
Snowflake Anonymous Network Traffic
Identification

Yuying Wang, Guilong Yang, Dawei Xu(B), Cheng Dai, Tianxin Chen,
and Yunfan Yang

College of Cybersecurity, Changchun University, Changchun, China
xudw@ccu.edu.cn

Abstract. Tor, as a widely used anonymous communication system, is frequently
employed by some users for illegal activities. Snowflake server as a plugin that
enables users to connecting to the Tor network, allowing users to evade surveil-
lance by connecting to the Tor network through it. Since Snowflake hides user
traffic within regular WebRTC, it becomes challenging for authorities to differen-
tiate and regulate, posing significant difficulties in monitoring efforts. To address
these issues, this paper proposes a feature extraction method based on traffic
statistical characteristics and a Snowflake traffic identification model based on
MLP. We collected traffic datasets in Docker environment, extracted variable-
length DTLS handshake sequences, and employed the feature extraction method
to extract their statistical characteristics, including packet length, session dura-
tion, and average time between sending two packets, among other features. The
MLP-based Snowflake traffic identification model can determine whether the traf-
fic belongs to the target traffic based on these features. Moreover, this method
can accurately identify traffic even when the traffic fields change. Experimental
results demonstrate that this method achieves a 99.83% accuracy rate in identify-
ing Snowflake traffic. Additionally, even when the data distribution in the dataset
is altered, although the method requires more training iterations, it still achieves
a 99.67% accuracy rate.

Keywords: Anonymous communication · Tor network · Traffic identification ·
MLP · Deep learning

1 Background

With the rapid development of the Internet, people’s awareness of privacy protection
has grown stronger. Various anonymous communication systems have become increas-
ingly popular. According to the CNNIC report on March 2, 2023, as of December 2022,
China’s online population reached 1.067 billion, with an Internet penetration rate of
75.6%, surpassing over half of the country’s population. With such a large user base,
anonymous communication systems are often abused by some malicious users, leading
to serious cybersecurity incidents [1]. As the most widely anonymous communication
system, the Tor system allows users to anonymously access various websites through
three-hop relays, without being detected by service providers or intermediaries. The

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Y. Zhang et al. (Eds.): CENet 2023, LNEE 1127, pp. 402–412, 2024.
https://doi.org/10.1007/978-981-99-9247-8_40



Snowflake Anonymous Network Traffic Identification 403

Tor network has millions of users, and some individuals exploit its anonymity for illicit
activities such as drug and firearm trafficking. Researchers have employed traffic identi-
fication techniques to identify Tor traffic and block it. In response, the Tor development
team introduced Pluggable Transport (PT) [2] technology, which utilizes clients with
special protocols as the first hop in the relay chain. These protocols can hide special
traffic within normal traffic, making it difficult for censors to discern. Among the most
widely used are Obfs4, Meek, and Snowflake. Snowflake primarily evades censorship
by concealing traffic within the data channel of WebRTC [3]. WebRTC utilizes DTLS
[4] as the underlying protocol for data transmission. Being a widely adopted audio and
video technology,WebRTCposes significant challenges to censorship efforts. This paper
focuses on identifying the DTLS handshake process within WebRTC. It collects target
traffic within Docker environment and employs a feature extraction method based on
traffic statistical characteristics to extract features. Finally, a Snowflake traffic identifi-
cation model based on Multi-Layer Perceptron (MLP) is utilized to determine whether
the traffic belongs to the target traffic. If it does, the censoring authority can choose to
block the traffic; if not, the traffic is allowed to pass through.

2 Related Research

Snowflake [5] is currently one of the most widely used PTs. David et al. [6] conducted
a study by collecting a significant amount of application traffic that utilizes WebRTC
communication. They manually analyzed the differences between these traffic samples
and identified the potential to recognize Snowflake based on certain fields. Additionally,
they highlighted the use of WebRTC as a means to evade censorship. Kyle MacMillan
et al. [7] conducted a study to evaluate the recognizability of Snowflake. By collecting
multiple application traffic samples that utilize WebRTC technology at the underlying
level, they analyzed the interaction packets and protocol fields during the DTLS hand-
shake phase. The researchers proposed a method to identify Snowflake traffic based on
the DTLS handshake fields. Building upon the research conducted by MacMillan et al.,
Chen et al. [8] expanded their dataset and proposed a framework for Snowflake traffic
identification. This framework utilizes rule matching and DTLS fingerprinting to deter-
mine whether user traffic is accessing the Tor network and further classify whether the
user is accessing hidden services within the Tor network.

