { - crypto_log_errors(LOG_WARN, "writing private key"); - BIO_free(bio); - return -1; - } - len = BIO_get_mem_data(bio, &cp); - tor_assert(len >= 0); - s = tor_malloc(len+1); - memcpy(s, cp, len); - s[len]='\0'; - r = write_str_to_file(fname, s, 0); - BIO_free(bio); - memwipe(s, 0, strlen(s)); - tor_free(s); - return r; -} - -/** Return true iff <b>env</b> has a valid key. - */ -int -crypto_pk_check_key(crypto_pk_t *env) -{ - int r; - tor_assert(env); - - r = RSA_check_key(env->key); - if (r <= 0) - crypto_log_errors(LOG_WARN,"checking RSA key"); - return r; -} - -/** Return true iff <b>key</b> contains the private-key portion of the RSA - * key. */ -int -crypto_pk_key_is_private(const crypto_pk_t *key) -{ - tor_assert(key); - return crypto_pk_private_ok(key); -} - -/** Return true iff <b>env</b> contains a public key whose public exponent - * equals 65537. - */ -int -crypto_pk_public_exponent_ok(crypto_pk_t *env) -{ - tor_assert(env); - tor_assert(env->key); - - const BIGNUM *e; - -#ifdef OPENSSL_1_1_API - const BIGNUM *n, *d; - RSA_get0_key(env->key, &n, &e, &d); -#else - e = env->key->e; -#endif /* defined(OPENSSL_1_1_API) */ - return BN_is_word(e, 65537); -} - -/** Compare the public-key components of a and b. Return less than 0 - * if a<b, 0 if a==b, and greater than 0 if a>b. A NULL key is - * considered to be less than all non-NULL keys, and equal to itself. - * - * Note that this may leak information about the keys through timing. - */ -int -crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b) -{ - int result; - char a_is_non_null = (a != NULL) && (a->key != NULL); - char b_is_non_null = (b != NULL) && (b->key != NULL); - char an_argument_is_null = !a_is_non_null | !b_is_non_null; - - result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null)); - if (an_argument_is_null) - return result; - - const BIGNUM *a_n, *a_e; - const BIGNUM *b_n, *b_e; - -#ifdef OPENSSL_1_1_API - const BIGNUM *a_d, *b_d; - RSA_get0_key(a->key, &a_n, &a_e, &a_d); - RSA_get0_key(b->key, &b_n, &b_e, &b_d); -#else - a_n = a->key->n; - a_e = a->key->e; - b_n = b->key->n; - b_e = b->key->e; -#endif /* defined(OPENSSL_1_1_API) */ - - tor_assert(a_n != NULL && a_e != NULL); - tor_assert(b_n != NULL && b_e != NULL); - - result = BN_cmp(a_n, b_n); - if (result) - return result; - return BN_cmp(a_e, b_e); -} - -/** Compare the public-key components of a and b. Return non-zero iff - * a==b. A NULL key is considered to be distinct from all non-NULL - * keys, and equal to itself. - * - * Note that this may leak information about the keys through timing. - */ -int -crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b) -{ - return (crypto_pk_cmp_keys(a, b) == 0); -} - -/** Return the size of the public key modulus in <b>env</b>, in bytes. */ -size_t -crypto_pk_keysize(const crypto_pk_t *env) -{ - tor_assert(env); - tor_assert(env->key); - - return (size_t) RSA_size((RSA*)env->key); -} - -/** Return the size of the public key modulus of <b>env</b>, in bits. */ -int -crypto_pk_num_bits(crypto_pk_t *env) -{ - tor_assert(env); - tor_assert(env->key); - -#ifdef OPENSSL_1_1_API - /* It's so stupid that there's no other way to check that n is valid - * before calling RSA_bits(). - */ - const BIGNUM *n, *e, *d; - RSA_get0_key(env->key, &n, &e, &d); - tor_assert(n != NULL); - - return RSA_bits(env->key); -#else /* !(defined(OPENSSL_1_1_API)) */ - tor_assert(env->key->n); - return BN_num_bits(env->key->n); -#endif /* defined(OPENSSL_1_1_API) */ -} - -/** Increase the reference count of <b>env</b>, and return it. - */ -crypto_pk_t * -crypto_pk_dup_key(crypto_pk_t *env) -{ - tor_assert(env); - tor_assert(env->key); - - env->refs++; - return env; -} - -#ifdef TOR_UNIT_TESTS -/** For testing: replace dest with src. (Dest must have a refcount - * of 1) */ -void -crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src) -{ - tor_assert(dest); - tor_assert(dest->refs == 1); - tor_assert(src); - RSA_free(dest->key); - dest->key = RSAPrivateKey_dup(src->key); -} -#endif /* defined(TOR_UNIT_TESTS) */ - -/** Make a real honest-to-goodness copy of <b>env</b>, and return it. - * Returns NULL on failure. */ -crypto_pk_t * -crypto_pk_copy_full(crypto_pk_t *env) -{ - RSA *new_key; - int privatekey = 0; - tor_assert(env); - tor_assert(env->key); - - if (crypto_pk_private_ok(env)) { - new_key = RSAPrivateKey_dup(env->key); - privatekey = 1; - } else { - new_key = RSAPublicKey_dup(env->key); - } - if (!new_key) { - /* LCOV_EXCL_START - * - * We can't cause RSA*Key_dup() to fail, so we can't really test this. - */ - log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.", - privatekey?"private":"public"); - crypto_log_errors(LOG_ERR, - privatekey ? "Duplicating a private key" : - "Duplicating a public key"); - tor_fragile_assert(); - return NULL; - /* LCOV_EXCL_STOP */ - } - - return crypto_new_pk_from_rsa_(new_key); -} - -/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key - * in <b>env</b>, using the padding method <b>padding</b>. On success, - * write the result to <b>to</b>, and return the number of bytes - * written. On failure, return -1. - * - * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be - * at least the length of the modulus of <b>env</b>. - */ -int -crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, - const char *from, size_t fromlen, int padding) -{ - int r; - tor_assert(env); - tor_assert(from); - tor_assert(to); - tor_assert(fromlen<INT_MAX); - tor_assert(tolen >= crypto_pk_keysize(env)); - - r = RSA_public_encrypt((int)fromlen, - (unsigned char*)from, (unsigned char*)to, - env->key, crypto_get_rsa_padding(padding)); - if (r<0) { - crypto_log_errors(LOG_WARN, "performing RSA encryption"); - return -1; - } - return r; -} - -/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key - * in <b>env</b>, using the padding method <b>padding</b>. On success, - * write the result to <b>to</b>, and return the number of bytes - * written. On failure, return -1. - * - * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be - * at least the length of the modulus of <b>env</b>. - */ -int -crypto_pk_private_decrypt(crypto_pk_t *env, char *to, - size_t tolen, - const char *from, size_t fromlen, - int padding, int warnOnFailure) -{ - int r; - tor_assert(env); - tor_assert(from); - tor_assert(to); - tor_assert(env->key); - tor_assert(fromlen<INT_MAX); - tor_assert(tolen >= crypto_pk_keysize(env)); - if (!crypto_pk_key_is_private(env)) - /* Not a private key */ - return -1; - - r = RSA_private_decrypt((int)fromlen, - (unsigned char*)from, (unsigned char*)to, - env->key, crypto_get_rsa_padding(padding)); - - if (r<0) { - crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG, - "performing RSA decryption"); - return -1; - } - return r; -} - -/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the - * public key in <b>env</b>, using PKCS1 padding. On success, write the - * signed data to <b>to</b>, and return the number of bytes written. - * On failure, return -1. - * - * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be - * at least the length of the modulus of <b>env</b>. - */ -MOCK_IMPL(int, -crypto_pk_public_checksig,(const crypto_pk_t *env, char *to, - size_t tolen, - const char *from, size_t fromlen)) -{ - int r; - tor_assert(env); - tor_assert(from); - tor_assert(to); - tor_assert(fromlen < INT_MAX); - tor_assert(tolen >= crypto_pk_keysize(env)); - r = RSA_public_decrypt((int)fromlen, - (unsigned char*)from, (unsigned char*)to, - env->key, RSA_PKCS1_PADDING); - - if (r<0) { - crypto_log_errors(LOG_INFO, "checking RSA signature"); - return -1; - } - return r; -} - /** Check a siglen-byte long signature at <b>sig</b> against * <b>datalen</b> bytes of data at <b>data</b>, using the public key * in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for @@ -1108,38 +441,6 @@ crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data, return 0; }
-/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in - * <b>env</b>, using PKCS1 padding. On success, write the signature to - * <b>to</b>, and return the number of bytes written. On failure, return - * -1. - * - * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be - * at least the length of the modulus of <b>env</b>. - */ -int -crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, - const char *from, size_t fromlen) -{ - int r; - tor_assert(env); - tor_assert(from); - tor_assert(to); - tor_assert(fromlen < INT_MAX); - tor_assert(tolen >= crypto_pk_keysize(env)); - if (!crypto_pk_key_is_private(env)) - /* Not a private key */ - return -1; - - r = RSA_private_encrypt((int)fromlen, - (unsigned char*)from, (unsigned char*)to, - (RSA*)env->key, RSA_PKCS1_PADDING); - if (r<0) { - crypto_log_errors(LOG_WARN, "generating RSA signature"); - return -1; - } - return r; -} - /** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at * <b>from</b>; sign the data with the private key in <b>env</b>, and * store it in <b>to</b>. Return the number of bytes written on @@ -1303,51 +604,6 @@ crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env, return -1; }
-/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>. - * Return -1 on error, or the number of characters used on success. - */ -int -crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len) -{ - int len; - unsigned char *buf = NULL; - - len = i2d_RSAPublicKey(pk->key, &buf); - if (len < 0 || buf == NULL) - return -1; - - if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) { - OPENSSL_free(buf); - return -1; - } - /* We don't encode directly into 'dest', because that would be illegal - * type-punning. (C99 is smarter than me, C99 is smarter than me...) - */ - memcpy(dest,buf,len); - OPENSSL_free(buf); - return len; -} - -/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on - * success and NULL on failure. - */ -crypto_pk_t * -crypto_pk_asn1_decode(const char *str, size_t len) -{ - RSA *rsa; - unsigned char *buf; - const unsigned char *cp; - cp = buf = tor_malloc(len); - memcpy(buf,str,len); - rsa = d2i_RSAPublicKey(NULL, &cp, len); - tor_free(buf); - if (!rsa) { - crypto_log_errors(LOG_WARN,"decoding public key"); - return NULL; - } - return crypto_new_pk_from_rsa_(rsa); -} - /** Given a private or public key <b>pk</b>, put a SHA1 hash of the * public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space). * Return 0 on success, -1 on failure. @@ -1408,127 +664,6 @@ crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in) *out = '\0'; }
