commit ddc3eb20b72c607c5445d34e04154e68b5d77eb1
Merge: 6acbd4c11 881f7157f
Author: Nick Mathewson <nickm(a)torproject.org>
Date: Wed May 16 11:43:53 2018 -0400
Merge branch 'bug26116_029' into bug26116_033
changes/bug26116 | 7 +++++++
src/common/crypto_rsa.c | 2 +-
2 files changed, 8 insertions(+), 1 deletion(-)
diff --cc src/common/crypto_rsa.c
index fa572580a,000000000..259656810
mode 100644,000000..100644
--- a/src/common/crypto_rsa.c
+++ b/src/common/crypto_rsa.c
@@@ -1,923 -1,0 +1,923 @@@
+/* Copyright (c) 2001, Matej Pfajfar.
+ * Copyright (c) 2001-2004, Roger Dingledine.
+ * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
+ * Copyright (c) 2007-2017, The Tor Project, Inc. */
+/* See LICENSE for licensing information */
+
+/**
+ * \file crypto_rsa.c
+ * \brief Block of functions related with RSA utilities and operations.
+ **/
+
+#include "crypto_rsa.h"
+#include "crypto.h"
+#include "compat_openssl.h"
+#include "crypto_curve25519.h"
+#include "crypto_ed25519.h"
+#include "crypto_format.h"
+
+DISABLE_GCC_WARNING(redundant-decls)
+
+#include <openssl/err.h>
+#include <openssl/rsa.h>
+#include <openssl/pem.h>
+#include <openssl/evp.h>
+#include <openssl/engine.h>
+#include <openssl/rand.h>
+#include <openssl/bn.h>
+#include <openssl/dh.h>
+#include <openssl/conf.h>
+#include <openssl/hmac.h>
+
+ENABLE_GCC_WARNING(redundant-decls)
+
+#include "torlog.h"
+#include "util.h"
+#include "util_format.h"
+
+/** Declaration for crypto_pk_t structure. */
+struct crypto_pk_t
+{
+ int refs; /**< reference count, so we don't have to copy keys */
+ RSA *key; /**< The key itself */
+};
+
+/** Log all pending crypto errors at level <b>severity</b>. Use
+ * <b>doing</b> to describe our current activities.
+ */
+static void
+crypto_log_errors(int severity, const char *doing)
+{
+ unsigned long err;
+ const char *msg, *lib, *func;
+ while ((err = ERR_get_error()) != 0) {
+ msg = (const char*)ERR_reason_error_string(err);
+ lib = (const char*)ERR_lib_error_string(err);
+ func = (const char*)ERR_func_error_string(err);
+ if (!msg) msg = "(null)";
+ if (!lib) lib = "(null)";
+ if (!func) func = "(null)";
+ if (BUG(!doing)) doing = "(null)";
+ tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
+ doing, msg, lib, func);
+ }
+}
+
+/** Return the number of bytes added by padding method <b>padding</b>.
+ */
+int
+crypto_get_rsa_padding_overhead(int padding)
+{
+ switch (padding)
+ {
+ case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
+ default: tor_assert(0); return -1; // LCOV_EXCL_LINE
+ }
+}
+
+/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
+ */
+int
+crypto_get_rsa_padding(int padding)
+{
+ switch (padding)
+ {
+ case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
+ default: tor_assert(0); return -1; // LCOV_EXCL_LINE
+ }
+}
+
+/** used internally: quicly validate a crypto_pk_t object as a private key.
+ * Return 1 iff the public key is valid, 0 if obviously invalid.