The earlier research primarily focused on the data transmission phase of Snowflake,
where WebRTC utilizes the DTLS protocol for initial connection establishment. By
extracting specific fields from the protocol and transforming them into features,
machine learning algorithms were employed to identify and differentiate between nor-
mal WebRTC traffic and abnormal traffic. They primarily focused on the fixed data
packets in the DTLS handshake, specifically the Client Hello and Server Hello. How-
ever, this approach faces a significant challenge when Snowflake modifies these fields
to make them identical to normal WebRTC fields. In such cases, it becomes difficult to
distinguish between the two using this method.



404 Y. Wang et al.

3 The Fundamental Principles of Snowflake

As a pluggable transport plugin in Tor, Snowflake operates differently from the original
Tor network. In the Tor-Meek plugin, the client primarily utilizes a technique called
domain fronting [9]. It involves initially connecting to a Content Delivery Network
(CDN) provider that supports this technique. The CDN provider then forwards all of
the client’s traffic to the next hop node. In this scenario, all client traffic accessing the
anonymous systemneeds to be relayed through theCDNprovider, resulting in significant
bandwidth overhead.

Snowflake as a new PT consists of the following components, as illustrated in Fig. 1
of the system architecture. The client will first send a proxy request to the broker, and
then the broker will create an SDP answer containing information about the proxy and
respond to the client. At this point, the client will directly connect to the proxy. When
the proxy receives a connection from the client, it first checks if the received request is
legitimate, meaning it matches the information it previously sent to the broker. If the
information matches, the proxy accepts the client’s connection. The client initiates the
DTLS handshake by sending the necessary information to generate a session key. Once
the key is generated, both the client and the proxy use it to exchange messages over the
WebRTC data channel.

Fig. 1. Snowflake system architecture diagram.

4 MLP-Based Snowflake Traffic Identification

4.1 Feature Extraction

This paper proposes amethod of feature extraction fromvariable-length traffic sequences
using traffic statistical features, primarily based on session-level traffic. Each session-
level traffic can be represented as:

Xn = {x1, x2, x3, . . . , xk} (1)



Snowflake Anonymous Network Traffic Identification 405

here, xk represents a UDP packet, and Xn represents all communication traffic between
a server and a client, with bidirectional direction.

Since this study focuses on identifying target traffic based on the handshake traf-
fic features between the client and the proxy in WebRTC, the first step is to ensure
the complete collection of all handshake traffic. The underlying protocol used for data
transmission in WebRTC is DTLS. In a normal DTLS handshake protocol, the client
first sends a Client Hello request to the proxy. The proxy then responds with a Server
Hello, including its authentication information, such as its public key. After receiving
the authentication information from the proxy, the client uses the received public key
to encrypt the subsequent information and sends a request. Upon receiving the request,
the proxy responds with another data packet. From there, the client can engage in regu-
lar encrypted communication with the proxy. This communication process is similar to
the communication process in TLS. Under normal circumstances, the handshake traffic
between the client and the proxy can be completed with only four data packets. How-
ever, due to the diversity of network environments and the use of UDP protocol at the
underlying level, which does not guarantee transmission quality, in practical network
scenarios, multiple retransmissions are often required. Therefore, capturing only the first
four packets of the transmission phase is far from sufficient. It is necessary to capture
variable-length traffic sequences from the transmission flow, which can be represented
as follows:

Sk = {x1, x2, x3, . . . , xi} (2)

xi represents a DTLS handshake data packet, and Sk represents all the DTLS handshake
data packets.

After technical analysis and comparing a large number of data packets, it was deter-
mined that when the payload data of the first packet in UDP is 22, the current traffic
corresponds to handshake traffic. The traffic that matches this feature is extracted and
merged for further feature extraction.