-/** Given a private or public key <b>pk</b>, put a fingerprint of the - * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of - * space). Return 0 on success, -1 on failure. - * - * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding - * of the public key, converted to hexadecimal, in upper case, with a - * space after every four digits. - * - * If <b>add_space</b> is false, omit the spaces. - */ -int -crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space) -{ - char digest[DIGEST_LEN]; - char hexdigest[HEX_DIGEST_LEN+1]; - if (crypto_pk_get_digest(pk, digest)) { - return -1; - } - base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN); - if (add_space) { - crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest); - } else { - strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1); - } - return 0; -} - -/** Given a private or public key <b>pk</b>, put a hashed fingerprint of - * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 - * bytes of space). Return 0 on success, -1 on failure. - * - * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest - * of the ASN.1 encoding of the public key, converted to hexadecimal, in - * upper case. - */ -int -crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out) -{ - char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN]; - if (crypto_pk_get_digest(pk, digest)) { - return -1; - } - if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) { - return -1; - } - base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN); - return 0; -} - -/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the - * Base64 encoding of the DER representation of the private key as a NUL - * terminated string, and return it via <b>priv_out</b>. Return 0 on - * sucess, -1 on failure. - * - * It is the caller's responsibility to sanitize and free the resulting buffer. - */ -int -crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out) -{ - unsigned char *der = NULL; - int der_len; - int ret = -1; - - *priv_out = NULL; - - der_len = i2d_RSAPrivateKey(pk->key, &der); - if (der_len < 0 || der == NULL) - return ret; - - size_t priv_len = base64_encode_size(der_len, 0) + 1; - char *priv = tor_malloc_zero(priv_len); - if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) { - *priv_out = priv; - ret = 0; - } else { - tor_free(priv); - } - - memwipe(der, 0, der_len); - OPENSSL_free(der); - return ret; -} - -/** Given a string containing the Base64 encoded DER representation of the - * private key <b>str</b>, decode and return the result on success, or NULL - * on failure. - */ -crypto_pk_t * -crypto_pk_base64_decode(const char *str, size_t len) -{ - crypto_pk_t *pk = NULL; - - char *der = tor_malloc_zero(len + 1); - int der_len = base64_decode(der, len, str, len); - if (der_len <= 0) { - log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64)."); - goto out; - } - - const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */ - RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len); - if (!rsa) { - crypto_log_errors(LOG_WARN, "decoding private key"); - goto out; - } - - pk = crypto_new_pk_from_rsa_(rsa); - - /* Make sure it's valid. */ - if (crypto_pk_check_key(pk) <= 0) { - crypto_pk_free(pk); - pk = NULL; - goto out; - } - - out: - memwipe(der, 0, len + 1); - tor_free(der); - return pk; -} - /* symmetric crypto */
/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher diff --git a/src/common/crypto.h b/src/common/crypto.h index 3caa23773..a9c8837b9 100644 --- a/src/common/crypto.h +++ b/src/common/crypto.h @@ -20,6 +20,7 @@ #include "testsupport.h" #include "compat.h" #include "util.h" +#include "crypto_rsa.h"
#include "keccak-tiny/keccak-tiny.h"
@@ -36,8 +37,6 @@ #define CIPHER_IV_LEN 16 /** Length of our symmetric cipher's keys of 256-bit. */ #define CIPHER256_KEY_LEN 32 -/** Length of our public keys. */ -#define PK_BYTES (1024/8) /** Length of our DH keys. */ #define DH_BYTES (1024/8)
@@ -54,12 +53,6 @@ * signs removed. */ #define BASE64_DIGEST512_LEN 86
-/** Constant used to indicate OAEP padding for public-key encryption */ -#define PK_PKCS1_OAEP_PADDING 60002 - -/** Number of bytes added for PKCS1-OAEP padding. */ -#define PKCS1_OAEP_PADDING_OVERHEAD 42 - /** Length of encoded public key fingerprints, including space; but not * including terminating NUL. */ #define FINGERPRINT_LEN 49 @@ -92,7 +85,6 @@ typedef struct { char d[N_COMMON_DIGEST_ALGORITHMS][DIGEST256_LEN]; } common_digests_t;
-typedef struct crypto_pk_t crypto_pk_t; typedef struct aes_cnt_cipher crypto_cipher_t; typedef struct crypto_digest_t crypto_digest_t; typedef struct crypto_xof_t crypto_xof_t; @@ -111,10 +103,6 @@ void crypto_thread_cleanup(void); int crypto_global_cleanup(void);
/* environment setup */ -MOCK_DECL(crypto_pk_t *,crypto_pk_new,(void)); -void crypto_pk_free_(crypto_pk_t *env); -#define crypto_pk_free(pk) FREE_AND_NULL(crypto_pk_t, crypto_pk_free_, (pk)) - void crypto_set_tls_dh_prime(void); crypto_cipher_t *crypto_cipher_new(const char *key); crypto_cipher_t *crypto_cipher_new_with_bits(const char *key, int bits); @@ -126,47 +114,10 @@ void crypto_cipher_free_(crypto_cipher_t *env); #define crypto_cipher_free(c) \ FREE_AND_NULL(crypto_cipher_t, crypto_cipher_free_, (c))