+ */
+static int
+crypto_pk_private_ok(const crypto_pk_t *k)
+{
+#ifdef OPENSSL_1_1_API
+ if (!k || !k->key)
+ return 0;
+
+ const BIGNUM *p, *q;
+ RSA_get0_factors(k->key, &p, &q);
+ return p != NULL; /* XXX/yawning: Should we check q? */
+#else /* !(defined(OPENSSL_1_1_API)) */
+ return k && k->key && k->key->p;
+#endif /* defined(OPENSSL_1_1_API) */
+}
+
+/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
+crypto_pk_t *
+crypto_new_pk_from_rsa_(RSA *rsa)
+{
+ crypto_pk_t *env;
+ tor_assert(rsa);
+ env = tor_malloc(sizeof(crypto_pk_t));
+ env->refs = 1;
+ env->key = rsa;
+ return env;
+}
+
+/** Helper, used by tor-gencert.c. Return the RSA from a
+ * crypto_pk_t. */
+RSA *
+crypto_pk_get_rsa_(crypto_pk_t *env)
+{
+ return env->key;
+}
+
+/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
+ * private is set, include the private-key portion of the key. Return a valid
+ * pointer on success, and NULL on failure. */
+MOCK_IMPL(EVP_PKEY *,
+crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
+{
+ RSA *key = NULL;
+ EVP_PKEY *pkey = NULL;
+ tor_assert(env->key);
+ if (private) {
+ if (!(key = RSAPrivateKey_dup(env->key)))
+ goto error;
+ } else {
+ if (!(key = RSAPublicKey_dup(env->key)))
+ goto error;
+ }
+ if (!(pkey = EVP_PKEY_new()))
+ goto error;
+ if (!(EVP_PKEY_assign_RSA(pkey, key)))
+ goto error;
+ return pkey;
+ error:
+ if (pkey)
+ EVP_PKEY_free(pkey);
+ if (key)
+ RSA_free(key);
+ return NULL;
+}
+
+/** Allocate and return storage for a public key. The key itself will not yet
+ * be set.
+ */
+MOCK_IMPL(crypto_pk_t *,
+crypto_pk_new,(void))
+{
+ RSA *rsa;
+
+ rsa = RSA_new();
+ tor_assert(rsa);
+ return crypto_new_pk_from_rsa_(rsa);
+}
+
+/** Release a reference to an asymmetric key; when all the references
+ * are released, free the key.
+ */
+void
+crypto_pk_free_(crypto_pk_t *env)
+{
+ if (!env)
+ return;
+
+ if (--env->refs > 0)
+ return;
+ tor_assert(env->refs == 0);
+
+ if (env->key)
+ RSA_free(env->key);
+
+ tor_free(env);
+}
+
+/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
+ * Return 0 on success, -1 on failure.
+ */
+MOCK_IMPL(int,
+crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
+{
+ tor_assert(env);
+
+ if (env->key) {
+ RSA_free(env->key);
+ env->key = NULL;
+ }
+
+ {
+ BIGNUM *e = BN_new();
+ RSA *r = NULL;
+ if (!e)
+ goto done;
+ if (! BN_set_word(e, 65537))
+ goto done;
+ r = RSA_new();
+ if (!r)
+ goto done;
+ if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
+ goto done;
+
+ env->key = r;
+ r = NULL;
+ done:
+ if (e)
+ BN_clear_free(e);
+ if (r)
+ RSA_free(r);
+ }
+
+ if (!env->key) {
+ crypto_log_errors(LOG_WARN, "generating RSA key");
+ return -1;
+ }
+
+ return 0;
+}
+
+/** A PEM callback that always reports a failure to get a password */
+static int
+pem_no_password_cb(char *buf, int size, int rwflag, void *u)
+{
+ (void)buf;
+ (void)size;
+ (void)rwflag;
+ (void)u;
- return 0;
++ return -1;
+}
+
+/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
+ * into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
+ * the string is nul-terminated.