In the traffic feature extraction section, this study primarily analyzes the target traf-
fic using statistical methods. In this regard, we utilized the CICFlowMeter, a feature
extraction software, and made certain modifications to it. This software is capable of
extracting features from both TCP and UDP traffic. However, in our study, WebRTC uti-
lizes only UDP packets. Therefore, we removed the TCP functionality from the software
and incorporated the standard deviation of packet lengths, denoted as:

PLS =
√∑n

i=0(Li−
∑n

i=0Li/n)
2

N
(3)

where Li represents the length of an individual packet and N represents the number
of packets, this feature represents the magnitude of variations in packet sizes during a
session. The average length feature of the packets is represented as:

PLM =
∑n

i=0Li
N

(4)

The average time feature between the forward transmission of two packets is
represented as:

FIM =
∑n

i=0(Ti+1−Ti)
N

(5)



406 Y. Wang et al.

where Ti represents the time at which the current packet is sent, and N represents the
number of packets. This feature represents the speed of information exchange between
the two parties in the session. Additionally, there are other less important features such
as data statistics in the reverse flow and session duration, which are not listed here in
detail.

Due to the issue of packet retransmission caused by network conditions, we have
added the feature of the number of retransmitted packets. This feature can be used to
indicate the quality of the network link. If the value is high, it suggests the presence of
blocking nodes in the link. The feature extraction algorithm is shown in Table 1. After
extracting features from DTLS session traffic, focusing on aspects such as packet size
and average transmission rate, a total of 48 flow statistical features are obtained, which
can be used for subsequent model training.

Table 1. Retransmission packet calculation.

Algorithm 1: Number characteristic of retransmitted packets

Input: Session sequence

Output: Number of retransmission packets

number = 0

packets = []

for packet in sessions:

if packet in packets:

number += 1

else:

packets.append(packet)

4.2 Model Introduction

Firstly, we need to preprocess the data by normalizing the data. The overall architecture
of the model is illustrated in Fig. 2. The first layer is the input layer, which consists
of 48 neurons. After preprocessing the data, the dimensionality of the feature vector is
48. The second layer consists of 512 neurons. The input vector dimension is 48, and
the output vector dimension is 512. The third layer consists of 64 neurons. The input
vector dimension is 512, and the output vector dimension is 64. The fourth layer consists
of a single neuron. It is followed by a Sigmoid function. After applying the Sigmoid
function, the final output is mapped to the range [0, 1], representing the probability of
the input being the target traffic. When the output probability is greater than 0.5, the
model classifies the traffic as Snowflake traffic. If the probability is less than 0.5, the
traffic is classified as normal WebRTC traffic.

The loss function used in this case is BCELoss, which stands for Binary Cross
Entropy Loss. It is a commonly used loss function for binary classification tasks. It
measures the difference between the model’s output and the true labels. There are many



Snowflake Anonymous Network Traffic Identification 407

Fig. 2. Model architecture diagram.

optimization functions available, we have opted to use the Adam algorithm. Adam is
an adaptive optimization algorithm that adjusts the learning rate for each parameter. It
allows parameters with smaller gradients to have larger learning rates, while parameters
with larger gradients have smaller learning rates. This helps improve training efficiency
and speed.

5 Experiment

5.1 Collection and Processing of Traffic

Since Docker provides a closed environment and allows images to be saved in the cloud
for easy distribution, the experiments in this study were primarily conducted using
Docker. The base image used for the experiments was Ubuntu 20.

The first step is to download the base image and instantiate a container from it. Inside
the container, you will install the Python environment, Scapy, and Selenium libraries.
Then, you’ll install a headless browser that does not require a graphical interface. Next,
you’ll install the Tor software and Snowflake. Since Snowflake is written in Go, you’ll
need to install the Go compiler first in order to run the client. Write a script that first uses
the Scapy library to listen to the network traffic on a specific network interface. Then,
use the Selenium library to write an automation script that allows the browser to visit
certain websites automatically. Specify that the traffic should pass through a designated
Snowflake proxy port. Finally, when the client enters the anonymous communication
network through the proxy, establish a three-hop circuit to access random websites and
generate traffic. After the visit, automatically save the traffic data based on the date. To
streamline the process and reducemanual efforts,weutilize theCron software to schedule
the program for daily execution. The image can be found at xinbigworld/ubuntu:1.2.
Once the image is downloaded, it can be directly run to obtain the aforementioned
container environment.