-/* public key crypto */ -MOCK_DECL(int, crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)); -#define crypto_pk_generate_key(env) \ - crypto_pk_generate_key_with_bits((env), (PK_BYTES*8)) - -int crypto_pk_read_private_key_from_filename(crypto_pk_t *env, - const char *keyfile); -int crypto_pk_write_public_key_to_string(crypto_pk_t *env, - char **dest, size_t *len); -int crypto_pk_write_private_key_to_string(crypto_pk_t *env, - char **dest, size_t *len); -int crypto_pk_read_public_key_from_string(crypto_pk_t *env, - const char *src, size_t len); -int crypto_pk_read_private_key_from_string(crypto_pk_t *env, - const char *s, ssize_t len); -int crypto_pk_write_private_key_to_filename(crypto_pk_t *env, - const char *fname); - -int crypto_pk_check_key(crypto_pk_t *env); -int crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b); -int crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b); -size_t crypto_pk_keysize(const crypto_pk_t *env); -int crypto_pk_num_bits(crypto_pk_t *env); -crypto_pk_t *crypto_pk_dup_key(crypto_pk_t *orig); -crypto_pk_t *crypto_pk_copy_full(crypto_pk_t *orig); -int crypto_pk_key_is_private(const crypto_pk_t *key); -int crypto_pk_public_exponent_ok(crypto_pk_t *env); - -int crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, - const char *from, size_t fromlen, int padding); -int crypto_pk_private_decrypt(crypto_pk_t *env, char *to, size_t tolen, - const char *from, size_t fromlen, - int padding, int warnOnFailure); -MOCK_DECL(int, crypto_pk_public_checksig,(const crypto_pk_t *env, - char *to, size_t tolen, - const char *from, size_t fromlen)); +/* public key crypto */ MOCK_DECL(int, crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data, size_t datalen, const char *sig, size_t siglen)); -int crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, - const char *from, size_t fromlen); int crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen); int crypto_pk_obsolete_public_hybrid_encrypt(crypto_pk_t *env, char *to, @@ -177,17 +128,9 @@ int crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding, int warnOnFailure); - -int crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len); -crypto_pk_t *crypto_pk_asn1_decode(const char *str, size_t len); int crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out); int crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out); -int crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out,int add_space); -int crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out); - -int crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out); -crypto_pk_t *crypto_pk_base64_decode(const char *str, size_t len);
/* symmetric crypto */ const char *crypto_cipher_get_key(crypto_cipher_t *env); @@ -303,13 +246,7 @@ void memwipe(void *mem, uint8_t byte, size_t sz);
/* Prototypes for private functions only used by tortls.c, crypto.c, and the * unit tests. */ -struct rsa_st; -struct evp_pkey_st; struct dh_st; -struct rsa_st *crypto_pk_get_rsa_(crypto_pk_t *env); -crypto_pk_t *crypto_new_pk_from_rsa_(struct rsa_st *rsa); -MOCK_DECL(struct evp_pkey_st *, crypto_pk_get_evp_pkey_,(crypto_pk_t *env, - int private)); struct dh_st *crypto_dh_get_dh_(crypto_dh_t *dh);
void crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in); @@ -326,7 +263,6 @@ extern int break_strongest_rng_fallback; #endif /* defined(CRYPTO_PRIVATE) */
#ifdef TOR_UNIT_TESTS -void crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src); digest_algorithm_t crypto_digest_get_algorithm(crypto_digest_t *digest); #endif
diff --git a/src/common/crypto_rsa.c b/src/common/crypto_rsa.c new file mode 100644 index 000000000..1308c4819 --- /dev/null +++ b/src/common/crypto_rsa.c @@ -0,0 +1,878 @@ +/* Copyright (c) 2001, Matej Pfajfar. + * Copyright (c) 2001-2004, Roger Dingledine. + * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. + * Copyright (c) 2007-2017, The Tor Project, Inc. */ +/* See LICENSE for licensing information */ + +/** + * \file crypto_rsa.c + * \brief Block of functions related with RSA utilities and operations. + **/ + +#include "crypto_rsa.h" + +/** A public key, or a public/private key-pair. */ +struct crypto_pk_t +{ + int refs; /**< reference count, so we don't have to copy keys */ + RSA *key; /**< The key itself */ +}; + +/** Return the number of bytes added by padding method <b>padding</b>. + */ +static inline int +crypto_get_rsa_padding_overhead(int padding) +{ + switch (padding) + { + case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD; + default: tor_assert(0); return -1; // LCOV_EXCL_LINE + } +} + +/** Given a padding method <b>padding</b>, return the correct OpenSSL constant. + */ +static inline int +crypto_get_rsa_padding(int padding) +{ + switch (padding) + { + case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING; + default: tor_assert(0); return -1; // LCOV_EXCL_LINE + } +} + +/** used internally: quicly validate a crypto_pk_t object as a private key. + * Return 1 iff the public key is valid, 0 if obviously invalid. + */ +static int +crypto_pk_private_ok(const crypto_pk_t *k) +{ +#ifdef OPENSSL_1_1_API + if (!k || !k->key) + return 0; + + const BIGNUM *p, *q; + RSA_get0_factors(k->key, &p, &q); + return p != NULL; /* XXX/yawning: Should we check q? */ +#else /* !(defined(OPENSSL_1_1_API)) */ + return k && k->key && k->key->p; +#endif /* defined(OPENSSL_1_1_API) */ +} + +/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */ +crypto_pk_t * +crypto_new_pk_from_rsa_(RSA *rsa) +{ + crypto_pk_t *env; + tor_assert(rsa); + env = tor_malloc(sizeof(crypto_pk_t)); + env->refs = 1; + env->key = rsa; + return env; +} + +/** Helper, used by tor-gencert.c. Return the RSA from a + * crypto_pk_t. */ +RSA * +crypto_pk_get_rsa_(crypto_pk_t *env) +{ + return env->key; +} + +/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff + * private is set, include the private-key portion of the key. Return a valid + * pointer on success, and NULL on failure. */ +MOCK_IMPL(EVP_PKEY *, +crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private)) +{ + RSA *key = NULL; + EVP_PKEY *pkey = NULL; + tor_assert(env->key); + if (private) { + if (!(key = RSAPrivateKey_dup(env->key))) + goto error; + } else { + if (!(key = RSAPublicKey_dup(env->key))) + goto error; + } + if (!(pkey = EVP_PKEY_new())) + goto error; + if (!