+ */
+int
+crypto_pk_read_private_key_from_string(crypto_pk_t *env,
+ const char *s, ssize_t len)
+{
+ BIO *b;
+
+ tor_assert(env);
+ tor_assert(s);
+ tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
+
+ /* Create a read-only memory BIO, backed by the string 's' */
+ b = BIO_new_mem_buf((char*)s, (int)len);
+ if (!b)
+ return -1;
+
+ if (env->key)
+ RSA_free(env->key);
+
+ env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
+
+ BIO_free(b);
+
+ if (!env->key) {
+ crypto_log_errors(LOG_WARN, "Error parsing private key");
+ return -1;
+ }
+ return 0;
+}
+
+/** Read a PEM-encoded private key from the file named by
+ * <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
+ */
+int
+crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
+ const char *keyfile)
+{
+ char *contents;
+ int r;
+
+ /* Read the file into a string. */
+ contents = read_file_to_str(keyfile, 0, NULL);
+ if (!contents) {
+ log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
+ return -1;
+ }
+
+ /* Try to parse it. */
+ r = crypto_pk_read_private_key_from_string(env, contents, -1);
+ memwipe(contents, 0, strlen(contents));
+ tor_free(contents);
+ if (r)
+ return -1; /* read_private_key_from_string already warned, so we don't.*/
+
+ /* Make sure it's valid. */
+ if (crypto_pk_check_key(env) <= 0)
+ return -1;
+
+ return 0;
+}
+
+/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
+ * success, -1 on failure. */
+static int
+crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
+ size_t *len, int is_public)
+{
+ BUF_MEM *buf;
+ BIO *b;
+ int r;
+
+ tor_assert(env);
+ tor_assert(env->key);
+ tor_assert(dest);
+
+ b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
+ if (!b)
+ return -1;
+
+ /* Now you can treat b as if it were a file. Just use the
+ * PEM_*_bio_* functions instead of the non-bio variants.
+ */
+ if (is_public)
+ r = PEM_write_bio_RSAPublicKey(b, env->key);
+ else
+ r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
+
+ if (!r) {
+ crypto_log_errors(LOG_WARN, "writing RSA key to string");
+ BIO_free(b);
+ return -1;
+ }
+
+ BIO_get_mem_ptr(b, &buf);
+
+ *dest = tor_malloc(buf->length+1);
+ memcpy(*dest, buf->data, buf->length);
+ (*dest)[buf->length] = 0; /* nul terminate it */
+ *len = buf->length;
+
+ BIO_free(b);
+
+ return 0;
+}
+
+/** PEM-encode the public key portion of <b>env</b> and write it to a
+ * newly allocated string. On success, set *<b>dest</b> to the new
+ * string, *<b>len</b> to the string's length, and return 0. On
+ * failure, return -1.
+ */
+int
+crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
+ size_t *len)
+{
+ return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
+}
+
+/** PEM-encode the private key portion of <b>env</b> and write it to a
+ * newly allocated string. On success, set *<b>dest</b> to the new
+ * string, *<b>len</b> to the string's length, and return 0. On
+ * failure, return -1.
+ */
+int
+crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
+ size_t *len)
+{
+ return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
+}
+
+/** Read a PEM-encoded public key from the first <b>len</b> characters of
+ * <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
+ * failure.
+ */
+int
+crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
+ size_t len)
+{
+ BIO *b;
+
+ tor_assert(env);
+ tor_assert(src);
+ tor_assert(len<INT_MAX);
+
+ b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
+ if (!b)
+ return -1;
+
+ BIO_write(b, src, (int)len);
+
+ if (env->key)
+ RSA_free(env->key);
+ env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
+ BIO_free(b);
+ if (!env->key) {
+ crypto_log_errors(LOG_WARN, "reading public key from string");
+ return -1;
+ }
+
+ return 0;
+}
+
+/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
+ * PEM-encoded. Return 0 on success, -1 on failure.
+ */
+int
+crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
+ const char *fname)
+{
+ BIO *bio;
+ char *cp;
+ long len;
+ char *s;
+ int r;
+
+ tor_assert(crypto_pk_private_ok(env));
+
+ if (!(bio = BIO_new(BIO_s_mem())))
+ return -1;
+ if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
+ == 0) {
+ crypto_log_errors(LOG_WARN, "writing private key");
+ BIO_free(bio);
+ return -1;
+ }
+ len = BIO_get_mem_data(bio, &cp);
+ tor_assert(len >= 0);
+ s = tor_malloc(len+1);
+ memcpy(s, cp, len);
+ s[len]='\0';
+ r = write_str_to_file(fname, s, 0);
+ BIO_free(bio);
+ memwipe(s, 0, strlen(s));
+ tor_free(s);
+ return r;
+}
+
+/** Return true iff <b>env</b> has a valid key.
