
0.1 Intro

This document is a description of the protocol described by Nicholas Hopper
here: https://lists.torproject.org/pipermail/tor-dev/2014-January/

006053.html. The protocol described here contains modifications to the origi-
nal (these are listed in Section 0.4).

The purpose of the protocol is to periodically generate a shared random value
among a set of approximately 5 to 20 Tor directory authorities. That value can
then be used as a nonce by parts of the Tor protocol. No participant or group
of participants smaller than the DKG (Distributed Key Generation) threshold1

should be able to influence the value of the resulting nonce. We will denote this
nonce as RAND.

To describe it in simplest terms this protocol generates an unpredictable value
by using a distributed private key to generate a threshold signature of the time.
Each directory authority has a single share of the distributed private key; none
of them know anything else about the private key and nobody knows its full
value. Each share is used to create a share of the threshold signature; these
signature shares are then published. A non-interactive zero-knowledge proof is
also published to prove validity of each signature share. When enough signature
shares are published they can be interpolated to construct the full signature;
this signature is then used as the shared random.

We make use of two sub-protocols: A DKG (Distributed Key Generation) pro-
tocol, and a consensus protocol that we call the list creation protocol (Sec-
tion 0.3.3). Both of these sub-protocols exist to solve well known problems with
pre-existing solutions.

For the sake of simplicity and modularity the internals of these sub-protocols
are not defined; instead we give a generalised interface and set of requirements
so that implementers can make use of whatever existing tools and frameworks
they desire.

Good

• Each nonce has a single possible value that is deterministic, yet unpre-
dictable, and can’t be influenced by the participants. There may be a
fall-back value, however, that is used when the primary value can’t be
calculated for whatever reason.

• The protocol is quite simple and efficient (ignoring the DKG sub-protocol).

1 Defined in the email as ceiling(n / 2).

1

https://lists.torproject.org/pipermail/tor-dev/2014-January/006053.html
https://lists.torproject.org/pipermail/tor-dev/2014-January/006053.html

• Only a single share is published by each participant per run (not including
the once-off DKG).

Bad

• It requires a setup phase, but this only needs to be performed once every
x nonce generations, for some configured value x.

• (If you don’t use pre-existing parts for the sub-protocols) It has a large
implementation complexity. This is because it makes use of two separate
sub-protocols. Of course if there’s a pre-existing DKG and consensus
protocol at hand then it’s actually very simple.

• Only secure in the random oracle model. What this means is that the
choice of hash function in the zero knowledge proof is important. If a
weak hash function is used then the protocol is weak; if a strong hash
function is used then the protocol is strong.

• Not resistant to changes in the network. The threshold for the shared
random calculation is the same as the threshold used in the DKG protocol.
Luckily directory authorities are relatively stable so this shouldn’t be much
of an issue2.

0.2 Notation

Fp The prime order finite field containing all the integer values we use. Simply
put Fp = {0, 1, . . . , p − 1}. Whenever we refer to “integers” we actually
mean elements of this field. Operations done between these field elements
are slightly different from regular algebraic operations, most notably ev-
erything is mod p. For instance, a + b actually means a + b mod p. It is
important to note that this same field must be used by the DKG protocol;
if it isn’t then strange things may happen.

a+ b The addition of integer a and integer b over Fp.

a ∗ b The multiplication of integer a and integer b over Fp.

a
b The multiplication of integer a by the modular multiplicative inverse of inte-

ger b modulo p. Since p is a prime we know by Euler’s theorem that the
multiplicative inverse of b modulo p is = bp−2 mod p.

A+B The addition of group member A and group member B, where “addi-
tion” refers to the operation of the abelian group A and B are both from.

2 In fact if over half of the directory authorities lost their sanity or simply vanished then
the Tor network would probably experience far bigger problems than a bad nonce.

2

a ·B The multiplication of group member B by an integer a. B added to itself
a times.

a||b The concatenation of a and b.

|O| The cardinality of the set O. The number of elements in O.