(EVP_PKEY_assign_RSA(pkey, key))) + goto error; + return pkey; + error: + if (pkey) + EVP_PKEY_free(pkey); + if (key) + RSA_free(key); + return NULL; +} + +/** Allocate and return storage for a public key. The key itself will not yet + * be set. + */ +MOCK_IMPL(crypto_pk_t *, +crypto_pk_new,(void)) +{ + RSA *rsa; + + rsa = RSA_new(); + tor_assert(rsa); + return crypto_new_pk_from_rsa_(rsa); +} + +/** Release a reference to an asymmetric key; when all the references + * are released, free the key. + */ +void +crypto_pk_free_(crypto_pk_t *env) +{ + if (!env) + return; + + if (--env->refs > 0) + return; + tor_assert(env->refs == 0); + + if (env->key) + RSA_free(env->key); + + tor_free(env); +} + +/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>. + * Return 0 on success, -1 on failure. + */ +MOCK_IMPL(int, +crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)) +{ + tor_assert(env); + + if (env->key) { + RSA_free(env->key); + env->key = NULL; + } + + { + BIGNUM *e = BN_new(); + RSA *r = NULL; + if (!e) + goto done; + if (! BN_set_word(e, 65537)) + goto done; + r = RSA_new(); + if (!r) + goto done; + if (RSA_generate_key_ex(r, bits, e, NULL) == -1) + goto done; + + env->key = r; + r = NULL; + done: + if (e) + BN_clear_free(e); + if (r) + RSA_free(r); + } + + if (!env->key) { + crypto_log_errors(LOG_WARN, "generating RSA key"); + return -1; + } + + return 0; +} + +/** A PEM callback that always reports a failure to get a password */ +static int +pem_no_password_cb(char *buf, int size, int rwflag, void *u) +{ + (void)buf; + (void)size; + (void)rwflag; + (void)u; + return 0; +} + +/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b> + * into <b>env</b>. Return 0 on success, -1 on failure. If len is -1, + * the string is nul-terminated. + */ +int +crypto_pk_read_private_key_from_string(crypto_pk_t *env, + const char *s, ssize_t len) +{ + BIO *b; + + tor_assert(env); + tor_assert(s); + tor_assert(len < INT_MAX && len < SSIZE_T_CEILING); + + /* Create a read-only memory BIO, backed by the string 's' */ + b = BIO_new_mem_buf((char*)s, (int)len); + if (!b) + return -1; + + if (env->key) + RSA_free(env->key); + + env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL); + + BIO_free(b); + + if (!env->key) { + crypto_log_errors(LOG_WARN, "Error parsing private key"); + return -1; + } + return 0; +} + +/** Read a PEM-encoded private key from the file named by + * <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure. + */ +int +crypto_pk_read_private_key_from_filename(crypto_pk_t *env, + const char *keyfile) +{ + char *contents; + int r; + + /* Read the file into a string. */ + contents = read_file_to_str(keyfile, 0, NULL); + if (!contents) { + log_warn(LD_CRYPTO, "Error reading private key from "%s"", keyfile); + return -1; + } + + /* Try to parse it. */ + r = crypto_pk_read_private_key_from_string(env, contents, -1); + memwipe(contents, 0, strlen(contents)); + tor_free(contents); + if (r) + return -1; /* read_private_key_from_string already warned, so we don't.*/ + + /* Make sure it's valid. */ + if (crypto_pk_check_key(env) <= 0) + return -1; + + return 0; +} + +/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on + * success, -1 on failure. */ +static int +crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest, + size_t *len, int is_public) +{ + BUF_MEM *buf; + BIO *b; + int r; + + tor_assert(env); + tor_assert(env->key); + tor_assert(dest); + + b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ + if (!b) + return -1; + + /* Now you can treat b as if it were a file. Just use the + * PEM_*_bio_* functions instead of the non-bio variants. + */ + if (is_public) + r = PEM_write_bio_RSAPublicKey(b, env->key); + else + r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL); + + if (!r) { + crypto_log_errors(LOG_WARN, "writing RSA key to string"); + BIO_free(b); + return -1; + } + + BIO_get_mem_ptr(b, &buf); + + *dest = tor_malloc(buf->length+1); + memcpy(*dest, buf->data, buf->length); + (*dest)[buf->length] = 0; /* nul terminate it */ + *len = buf->length; + + BIO_free(b); + + return 0; +} + +/** PEM-encode the public key portion of <b>env</b> and write it to a + * newly allocated string. On success, set *<b>dest</b> to the new + * string, *<b>len</b> to the string's length, and return 0. On + * failure, return -1. + */ +int +crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest, + size_t *len) +{ + return crypto_pk_write_key_to_string_impl(env, dest, len, 1); +} + +/** PEM-encode the private key portion of <b>env</b> and write it to a + * newly allocated string. On success, set *<b>dest</b> to the new + * string, *<b>len</b> to the string's length, and return 0. On + * failure, return -1. + */ +int +crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest, + size_t *len) +{ + return crypto_pk_write_key_to_string_impl(env, dest, len, 0); +} + +/** Read a PEM-encoded public key from the first <b>len</b> characters of + * <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on + * failure. + */ +int +crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src, + size_t len) +{ + BIO *b; + + tor_assert(env); + tor_assert(src); + tor_assert(len<INT_MAX); + + b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ + if (!b) + return -1; + + BIO_write(b, src, (int)len); + + if (env->key) + RSA_free(env->key); + env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL); + BIO_free(b); + if (!env->key) { + crypto_log_errors(LOG_WARN, "reading public key from string"); + return -1; + } + + return 0; +} + +/** Write the private key from <b>env</b> into the file named by <b>fname</b>, + * PEM-encoded. Return 0 on success, -1 on failure. + */ +int +crypto_pk_write_private_key_to_filename(crypto_pk_t *env, + const char *fname) +{ + BIO *bio; + char *cp; + long len; + char *s; + int r; + + tor_assert(crypto_pk_private_ok(env)); + + if (!