+ */
+int
+crypto_pk_check_key(crypto_pk_t *env)
+{
+ int r;
+ tor_assert(env);
+
+ r = RSA_check_key(env->key);
+ if (r <= 0)
+ crypto_log_errors(LOG_WARN,"checking RSA key");
+ return r;
+}
+
+/** Return true iff <b>key</b> contains the private-key portion of the RSA
+ * key. */
+int
+crypto_pk_key_is_private(const crypto_pk_t *key)
+{
+ tor_assert(key);
+ return crypto_pk_private_ok(key);
+}
+
+/** Return true iff <b>env</b> contains a public key whose public exponent
+ * equals 65537.
+ */
+int
+crypto_pk_public_exponent_ok(crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+ const BIGNUM *e;
+
+#ifdef OPENSSL_1_1_API
+ const BIGNUM *n, *d;
+ RSA_get0_key(env->key, &n, &e, &d);
+#else
+ e = env->key->e;
+#endif /* defined(OPENSSL_1_1_API) */
+ return BN_is_word(e, 65537);
+}
+
+/** Compare the public-key components of a and b. Return less than 0
+ * if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
+ * considered to be less than all non-NULL keys, and equal to itself.
+ *
+ * Note that this may leak information about the keys through timing.
+ */
+int
+crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
+{
+ int result;
+ char a_is_non_null = (a != NULL) && (a->key != NULL);
+ char b_is_non_null = (b != NULL) && (b->key != NULL);
+ char an_argument_is_null = !a_is_non_null | !b_is_non_null;
+
+ result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
+ if (an_argument_is_null)
+ return result;
+
+ const BIGNUM *a_n, *a_e;
+ const BIGNUM *b_n, *b_e;
+
+#ifdef OPENSSL_1_1_API
+ const BIGNUM *a_d, *b_d;
+ RSA_get0_key(a->key, &a_n, &a_e, &a_d);
+ RSA_get0_key(b->key, &b_n, &b_e, &b_d);
+#else
+ a_n = a->key->n;
+ a_e = a->key->e;
+ b_n = b->key->n;
+ b_e = b->key->e;
+#endif /* defined(OPENSSL_1_1_API) */
+
+ tor_assert(a_n != NULL && a_e != NULL);
+ tor_assert(b_n != NULL && b_e != NULL);
+
+ result = BN_cmp(a_n, b_n);
+ if (result)
+ return result;
+ return BN_cmp(a_e, b_e);
+}
+
+/** Compare the public-key components of a and b. Return non-zero iff
+ * a==b. A NULL key is considered to be distinct from all non-NULL
+ * keys, and equal to itself.
+ *
+ * Note that this may leak information about the keys through timing.
+ */
+int
+crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
+{
+ return (crypto_pk_cmp_keys(a, b) == 0);
+}
+
+/** Return the size of the public key modulus in <b>env</b>, in bytes. */
+size_t
+crypto_pk_keysize(const crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+ return (size_t) RSA_size((RSA*)env->key);
+}
+
+/** Return the size of the public key modulus of <b>env</b>, in bits. */
+int
+crypto_pk_num_bits(crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+#ifdef OPENSSL_1_1_API
+ /* It's so stupid that there's no other way to check that n is valid
+ * before calling RSA_bits().
+ */
+ const BIGNUM *n, *e, *d;
+ RSA_get0_key(env->key, &n, &e, &d);
+ tor_assert(n != NULL);
+
+ return RSA_bits(env->key);
+#else /* !(defined(OPENSSL_1_1_API)) */
+ tor_assert(env->key->n);
+ return BN_num_bits(env->key->n);
+#endif /* defined(OPENSSL_1_1_API) */
+}
+
+/** Increase the reference count of <b>env</b>, and return it.