When we talk about groups we’ll be implicitly referring to groups over an elliptic
curve, specifically Curve25519. Note that the protocol is not limited to this
group and should be usable with any abelian group where the Computational
Diffie-Hellman assumption and any other mentioned properties hold. Also note
that the same group needs to be used by both this and the DKG protocol.3

A participant is an entity4 who took part in the DKG protocol and was assigned
a share of the distributed private key. Participants do not necessarily take part
in the signature protocol; they may be offline or simply choose not to. Honest
participants will take part in the signature protocol whenever possible, but
adversarial participants may choose not to.

Clients are any entity that wants to know the shared random. Participants can
be, but are not necessarily clients.

0.3 Protocol description

Before performing our nonce creation protocol a setup phase must be performed.
This setup phase does not need to be run every time, it only needs to be
performed once per x nonce generations, where x is some arbitrary number
agreed upon by all the participants.

During this setup phase the n directory authorities run a DKG (Distributed
Key Generation) protocol to produce a shared private key / public key pair.
The private key is not constructed, instead each participant keeps their share
of the private key secret indefinitely.

• Denote the i’th participant as Si. Si can be used as an integer, typically
Si = i or i+1. All integers Si must be unique and non-zero. These values
are publicly known and are also used by the DKG protocol.

• Denote participant Si’s share of the shared private key as si. Si learns
this from the DKG protocol and keeps it secret; it is never revealed.

3 We can get around this by recreating the DKG public key shares Pi = si.B within our
own group. The groups must still have matching prime order p, however.

4 More specifically a directory authority.

3

• Denote the shared private key as x. x is never constructed and is always
unknown. It however would be possible to construct x by interpolating a
set of t or more private key shares si, where t is the DKG threshold.

• Denote B as an element of the group G that generates a subgroup of
prime order p. Note that this subgroup has the same order as Fp [this is
important]. B is publicly known from the DKG protocol.

• Denote each participant’s share of the public key as Pi = si · B. All Pi

are publicly known from the DKG protocol.

• Denote the shared public key as x · B. This value is publicly known and
can be constructed by interpolating the public key shares Pi.

When it’s time to create a new shared random the participants all calculate R.
R is a function of time and can be calculated by anybody as:

R = H(“tor-hs-rand-base-point”||T)

Where H is some hash function that outputs elements of the subgroup generated
by B. Where T is the starting time of the current time period. And where “tor-
hs-rand-base-point” is a publicly known value.

Each participant uses their share of the private key, si, to create a share of
the threshold signature x · R. They then publish that value along with a non-
interactive zero-knowledge proof of the signature share’s validity.

• Denote the actual share of the signature as Qi = si ·R.

• Denote the proof of Qi’s validity as PROOFi.

The creation and use of PROOFi is discussed in Section 0.3.2.

For convenience we’ll bundle those together along with Si into a single published
share message, SHAREi:

SHAREi = Si||Qi||PROOFi

These SHARE messages are published using the list creation protocol’s Publish
operation (Section 0.3.3).

0.3.1 Calculation of RAND

This half of the protocol is performed by clients; anybody who wants to know
the value of the nonce, RAND.

4

Once the time period begins5 the clients are able to perform the Fetch operation
of the list creation protocol (Section 0.3.3). Clients use this operation to down-
load a list of all valid published signature shares and then use that to calculate
RAND.

When a client downloads the list of signature shares they check the validity6 of
each using its attached proof and public information known from the DKG pro-
tocol.7 If the list contains enough valid shares the shares are then interpolated
to get the threshold signature x · R. We then use that threshold signature as
the value of RAND.

When the list doesn’t contain enough valid shares to construct the threshold
signature, or when no list was successfully created, we need a fallback value for
RAND. A simple fallback value8 is to set RAND = R.

This leaves us with the following function for calculating RAND:

RAND = f(O) =

{
Interpolate(O) ≡ x ·R if |O| ≥ t
R if |O| < t

For O ⊆ {(S1, Q1), ..., (Sn, Qn)}, the set of signature shares from the fetched
list who pass validation, and where t is the DKG threshold.