(bio = BIO_new(BIO_s_mem()))) + return -1; + if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL) + == 0) { + crypto_log_errors(LOG_WARN, "writing private key"); + BIO_free(bio); + return -1; + } + len = BIO_get_mem_data(bio, &cp); + tor_assert(len >= 0); + s = tor_malloc(len+1); + memcpy(s, cp, len); + s[len]='\0'; + r = write_str_to_file(fname, s, 0); + BIO_free(bio); + memwipe(s, 0, strlen(s)); + tor_free(s); + return r; +} + +/** Return true iff <b>env</b> has a valid key. + */ +int +crypto_pk_check_key(crypto_pk_t *env) +{ + int r; + tor_assert(env); + + r = RSA_check_key(env->key); + if (r <= 0) + crypto_log_errors(LOG_WARN,"checking RSA key"); + return r; +} + +/** Return true iff <b>key</b> contains the private-key portion of the RSA + * key. */ +int +crypto_pk_key_is_private(const crypto_pk_t *key) +{ + tor_assert(key); + return crypto_pk_private_ok(key); +} + +/** Return true iff <b>env</b> contains a public key whose public exponent + * equals 65537. + */ +int +crypto_pk_public_exponent_ok(crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + + const BIGNUM *e; + +#ifdef OPENSSL_1_1_API + const BIGNUM *n, *d; + RSA_get0_key(env->key, &n, &e, &d); +#else + e = env->key->e; +#endif /* defined(OPENSSL_1_1_API) */ + return BN_is_word(e, 65537); +} + +/** Compare the public-key components of a and b. Return less than 0 + * if a<b, 0 if a==b, and greater than 0 if a>b. A NULL key is + * considered to be less than all non-NULL keys, and equal to itself. + * + * Note that this may leak information about the keys through timing. + */ +int +crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b) +{ + int result; + char a_is_non_null = (a != NULL) && (a->key != NULL); + char b_is_non_null = (b != NULL) && (b->key != NULL); + char an_argument_is_null = !a_is_non_null | !b_is_non_null; + + result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null)); + if (an_argument_is_null) + return result; + + const BIGNUM *a_n, *a_e; + const BIGNUM *b_n, *b_e; + +#ifdef OPENSSL_1_1_API + const BIGNUM *a_d, *b_d; + RSA_get0_key(a->key, &a_n, &a_e, &a_d); + RSA_get0_key(b->key, &b_n, &b_e, &b_d); +#else + a_n = a->key->n; + a_e = a->key->e; + b_n = b->key->n; + b_e = b->key->e; +#endif /* defined(OPENSSL_1_1_API) */ + + tor_assert(a_n != NULL && a_e != NULL); + tor_assert(b_n != NULL && b_e != NULL); + + result = BN_cmp(a_n, b_n); + if (result) + return result; + return BN_cmp(a_e, b_e); +} + +/** Compare the public-key components of a and b. Return non-zero iff + * a==b. A NULL key is considered to be distinct from all non-NULL + * keys, and equal to itself. + * + * Note that this may leak information about the keys through timing. + */ +int +crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b) +{ + return (crypto_pk_cmp_keys(a, b) == 0); +} + +/** Return the size of the public key modulus in <b>env</b>, in bytes. */ +size_t +crypto_pk_keysize(const crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + + return (size_t) RSA_size((RSA*)env->key); +} + +/** Return the size of the public key modulus of <b>env</b>, in bits. */ +int +crypto_pk_num_bits(crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + +#ifdef OPENSSL_1_1_API + /* It's so stupid that there's no other way to check that n is valid + * before calling RSA_bits(). + */ + const BIGNUM *n, *e, *d; + RSA_get0_key(env->key, &n, &e, &d); + tor_assert(n != NULL); + + return RSA_bits(env->key); +#else /* !(defined(OPENSSL_1_1_API)) */ + tor_assert(env->key->n); + return BN_num_bits(env->key->n); +#endif /* defined(OPENSSL_1_1_API) */ +} + +/** Increase the reference count of <b>env</b>, and return it. + */ +crypto_pk_t * +crypto_pk_dup_key(crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + + env->refs++; + return env; +} + +#ifdef TOR_UNIT_TESTS +/** For testing: replace dest with src. (Dest must have a refcount + * of 1) */ +void +crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src) +{ + tor_assert(dest); + tor_assert(dest->refs == 1); + tor_assert(src); + RSA_free(dest->key); + dest->key = RSAPrivateKey_dup(src->key); +} +#endif /* defined(TOR_UNIT_TESTS) */ + +/** Make a real honest-to-goodness copy of <b>env</b>, and return it. + * Returns NULL on failure. */ +crypto_pk_t * +crypto_pk_copy_full(crypto_pk_t *env) +{ + RSA *new_key; + int privatekey = 0; + tor_assert(env); + tor_assert(env->key); + + if (crypto_pk_private_ok(env)) { + new_key = RSAPrivateKey_dup(env->key); + privatekey = 1; + } else { + new_key = RSAPublicKey_dup(env->key); + } + if (!new_key) { + /* LCOV_EXCL_START + * + * We can't cause RSA*Key_dup() to fail, so we can't really test this. + */ + log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.", + privatekey?"private":"public"); + crypto_log_errors(LOG_ERR, + privatekey ? "Duplicating a private key" : + "Duplicating a public key"); + tor_fragile_assert(); + return NULL; + /* LCOV_EXCL_STOP */ + } + + return crypto_new_pk_from_rsa_(new_key); +} + +/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key + * in <b>env</b>, using the padding method <b>padding</b>. On success, + * write the result to <b>to</b>, and