After running the program on two servers for a certain period of time, we consolidate
all the Pcap files and merge them into a single file. We then utilize a feature extraction
methodbasedon traffic statistics to extract features from the traffic.The extracted features
are directly saved to a text file for easy access during the subsequent model training.

By leveraging data from previous papers and combining it with the traffic collected in
our Docker environment, we obtained a dataset of size 6477. In this dataset, Snowflake



408 Y. Wang et al.

represents the target traffic, while the traffic collected from the other three software
represents normal traffic. Our goal is to achieve high accuracy in identifying the target
trafficwithin this dataset. The distribution of the collected traffic data is shown in Table 2.

Table 2. Dataset distribution.

Snowflake Facebook messenger Google hangouts Discord

Sessions 1386 1584 1539 1968

The term Sessions represents a complete conversation between the client and the
server, encompassing bidirectional traffic. It includes the traffic sent from the client to
the server as well as the traffic sent back from the server to the client. For example, 1386
indicates that the traffic collection program was executed 1386 times, resulting in the
collection of 1386 instances of DTLS handshake information.

The proposed method was utilized to extract DTLS handshake data from a large
volume of traffic. The experiments were conducted on a personal computer with an Intel
i5-12500H 3.1GHz CPU and 16GB of RAM. Experimental results show that extracting
handshake data from a session of length 1383 takes approximately 11ms, with complete
packet content including all DTLS handshake information. This demonstrates the fea-
sibility of the proposed method in terms of both efficiency and accuracy. In terms of
feature extraction, experiments conducted on a session sequence of length 192 took a
total of 381ms for feature extraction.

5.2 MLP Model Training

The dataset is divided into training and testing sets in a 7:3 ratio. The training set is used to
train the model by updating its parameters to establish a classification model. The testing
set is used to evaluate the performance of the model and assess its discriminatory power.
In this section, we will use accuracy as a metric to measure the model performance.

As shown in Fig. 3a, the loss value of the model keeps decreasing as the number of
training iterations increases. After 40 training iterations, the loss value reaches a plateau
and shows little further improvement. From Fig. 3b, it can be observed that the accuracy
of the model on the training set reaches its highest value after 25 training iterations,
which is 99.72% for the subsequent iterations. From Fig. 3c, it can be observed that the
training performance on the testing set is similar to that on the training set. Both achieve
the highest accuracy of 99.83% after 25 training iterations and show little improvement
thereafter. This experiment confirms that the proposed method of feature extraction
based on flow statistics and the MLP-based Snowflake traffic identification model can
effectively recognize the target traffic.

5.3 Model Comparison

We trained four different models using the same dataset, which was divided into training
and testing sets in a 7:3 ratio. We also introduced three additional performance metrics



Snowflake Anonymous Network Traffic Identification 409

(a) The loss value of the model (b) The accuracy of the model on the training set

(c) The accuracy of the model on the test set

Fig. 3. Training and evaluation of models.

to evaluate the models. Among them, precision represents the proportion of correct
predictions among all positive predictions. Recall represents the proportion of correct
predictions among all positive instances. F-score primarily balances precision and recall.
The final results are shown in Table 3. From the table, we can see that, in terms of
Accuracy, all models except RF achieve relatively high values. However, in terms of
precision, MLP significantly outperforms the other models, indicating that the predicted
target traffic consists mostly of true target traffic. SVM is able to recall all positive
samples in terms of recall, but due to its lower precision, it indicates that there will be
a certain number of negative samples predicted as positive, resulting in a higher rate
of false positives. In summary, the MLP model demonstrates excellent performance in
all aspects of Snowflake traffic identification. Therefore, choosing the MLP model for
identifying target traffic is more suitable.

Table 3. Model performance comparison

Classifier Accuracy Precision Recall F1

SVM 0.9855 0.9115 1.0 0.9537

Random Forest 0.9586 0.7892 0.9640 0.8679

MLP 0.9983 0.9916 0.9972 0.9944

Naive Bayes 0.9838 0.9078 0.9925 0.9483



410 Y. Wang et al.

5.4 Comparison of the Importance of Traffic Statistical Features

In the experiment, we can use Random Forest (RF) to rank the importance of features
and obtain their weights, as shown in Fig. 4. We can observe that the most important
feature accounts for 27% of the weight, representing the total time between two forward
packets. The second feature occupies 22% of the weight, representing the average length
of packets throughout the entire conversation. The third feature represents the duration
of the session, i.e., the total time spent by the client and server on DTLS. The cumulative
importance of the top three features reaches around 50%.Thismethod involves collecting
session packets during the DTLS handshake and extracting statistical features from these
packets. Compared to the research presented in the second section, where they directly
compare specific fields of the protocol, our method exhibits better robustness. When the
protocol fields of the traffic are altered, their method may not achieve the same high
accuracy. However, since our method does not rely on using protocol fields as features,
it can still effectively identify the target traffic even if the protocol fields are changed.

