eRPC - An Efficient Relay Partition Checker

Introduction + 3 Week Report(May 29 - June 18)

Project Link : https://qitlab.torproject.org/rishadbaniya/erpc

eRPC is a flexible relay partition checking tool, flexible in a
sense that the configuration that it aims to provide.

Let me explain the project structure briefly.
I've divided the project into two libraries erpc-metrics and

erpc-scanner to be used within the application binaries within
erpc-workers

B3 erpc-metrics

B3 erpc-scanner

B3 erpc-workers

erpc-metrics(To be worked on) : This module is all about
using collecting the data of circuits that were created by
OnionPerf as part of saying the circuit was successful or
failed

erpc-scanner(Almost Complete) : This module handles the
scanning part, it has this pool of struct Client that hold
CircMgr of a TorClient with themself and they attempt to
create Circuit through the CircuitBuilder, it only exposes two
interfaces, a sender half of the channel to send


https://gitlab.torproject.org/rishadbaniya/erpc

IncompleteWork and receiving half to receive
CompletedWork.

Within the application there’s this concept of IncompleteWork,
which is basically a Type that holds metadata about the Relays
we want to make two hop circuit with(which is just the
fingerprint of the relay) and other is CompletedWork, which is
the result of the attempt to create circuits, it stores the
information about the circuit creation attempt, later on this is
used.

pub struct IncompleteWork {

pub source_relay: String,

pub destination_relay: String,

pub struct CompletedWork {

pub source_relay: String,

pub destination_relay: String,

ub status: CompletedWorkStatus,

Jub timestamp: ubé4,




This information is later on used to make rpc calls, also to store
within the Graph Database Neo4;.

Btw, | plan to use a graph data structure and graph database
within the application because my mentor mentioned that it
seems to be perfect to express TorNetwork as a directed graph
with these Relays as Nodes and the attempt to create circuits
between these relays as the edge.

erpc-workers(Heavily working on right now): This module
produces two binary, one is the slave worker binary and other
is master_worker binary. This is the very high level overview of
how the application is going to work.

[\

111I1=0

11111 =0

1Hin=0

Primo\ry Worker

[\ —\

1000 1==0 1111 1==Q 111=0

1100 1==0Q 1111 =0 1111=0

11111=0 1111 Ie=Q 111 1e= 0
Slave Worker Slave Worker Slave Worker

This application follows the Master - Slave architecture in a
sense these slaves are pluggable, which means we can
disconnect these slaves any time and the pace at which the
circuit testing happens won’t be hindered, because it



automatically adapts to the change and Master Worker orders
these Slave workers to start testing circuits at a certain pace,
also there won'’t be data loss in a sense that the assigned work
is buffered in the MasterWorker until the work is completed.

Btw, i’'ve used this concept of batch of work, it's like a
Vec<IncompleteWork> that the Primary Worker sends to the
Slave workers when they request for work. Because there
would be million of circuits to be created and making a single
RPC call to get them by the SlaveWorkers would be an
overhead in terms of latency, so i've come up with the idea of
assigning a certain batch of work of X no of these
IncompleteWork and if the work is considered failed i.e by the
SlaveWorker being disconnected something like that then we
take that data that we had stored (the one assigned to that
SlaveWorker) and put it back into the pool of IncompleteWork,
this way i believe i can make the Slave Workers pluggable.

The Master Worker that i'm currently building, i'm planning to
have two kinds of gRPC server, one is for distributing these
IncompleteWork to the Slave Workers and getting back
CompletedWork from them and other is to control the
application behavior during the runtime, such as pausing,
stopping, resuming changing batch size, no of allowed slave
workers, custom relays to be excluded or included(this gRPC
server to control the application is left for the last part)



—

\ We te required two hop combination

N \ create
Ne_o‘-p'\l locking at the Rglexys in ths intermal Graph, Re\m,s
J Pocl we buill Through The latest MetDic we
Database / store and affer o circuit was attempted to

create or o mew Reloy was added
we update the PelGragh and
intermally updatte it to NeoHT Database teo

Internal Pe_‘tsro\ph

\i\mct TorNetwork

- Resporsible for creating Incompletework over Time

- Respensible for being updated with the latest NetDir

netdir_receiver incomplete_works_receiver

The receiver kalf this struct
intemally used to update tself The IncompleteWork receiving half
Thot's used by other entities to

get the Incompletework and preduce
o Completedwork G test the circuit]

with the latest NetDio

Here’s one of the core data structures(TorNetwork) within
erpc-workers and its high level architecture that | had made to
visualise what was going on.

It would be great to hear some feedbacks from you regarding
how you expect the partition checking tool to behave, i
mean how the scanning should start to take place, is it the
relays with highest level of consensus to be checked
first(because they have the highest chance to be selected in a
real Tor Circuit) or what else should be my approach on
starting a scan, continuing the scan and what level of
configuration should this application provide so that the
scanning can be tweaked according to our goal for the scan
(i.e for checking censorship, failing relays etc)


https://gitlab.torproject.org/rishadbaniya/erpc/-/blob/main/erpc-workers/src/master/tor_network.rs