return the number of bytes + * written. On failure, return -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +int +crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen, int padding) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(fromlen<INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + + r = RSA_public_encrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + env->key, crypto_get_rsa_padding(padding)); + if (r<0) { + crypto_log_errors(LOG_WARN, "performing RSA encryption"); + return -1; + } + return r; +} + +/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key + * in <b>env</b>, using the padding method <b>padding</b>. On success, + * write the result to <b>to</b>, and return the number of bytes + * written. On failure, return -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +int +crypto_pk_private_decrypt(crypto_pk_t *env, char *to, + size_t tolen, + const char *from, size_t fromlen, + int padding, int warnOnFailure) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(env->key); + tor_assert(fromlen<INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + if (!crypto_pk_key_is_private(env)) + /* Not a private key */ + return -1; + + r = RSA_private_decrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + env->key, crypto_get_rsa_padding(padding)); + + if (r<0) { + crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG, + "performing RSA decryption"); + return -1; + } + return r; +} + +/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the + * public key in <b>env</b>, using PKCS1 padding. On success, write the + * signed data to <b>to</b>, and return the number of bytes written. + * On failure, return -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +MOCK_IMPL(int, +crypto_pk_public_checksig,(const crypto_pk_t *env, char *to, + size_t tolen, + const char *from, size_t fromlen)) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(fromlen < INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + r = RSA_public_decrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + env->key, RSA_PKCS1_PADDING); + + if (r<0) { + crypto_log_errors(LOG_INFO, "checking RSA signature"); + return -1; + } + return r; +} + +/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in + * <b>env</b>, using PKCS1 padding. On success, write the signature to + * <b>to</b>, and return the number of bytes written. On failure, return + * -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +int +crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(fromlen < INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + if (!crypto_pk_key_is_private(env)) + /* Not a private key */ + return -1; + + r = RSA_private_encrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + (RSA*)env->key, RSA_PKCS1_PADDING); + if (r<0) { + crypto_log_errors(LOG_WARN, "generating RSA signature"); + return -1; + } + return r; +} + +/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>. + * Return -1 on error, or the number of characters used on success. + */ +int +crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len) +{ + int len; + unsigned char *buf = NULL; + + len = i2d_RSAPublicKey(pk->key, &buf); + if (len < 0 || buf == NULL) + return -1; + + if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) { + OPENSSL_free(buf); + return -1; + } + /* We don't encode directly into 'dest', because that would be illegal + * type-punning. (C99 is smarter than me, C99 is smarter than me...) + */ + memcpy(dest,buf,len); + OPENSSL_free(buf); + return len; +} + +/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on + * success and NULL on failure. + */ +crypto_pk_t * +crypto_pk_asn1_decode(const char *str, size_t len) +{ + RSA *rsa; + unsigned char *buf; + const unsigned char *cp; + cp = buf = tor_malloc(len); + memcpy(buf,str,len); + rsa = d2i_RSAPublicKey(NULL, &cp, len); + tor_free(buf); + if (!rsa) { + crypto_log_errors(LOG_WARN,"decoding public key"); + return NULL; + } + return crypto_new_pk_from_rsa_(rsa); +} + +/** Given a private or public key <b>pk</b>, put a fingerprint of the + * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of + * space). Return 0 on success, -1 on failure. + * + * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding + * of the public key, converted to hexadecimal, in upper case, with a + * space after every four digits. + * + * If <b>add_space</b> is false, omit the spaces. + */ +int +crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space) +{ + char digest[DIGEST_LEN]; + char hexdigest[HEX_DIGEST_LEN+1]; + if (crypto_pk_get_digest(pk, digest)) { + return -1; + } + base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN); + if (add_space) { + crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest); + } else { + strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1); + } + return 0; +} + +/** Given a private or public key <b>pk</b>, put a hashed fingerprint of + * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 + * bytes of space). Return 0 on success, -1 on failure. + * + * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest + * of the ASN.1 encoding of the public key, converted to hexadecimal, in + * upper case. + */ +int +crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out) +{ + char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN]; + if (crypto_pk_get_digest(pk, digest)) { + return -1; + } + if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) { + return -1; + } + base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN); + return 