The interpolation function9 is defined as follows:

Interpolate((x1, y1), ..., (xk, yk)) =

k∑
i=1

λ(x, i) · yi

where

λ(x, i) =
∏

1≤k≤|x|
k 6=i

xk
xk − xi

∈ Fp

5 When the current time = T.
6 Depending on its implementation the list creation protocol may have already performed

validation on the signature shares for us. It is, however, good practice for the client to be
careful and perform validation regardless.

7 This publicly known DKG information can be included with the share list for convenience.
8 While it’s not particularly unpredictable this fallback value won’t actually be used unless

something is seriously wrong with the network.
9 Note that this interpolation function will only work if the DKG protocol is based on

Shamir’s Secret Sharing or one of its derivatives (the most likely case); if that isn’t the case
then it’s likely a different method of interpolation will be required (as defined by the DKG
protocol).

5

0.3.2 Validation of Qi

An important part of this protocol is that when a client receives a signature
share they must be able to check its validity. A valid signature share will always
be of the form Qi = si · R, where R is publicly known but si is a secret only
known by Si, the share’s creator.

To prove their share is valid each participant publishes a Fiat-Shamir zero knowl-
edge proof that dlogR(Qi) = dlogB(Pi) along with it. Since Pi is a share of the
public key from the DKG protocol we already know that that Pi = si · B, and
hence if we can prove that dlogR(Qi) = dlogB(Pi) then we’ve also proved that
dlogR(Qi) = si; all without ever revealing the value of si.

We will refer to the proof created by Si as PROOFi. The proof takes the
following form:

PROOFi = (U, V, z)

where

U = a ·B
V = a ·R
z = a+ si ∗ c
a = random ∈ Fp

c = Hash(U ||V ||m) ∈ Fp

m = (Si||T)

Where Hash(x) is some hash function10 whose output is in Fp.

PROOFi can then be verified (using only publicly available information)11 by
checking that:

z ·B = U + c · Pi

= a ·B + c · (si ·B)

= a ·B + (c ∗ si) ·B
= (a+ c ∗ si) ·B

10 Note that Hash() is separate from the hash function H() used in calculation of R.
11 Note that it’s important none of the public information used in validation is supplied

by the creator of the signature share, unless such information is signed by a majority of the
participants. Allowing that could enable them to provide false values for R, B, or m and
subvert validation of the proof.

6

and

z ·R = V + c ·Qi

= a ·R+ c · (si ·R)

= a ·R+ (c ∗ si) ·R
= (a+ c ∗ si) ·R

If both of those tests hold then we consider Qi to be valid.

0.3.3 List creation

Here we give an overview of what we require from the list creation protocol.
We’ve attempted to outline the protocol in the most general terms possible.
The purpose of a separate list creation protocol is to avoid having to explicitly
deal with the Byzantine General’s Problem [?]. This simplifies the protocol
greatly and allows implementers to make use of existing tools and frameworks
rather than implementing a single specific Byzantine fault tolerant system.

We outline the list creation protocol in terms of two basic operations:

Publish(SHAREi) A participant publishes a SHARE message which they
have created such that when Time ≥ T , the start of the time period,
the SHARE message is publicly available for download by all clients via
the Fetch operation.12

Fetch() A client downloads the list of all published SHARE messages for the
current time period. In our model the client is able to download this list
from any participant, however, there’s no reason the list couldn’t instead
be served by a third party. It is important that the underlying protocol
ensures all clients download the same exact list; there should be a maxi-
mum of one valid list per time period, clients must be able to determine
whether a fetched list is the valid one, and the valid list should be available
to all clients. Additionally, clients must be able to determine if no valid
list is available (determine if list creation failed).

Any list creation protocol that provides this interface should be usable in the
protocol.

We can provide security and efficiency benefits if we apply some restrictions to
which SHARE messages will can be successfully published. The first restriction
we add is:

12 The SHARE message may be made publicly available before T , however, the clients
shouldn’t attempt to download it before then.

7

Publish(SHAREi) will only succeed if PROOFi passes validation on
the majority of participants.

