
1

sctPT - An SCTP-Based Pluggable Transport in Python1

Alexander Mages2

Overview of Functionality
At the highest level, this client takes TCP traffic via SOCKS, proxies it over
SCTP3 to the server, which subsequently proxies it outward in original TCP. The
reverse is also true, when the server receives TCP traffic, it is proxied upstream
to the client via SCTP, which is further proxied across loopback to the client
application via SOCKS. The program has a couple use cases. I will explain each
one in non-exhaustive detail below.

1. Client usage: Pluggable Transport using the Tor Browser
a. The program looks to environmental variables defined by the Tor

Browser to decide on configuration parameters
b. It starts an SCTP socket and a SOCKS over TCP socket. After this,

the TCP socket listens and begins to accept connections and the
SCTP socket attempts to connect to the server

c. After both connections are established, data received through
SOCKS is sent downstream via SCTP and any data received via
SCTP is forwarded upstream through SOCKS

2. Server usage: As a Tor Bridge supporting this transport
a. The program looks to environmental variables defined by Tor to

decide on configuration parameters, as well as the orport
b. It starts a socket running SCTP and a socket running TCP
c. Both sockets begin listening and accepting connections
d. Once both endpoints are connected, data begins proxying
e. Any data received through SCTP is sent downstream via TCP and

any data received via TCP is sent upstream through SCTP
3. Tor-less usage: Currently implemented

a. The above overviews still apply, but without the use of pyptlib
b. This functionality is currently implemented for testing purposes

3 https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
2 Advised by Eugene Vasserman
1 https://github.com/Alexander-Mages/sctPT

https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
https://github.com/Alexander-Mages/sctPT

2

i. To switch to one of the former use cases, uncomment code as
described by various comments throughout the following files:

1. sctPT.py
2. Server.py
3. Client.py

Dependencies and Respective Justifications
● pyptlib_python34; a Python 3 fork of pyptlib5

○ This library abstracts away a large part of the configuration process,
and it handles interfacing with the Tor Browser

○ In this program it is used to gather information from the browser,
decide whether it is a client or a server, and report success/failure to
the browser after execution

● multiprocessing6

○ Standard library with an API very similar to Threading
○ Instead of using thread based parallelism, it uses subprocesses. The

rationale for using this library over Threading is the significant
performance boost.

■ It achieves this by effectively bypassing the Global Interpreter
Lock (GIL) through using multiple processes

● pysocks7

○ This library is used for all SOCKS related networking. It enables
SOCKS over TCP to be used with an almost identical API to a TCP
or SCTP socket object.

● socket
○ Socket is a standard library that is the basis of networking in this

program
○ SCTP sockets are created using C/POSIX-like socket options

■ socket.socket(socket.AF_INET, socket.SOCK_STREAM,
socket.IPPROTO_SCTP)

■ “IPPROTO_SCTP” or protocol #132
● logging

○ Standard library used to implement logging functionality

7 https://pypi.org/project/PySocks/
6 https://docs.python.org/3/library/multiprocessing.html
5 https://pyptlib.readthedocs.io/en/master/
4 https://github.com/Alexander-Mages/pyptlib_python3

https://pypi.org/project/PySocks/
https://docs.python.org/3/library/multiprocessing.html
https://pyptlib.readthedocs.io/en/master/
https://github.com/Alexander-Mages/pyptlib_python3

3

○ By default, it is set to verbose. By modifying the argparse default in
sctPT.py for verbosity this can be changed.

● argparse
○ Standard library used to parse command line arguments

Limitations
● Not tested with the Tor Browser

○ All testing has been done using telnet and ncat’s SCTP functionality
■ ncat --sctp 1.1.1.1 6000
■ telnet 1.1.1.1 9050

● There is no data obfuscation (other than base64 encoding) and the data is
very much cleartext

● No native Windows support for SCTP
○ There are libraries that could solve this problem but I have not used

them nor know if they are reliable or functional
○ I have written a partial SCTP stack in Scapy (client only). It is very

much a prototype, but it is functional. Scapy is supported in Windows
and as far as I know does not require native support due to the low
level nature of the interface.

■ https://github.com/Alexander-Mages/Py-SCTP-Stack
○ https://github.com/dreibh/sctplib

● Connections not built around Tor standards, some features missing
○ No ExtORPORT functionality
○ The connections are not built in accordance with any spec, it was

programmed around my current testing tools
○ Along with many other things that I am most likely unaware of

● Networking might not be done in accordance with best practices
○ No reconnect functionality; if a connection dies, the program must be

restarted
○ SCTP is used in TCP-like manner; does not implement many of

SCTP’s more advanced features
○ Server/client accept() vs. connect() decisions are largely arbitrary
○ There is no buffer used, the socket handles all queued data

● PySocks and pyptlib are third-party libraries
○ pysocks is maintained, but pyptlib seems old and had to be

“manually” ported to Python 3

https://github.com/Alexander-Mages/Py-SCTP-Stack
https://github.com/dreibh/sctplib

4

■ Primarily used python-modernize8

● Not extensively tested, but proven functional on multiple machines
● Not tested on the open internet, only on a local network

Instructions for Running
1. Ensure SCTP is permitted and supported on both the client and the server
2. Ensure dependencies are installed
3. export PYTHONPATH=$PYTHONPATH:~/sctPT/

a. Importing custom library has been unstable for me, this generally
solves the issue

4. Run “python3 sctPT.py --server” on the server
5. Run “telnet 127.0.0.1 9000” on the server
6. Run “python3 sctPT.py” on the client
7. On the client, run “telnet 127.0.0.1 9050”
8. After all of this, the endpoints should be connected, and data can be sent

back and forth

Additional Notes
● Concept derived from Tor wiki PT ideas page:

○ https://gitlab.torproject.org/legacy/trac/-/wikis/doc/PluggableTransports/ideas
● SOCKS4 and SOCKS5 are supported. SOCKS5 is default.
● Code structure influenced by obfsproxy9

9 https://github.com/Yawning/obfsproxy
8 https://python-modernize.readthedocs.io/en/latest/

https://gitlab.torproject.org/legacy/trac/-/wikis/doc/PluggableTransports/ideas
https://github.com/Yawning/obfsproxy
https://python-modernize.readthedocs.io/en/latest/