+ */
+crypto_pk_t *
+crypto_pk_dup_key(crypto_pk_t *env)
+{
+ tor_assert(env);
+ tor_assert(env->key);
+
+ env->refs++;
+ return env;
+}
+
+#ifdef TOR_UNIT_TESTS
+/** For testing: replace dest with src. (Dest must have a refcount
+ * of 1) */
+void
+crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
+{
+ tor_assert(dest);
+ tor_assert(dest->refs == 1);
+ tor_assert(src);
+ RSA_free(dest->key);
+ dest->key = RSAPrivateKey_dup(src->key);
+}
+#endif /* defined(TOR_UNIT_TESTS) */
+
+/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
+ * Returns NULL on failure. */
+crypto_pk_t *
+crypto_pk_copy_full(crypto_pk_t *env)
+{
+ RSA *new_key;
+ int privatekey = 0;
+ tor_assert(env);
+ tor_assert(env->key);
+
+ if (crypto_pk_private_ok(env)) {
+ new_key = RSAPrivateKey_dup(env->key);
+ privatekey = 1;
+ } else {
+ new_key = RSAPublicKey_dup(env->key);
+ }
+ if (!new_key) {
+ /* LCOV_EXCL_START
+ *
+ * We can't cause RSA*Key_dup() to fail, so we can't really test this.
+ */
+ log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
+ privatekey?"private":"public");
+ crypto_log_errors(LOG_ERR,
+ privatekey ? "Duplicating a private key" :
+ "Duplicating a public key");
+ tor_fragile_assert();
+ return NULL;
+ /* LCOV_EXCL_STOP */
+ }
+
+ return crypto_new_pk_from_rsa_(new_key);
+}
+
+/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
+ * in <b>env</b>, using the padding method <b>padding</b>. On success,
+ * write the result to <b>to</b>, and return the number of bytes
+ * written. On failure, return -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+int
+crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
+ const char *from, size_t fromlen, int padding)
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(fromlen<INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+
+ r = RSA_public_encrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ env->key, crypto_get_rsa_padding(padding));
+ if (r<0) {
+ crypto_log_errors(LOG_WARN, "performing RSA encryption");
+ return -1;
+ }
+ return r;
+}
+
+/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
+ * in <b>env</b>, using the padding method <b>padding</b>. On success,
+ * write the result to <b>to</b>, and return the number of bytes
+ * written. On failure, return -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+int
+crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
+ size_t tolen,
+ const char *from, size_t fromlen,
+ int padding, int warnOnFailure)
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(env->key);
+ tor_assert(fromlen<INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+ if (!crypto_pk_key_is_private(env))
+ /* Not a private key */
+ return -1;
+
+ r = RSA_private_decrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ env->key, crypto_get_rsa_padding(padding));
+
+ if (r<0) {
+ crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
+ "performing RSA decryption");
+ return -1;
+ }
+ return r;
+}
+
+/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
+ * public key in <b>env</b>, using PKCS1 padding. On success, write the
+ * signed data to <b>to</b>, and return the number of bytes written.
+ * On failure, return -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+MOCK_IMPL(int,
+crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
+ size_t tolen,
+ const char *from, size_t fromlen))
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(fromlen < INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+ r = RSA_public_decrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ env->key, RSA_PKCS1_PADDING);
+
+ if (r<0) {
+ crypto_log_errors(LOG_INFO, "checking RSA signature");
+ return -1;
+ }
+ return r;
+}
+
+/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
+ * <b>env</b>, using PKCS1 padding. On success, write the signature to
+ * <b>to</b>, and return the number of bytes written. On failure, return
+ * -1.
+ *
+ * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
+ * at least the length of the modulus of <b>env</b>.
+ */
+int
+crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
+ const char *from, size_t fromlen)
+{
+ int r;
+ tor_assert(env);
+ tor_assert(from);
+ tor_assert(to);
+ tor_assert(fromlen < INT_MAX);
+ tor_assert(tolen >= crypto_pk_keysize(env));
+ if (!crypto_pk_key_is_private(env))
+ /* Not a private key */
+ return -1;
+
+ r = RSA_private_encrypt((int)fromlen,
+ (unsigned char*)from, (unsigned char*)to,
+ (RSA*)env->key, RSA_PKCS1_PADDING);
+ if (r<0) {
+ crypto_log_errors(LOG_WARN, "generating RSA signature");
+ return -1;
+ }
+ return r;
+}
+
+/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
+ * Return -1 on error, or the number of characters used on success.