Fig. 4. Feature importance.

5.5 The Impact of Data Distribution on Model Performance

As shown in Fig. 5, by varying the proportion of target traffic in the dataset, we simulate
the data distribution in real-world scenarios. For example, a ratio of 5:1 represents the
size comparison between normal traffic and target traffic datasets.We can observe that the
proposed feature extraction method and model still have a high probability of feasibility
in real scenarios, achieving an accuracy of 99.67%.

From the figure, we can observe that when the proportion of target traffic in the
dataset is higher, the model does not initially achieve a high accuracy. This is because



Snowflake Anonymous Network Traffic Identification 411

the dataset is larger, and the model needs multiple iterations to learn the characteristics
of the traffic. On the other hand, when the proportion of target traffic decreases in the
dataset, although the model initially achieves a high accuracy, it requires more training
iterations to reach an accuracy of 99.67%.

Fig. 5. Target traffic identification with different proportions.

6 Conclusion

Many users employ the Tor anonymous communication system to conceal their online
activities for the purpose of engaging in illegal activities. While there are numerous
methods to identify raw Tor traffic, the difficulty of traffic identification has increased
significantly with the use of Tor PT technology, particularly the adoption of Snowflake.
In this study, we extract 48 statistical features from DTLS traffic using a flow-based
statistical feature extraction method. These features are preprocessed to obtain properly
formatted input features in accordance with established standards. The extracted feature
data is fed into an MLP model, which can ultimately determine whether the traffic
belongs to the target flow. Even if certain fields in the traffic change, this method can
still function properly because it primarily relies on the statistical features of the traffic
for classification, and changes in protocol fields do not affect its recognition accuracy.
Traffic identification is a dynamic process, and as we identify traffic features, Snowflake
developers may modify these features to render our model ineffective. This could lead
to an ongoing cat-and-mouse situation. It is necessary to continually collect traffic data
to maintain a high level of accuracy. In the future, we hope to automate this process to
adapt to updates and changes in Snowflake versions.



412 Y. Wang et al.

References

1. Yannikos, Y., Heeger, J., Steinebach, M.: Scraping and analyzing data of a large darknet
marketplace. J. Cyber Secur. Mob. 161–186 (2023)

2. Shahbar, K., Zincir-Heywood, A.N.: Traffic flow analysis of tor pluggable transports. In: 2015
11th International Conference on Network and Service Management, pp. 178–181 (2015)

3. Sredojev, B., Samardzija, D., Posarac, D.: WebRTC technology overview and signaling solu-
tion design and implementation. In: 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics, pp. 1006–1009 (2015)

4. Shaheen, S.H., Yousaf, M.: Security analysis of dtls structure and its application to secure
multicast communication. In: 2014 12th International Conference on Frontiers of Information
Technology, pp. 165–168 (2014)

5. The Snowflake, https://trac.torproject.org/projects/tor/wiki/doc/Snowflake, last accessed
2023/4/24

6. Fifield, D., Epner, M.G.: Fingerprintability of WebRTC. arXiv preprint arXiv:1605.08805
(2016)

7. MacMillan, K., Holland, J., Mittal, P.: Evaluating snowflake as an indistinguishable censorship
circumvention tool. arXiv preprint arXiv:2008.03254 (2020)

8. Chen, J., Cheng, G., Mei, H.: F-ACCUMUL: a protocol fingerprint and accumulative payload
length sample-based tor-snowflake traffic-identifying framework. Appl. Sci. 13(1), 622 (2023)

9. Fifield, D., Lan, C., Hynes, R., Wegmann, P., Paxson, V.: Blocking-resistant communication
through domain fronting. Proc. Priv. Enhanc. Technol 2015(2), 46–64 (2015)