0; +} + +/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the + * Base64 encoding of the DER representation of the private key as a NUL + * terminated string, and return it via <b>priv_out</b>. Return 0 on + * sucess, -1 on failure. + * + * It is the caller's responsibility to sanitize and free the resulting buffer. + */ +int +crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out) +{ + unsigned char *der = NULL; + int der_len; + int ret = -1; + + *priv_out = NULL; + + der_len = i2d_RSAPrivateKey(pk->key, &der); + if (der_len < 0 || der == NULL) + return ret; + + size_t priv_len = base64_encode_size(der_len, 0) + 1; + char *priv = tor_malloc_zero(priv_len); + if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) { + *priv_out = priv; + ret = 0; + } else { + tor_free(priv); + } + + memwipe(der, 0, der_len); + OPENSSL_free(der); + return ret; +} + +/** Given a string containing the Base64 encoded DER representation of the + * private key <b>str</b>, decode and return the result on success, or NULL + * on failure. + */ +crypto_pk_t * +crypto_pk_base64_decode(const char *str, size_t len) +{ + crypto_pk_t *pk = NULL; + + char *der = tor_malloc_zero(len + 1); + int der_len = base64_decode(der, len, str, len); + if (der_len <= 0) { + log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64)."); + goto out; + } + + const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */ + RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len); + if (!rsa) { + crypto_log_errors(LOG_WARN, "decoding private key"); + goto out; + } + + pk = crypto_new_pk_from_rsa_(rsa); + + /* Make sure it's valid. */ + if (crypto_pk_check_key(pk) <= 0) { + crypto_pk_free(pk); + pk = NULL; + goto out; + } + + out: + memwipe(der, 0, len + 1); + tor_free(der); + return pk; +} + diff --git a/src/common/crypto_rsa.h b/src/common/crypto_rsa.h new file mode 100644 index 000000000..e38451fed --- /dev/null +++ b/src/common/crypto_rsa.h @@ -0,0 +1,100 @@ +/* Copyright (c) 2001, Matej Pfajfar. + * Copyright (c) 2001-2004, Roger Dingledine. + * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. + * Copyright (c) 2007-2017, The Tor Project, Inc. */ +/* See LICENSE for licensing information */ + +/** + * \file crypto_rsa.h + * + * \brief Headers for crypto_rsa.c + **/ + +#ifndef TOR_CRYPTO_RSA_H +#define TOR_CRYPTO_RSA_H + +#include "orconfig.h" + +#include <stdio.h> +#include "torint.h" +#include "testsupport.h" +#include "compat.h" +#include "util.h" + +/** Length of our public keys. */ +#define PK_BYTES (1024/8) + +/** Constant used to indicate OAEP padding for public-key encryption */ +#define PK_PKCS1_OAEP_PADDING 60002 + +/** Number of bytes added for PKCS1-OAEP padding. */ +#define PKCS1_OAEP_PADDING_OVERHEAD 42 + +typedef struct crypto_pk_t crypto_pk_t; + +/* RSA enviroment setup */ +MOCK_DECL(crypto_pk_t *,crypto_pk_new,(void)); +void crypto_pk_free_(crypto_pk_t *env); +#define crypto_pk_free(pk) FREE_AND_NULL(crypto_pk_t, crypto_pk_free_, (pk)) + +/* public key crypto */ +MOCK_DECL(int, crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)); +#define crypto_pk_generate_key(env) \ + crypto_pk_generate_key_with_bits((env), (PK_BYTES*8)) + +int crypto_pk_read_private_key_from_filename(crypto_pk_t *env, + const char *keyfile); +int crypto_pk_write_public_key_to_string(crypto_pk_t *env, + char **dest, size_t *len); +int crypto_pk_write_private_key_to_string(crypto_pk_t *env, + char **dest, size_t *len); +int crypto_pk_read_public_key_from_string(crypto_pk_t *env, + const char *src, size_t len); +int crypto_pk_read_private_key_from_string(crypto_pk_t *env, + const char *s, ssize_t len); +int crypto_pk_write_private_key_to_filename(crypto_pk_t *env, + const char *fname); + +int crypto_pk_check_key(crypto_pk_t *env); +int crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b); +int crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b); +size_t crypto_pk_keysize(const crypto_pk_t *env); +int crypto_pk_num_bits(crypto_pk_t *env); +crypto_pk_t *crypto_pk_dup_key(crypto_pk_t *orig); +crypto_pk_t *crypto_pk_copy_full(crypto_pk_t *orig); +int crypto_pk_key_is_private(const crypto_pk_t *key); +int crypto_pk_public_exponent_ok(crypto_pk_t *env); + +int crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen, int padding); +int crypto_pk_private_decrypt(crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen, + int padding, int warnOnFailure); +MOCK_DECL(int, crypto_pk_public_checksig,(const crypto_pk_t *env, + char *to, size_t tolen, + const char *from, size_t fromlen)); +int crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen); +int crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len); +crypto_pk_t *crypto_pk_asn1_decode(const char *str, size_t len); +int crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out,int add_space); +int crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out); + +int crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out); +crypto_pk_t *crypto_pk_base64_decode(const char *str, size_t len); + +/* Prototypes for private functions only used by tortls.c, crypto.c, and the + * unit tests. */ +struct rsa_st; +struct rsa_st *crypto_pk_get_rsa_(crypto_pk_t *env); +crypto_pk_t *crypto_new_pk_from_rsa_(struct rsa_st *rsa); +MOCK_DECL(struct evp_pkey_st *, crypto_pk_get_evp_pkey_,(crypto_pk_t *env, + int private)); +struct evp_pkey_st; + +#ifdef TOR_UNIT_TESTS +void crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src); +#endif + +#endif +