+ */
+int
+crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
+{
+ int len;
+ unsigned char *buf = NULL;
+
+ len = i2d_RSAPublicKey(pk->key, &buf);
+ if (len < 0 || buf == NULL)
+ return -1;
+
+ if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
+ OPENSSL_free(buf);
+ return -1;
+ }
+ /* We don't encode directly into 'dest', because that would be illegal
+ * type-punning. (C99 is smarter than me, C99 is smarter than me...)
+ */
+ memcpy(dest,buf,len);
+ OPENSSL_free(buf);
+ return len;
+}
+
+/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
+ * success and NULL on failure.
+ */
+crypto_pk_t *
+crypto_pk_asn1_decode(const char *str, size_t len)
+{
+ RSA *rsa;
+ unsigned char *buf;
+ const unsigned char *cp;
+ cp = buf = tor_malloc(len);
+ memcpy(buf,str,len);
+ rsa = d2i_RSAPublicKey(NULL, &cp, len);
+ tor_free(buf);
+ if (!rsa) {
+ crypto_log_errors(LOG_WARN,"decoding public key");
+ return NULL;
+ }
+ return crypto_new_pk_from_rsa_(rsa);
+}
+
+/** Given a private or public key <b>pk</b>, put a fingerprint of the
+ * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
+ * space). Return 0 on success, -1 on failure.
+ *
+ * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
+ * of the public key, converted to hexadecimal, in upper case, with a
+ * space after every four digits.
+ *
+ * If <b>add_space</b> is false, omit the spaces.
+ */
+int
+crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
+{
+ char digest[DIGEST_LEN];
+ char hexdigest[HEX_DIGEST_LEN+1];
+ if (crypto_pk_get_digest(pk, digest)) {
+ return -1;
+ }
+ base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
+ if (add_space) {
+ crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
+ } else {
+ strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
+ }
+ return 0;
+}
+
+/** Given a private or public key <b>pk</b>, put a hashed fingerprint of
+ * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1
+ * bytes of space). Return 0 on success, -1 on failure.
+ *
+ * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest
+ * of the ASN.1 encoding of the public key, converted to hexadecimal, in
+ * upper case.
+ */
+int
+crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
+{
+ char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN];
+ if (crypto_pk_get_digest(pk, digest)) {
+ return -1;
+ }
+ if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
+ return -1;
+ }
+ base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
+ return 0;
+}
+
+/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
+ * Base64 encoding of the DER representation of the private key as a NUL
+ * terminated string, and return it via <b>priv_out</b>. Return 0 on
+ * success, -1 on failure.
+ *
+ * It is the caller's responsibility to sanitize and free the resulting buffer.
+ */
+int
+crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
+{
+ unsigned char *der = NULL;
+ int der_len;
+ int ret = -1;
+
+ *priv_out = NULL;
+
+ der_len = i2d_RSAPrivateKey(pk->key, &der);
+ if (der_len < 0 || der == NULL)
+ return ret;
+
+ size_t priv_len = base64_encode_size(der_len, 0) + 1;
+ char *priv = tor_malloc_zero(priv_len);
+ if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
+ *priv_out = priv;
+ ret = 0;
+ } else {
+ tor_free(priv);
+ }
+
+ memwipe(der, 0, der_len);
+ OPENSSL_free(der);
+ return ret;
+}
+
+/** Given a string containing the Base64 encoded DER representation of the
+ * private key <b>str</b>, decode and return the result on success, or NULL
+ * on failure.
+ */
+crypto_pk_t *
+crypto_pk_base64_decode(const char *str, size_t len)
+{
+ crypto_pk_t *pk = NULL;
+
+ char *der = tor_malloc_zero(len + 1);
+ int der_len = base64_decode(der, len, str, len);
+ if (der_len <= 0) {
+ log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
+ goto out;
+ }
+
+ const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
+ RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
+ if (!rsa) {
+ crypto_log_errors(LOG_WARN, "decoding private key");
+ goto out;
+ }
+
+ pk = crypto_new_pk_from_rsa_(rsa);
+
+ /* Make sure it's valid. */
+ if (crypto_pk_check_key(pk) <= 0) {
+ crypto_pk_free(pk);
+ pk = NULL;
+ goto out;
+ }
+
+ out:
+ memwipe(der, 0, len + 1);
+ tor_free(der);
+ return pk;
+}
+