The logic behind this is that SHARE messages with invalid PROOFs are of no
use to clients, so there is no point adding them to the fetched list; doing so
would only serve to inflate the list with garbage.

Recall that PROOFi can be validated using only publicly available information.
We assume that all clients have the same set of public information, and therefore
all honest clients will validate PROOFi the same. The overall protocol relies
on the assumption that the majority of participants are honest. Using that we
know that the majority of participants will have the same, correct validation
result for PROOFi.

The second restriction we add is:

Each participant should be restricted to publishing a maximum of
one SHARE message successfully per time period.

The purpose of this restriction is to prevent adversarial participants from pub-
lishing thousands of SHARE messages at a time, which would cause the fetched
list to become inflated and potentially even cause denial of service or crashes if
enough were published.

This restriction is reasonable as there is always exactly one correct value for Qi

each time period. If Si publishes multiple SHAREi messages during a single
time period then it follows that one of these are true:

• The additional SHAREs are invalid, and should be ignored because they’re
useless.

• The additional SHAREs are valid and contain the same value for Qi;
in this case the additional SHARE messages are redundant and can be
ignored.

• The additional SHAREs are valid but contain different values for Qi. This
means Si has managed to subvert the zero knowledge proof and none of
their SHAREs should be trusted because we are unable to determine which
of them contains the correct value for Qi.

Additionally because of restriction one we don’t need to worry about adversarial
participants impersonating honest participants and publishing SHARE messages
on their behalf. Creation of PROOFi requires knowledge of si, which is a value

8

that is only known by Si. Creation of a valid PROOFi without knowledge
of si is considered computationally infeasible in the random oracle model [?];
therefore forgery of valid a SHARE message is also considered computationally
infeasible.

List creation using Tor

One way to implement the list protocol is to use pre-existing features of Tor.13

The Tor network has a centralised directory protocol which is used to distribute
information about the network, such as lists of onion-routers which clients can
relay their traffic through.

The basic idea behind their directory protocol is that there is a small set of
directory authorities on the network.14 Routers on the Tor network upload
information about themselves to each of the directory authorities.

Periodically the directory authorities generate a summary of all the router in-
formation they’ve received (this is called a vote). They then each share their list
with the other directory authorities and work together to agree upon a “con-
sensus status” document, which is a summary of which routers are part of the
network and basic information about them.

Clients are then able to download this summary and use its contained informa-
tion to interact with the Tor network.

It’s not too hard to see similarities between this and our list protocol. When
routers upload information about themselves this corresponds to the publish()
operation. The authorities agree upon a consensus-status document, which
is very similar to our SHARE list, and then make it available to clients for
download (available for fetch()’ing).

The Tor directory protocol must defend against the same Byzantine attacks and
faults that our list protocol does. Additionally, since the directory protocol’s
purpose is to distribute information about the Tor network it’s logical that we
use it for distributing our SHARE list rather than creating something separate.

13 This method of course is designed for use in the Tor network. I wouldn’t suggest it in
other cases.

14 New clients know about these because a listing of the default directory authorities comes
bundled with the Tor software.

9

0.4 Changes to the original

Here is a summary of things that have been changed from the originally sug-
gested protocol and the reasons for doing so:

• Changed SHAREi to not include R since R is publicly calculable. Could
be replaced by T if a time-period identifier is required.

• Added fallback value RAND = R. The notion of a fallback was in the
original, but one wasn’t explicitly defined.

• Changed the value m used in the ZKP based on comments made on
tor-dev.

• Defined the list protocol stuff more explicitly.

• Removed the signature from SHARE messages since I couldn’t come up
with a satisfying justification. Regardless it’s likely that the list creation
protocol would require (and provide) such functionality.

• Changed the signature to use “tor-hs-rand-base-point”||T instead of R.
The idea is that this will avoid possible hash collisions in R. The signature
was removed, but if it’s ever added back I’d suggest doing this.

10

	Intro
	Notation
	Protocol description
	Calculation of RAND
	Validation of Qi
	List creation

	Changes to the original

